
Aachen
Department of Computer Siene

Tehnial Report

A olletion of examples for termina-

tion of term rewriting using dependeny

pairs

Thomas Arts and J�urgen Giesl

ISSN 0935{3232 � Aahener Informatik Berihte � AIB-2001-09

RWTH Aahen � Department of Computer Siene � September 2001

The publiations of the Department of Computer Siene of RWTH Aahen

(Aahen University of Tehnology) are in general aessible through the World

Wide Web.

http://aib.informatik.rwth-aahen.de/

A olletion of examples for termination of term

rewriting using dependeny pairs

Thomas Arts

1

and J�urgen Giesl

2

1

Erisson, Computer Siene Laboratory, Box 1505, 125 25

�

Alvsj�o, Sweden

Email: thomas�slab.erisson.se

2

LuFG Informatik II, RWTH Aahen, Ahornstr. 55, 52074 Aahen, Germany

Email: giesl�informatik.rwth-aahen.de

Abstrat. This report ontains a olletion of examples to demonstrate the use

and the power of the dependeny pair tehnique developed by Arts and Giesl.

This tehnique allows automated termination and innermost termination proofs

for many term rewrite systems for whih suh proofs were not possible before.

1 Introdution

In many appliations of term rewrite systems (TRSs), termination is an im-

portant property. A TRS is said to be terminating if it does not allow in�nite

redutions. Sine termination is in general undeidable [HL78℄, several methods

for proving this property have been developed; for surveys see e.g. [Der87,Ste95b℄.

Pratially all known methods that are amenable to automation use simpli�a-

tion orderings [Der79,Der87,Ste95b,MZ97℄.

However, there exist numerous term rewrite systems for whih termination

annot be proved by this kind of orderings. For that reason, Arts and Giesl

[AG97a,AG97b,AG98,AG00,GA01,GAO01℄ developed the so-alled dependeny

pair approah. Given a TRS, the dependeny pair tehnique automatially gen-

erates a set of onstraints and the existene of a well-founded (quasi-)ordering

satisfying these onstraints is suÆient for termination. The advantage is that

standard (automati) tehniques an often synthesize suh a well-founded or-

dering even if a diret termination proof with the same tehniques fails. In this

way, simpli�ation orderings an now be used to prove termination of non-simply

terminating TRSs.

This report ontains a olletion of several suh systems from di�erent areas

of omputer siene (inluding many hallenging problems from the literature).

Moreover, appliations of dependeny pairs for realisti industrial problems in

the area of distributed teleommuniation proesses are disussed in [GA01℄.

For an implementation of the dependeny pair approah see [Art00℄ or [CiM99℄.

Dependeny pairs have also been suessfully applied in automati termination

proofs of logi programs, see [Ohl01,OCM00℄.

In Setion 2 we briey reapitulate the basi results of the dependeny pair

approah. Setion 3 ontains a olletion of examples to demonstrate the use

of dependeny pairs for termination proofs of TRSs and Setion 4 ontains a

orresponding olletion for innermost termination proofs.

2 The dependeny pair method

In the following we desribe the notions relevant to the dependeny pair method

(where we assume the reader to be familiar with the basi notions of term rewrit-

ing [DJ90,Klo92,BN98℄). In Setion 2.1 we illustrate how dependeny pairs are

used for automati termination proofs and in Setion 2.2 we explain their use

for innermost termination proofs. For motivations and further re�nements see

[AG00,GA01,GAO01℄. We adopt the notation of [GM00℄ and [KNT99℄. The root

of a term f(: : :) is the leading funtion symbol f . For a TRS R over a signature

F , D = froot(l)jl ! r 2 Rg is the set of the de�ned symbols and C = F n D

is the set of onstrutors of R. Let F

℄

denote the union of the signature F

and ff

℄

j f is a de�ned symbol of Rg, where f

℄

has the same arity as f . The

funtions f

℄

are alled tuple symbols, where we often write F for f

℄

, et. Given

a term t = f(t

1

; : : : ; t

n

) 2 T (F ;V) with f de�ned, we write t

℄

for the term

t = f

℄

(t

1

; : : : ; t

n

).

De�nition 1 (Dependeny pair). If l ! r 2 R and t is a subterm of r with

de�ned root symbol, then the rewrite rule l

℄

! t

℄

is alled a dependeny pair of

R. The set of all dependeny pairs of R is denoted by DP(R).

2.1 Termination

In this setion we explain how dependeny pairs an be used to prove termination

of TRSs.

De�nition 2 (Chain). A sequene of dependeny pairs s

1

! t

1

, s

2

! t

2

; : : : is

an R-hain if there exists a substitution � suh that t

j

�!

�

R

s

j+1

� holds for every

two onseutive pairs s

j

! t

j

and s

j+1

! t

j+1

in the sequene.

We always assume that di�erent (ourrenes of) dependeny pairs have dis-

joint sets of variables and we always onsider substitutions whose domains may

be in�nite. In ase R is lear from the ontext we often write hain instead of

R-hain. As proved in [AG97a,AG00℄, the absene of in�nite hains is a suÆient

and neessary riterion for termination.

Theorem 1 (Termination riterion). A TRS R is terminating if and only if

there exists no in�nite R-hain.

Some dependeny pairs an never our twie in any hain and hene they

need not be onsidered when proving that no in�nite hain exists. For identifying

these insigni�ant dependeny pairs, the notion of dependeny graph has been

introdued [AG97a,AG00℄.

De�nition 3 (Dependeny graph). The dependeny graph of a TRS R is

the direted graph whose nodes are the dependeny pairs and there is an ar from

s! t to v ! w i� s! t, v ! w is a hain.

4

A non-empty set P of dependeny pairs is alled a yle if for any two pairs

s! t and v ! w in P there is a non-empty path from s! t to v ! w whih

only traverses pairs from P . Sine we only regard �nite TRSs, any in�nite hain

of dependeny pairs orresponds to a yle in the dependeny graph. Hene, the

dependeny pairs that are not on a yle in the dependeny graph are insigni�ant

for the termination proof. One an prove termination of a TRS in a modular way,

by proving absene of in�nite hains separately for every yle [AG98,GAO01℄.

Theorem 2 (Modular termination riterion). A TRS R is terminating if

and only if for eah yle P in the dependeny graph there exists no in�nite

R-hain of dependeny pairs from P.

This theorem an be re�ned by narrowing ertain dependeny pairs [AG00℄.

De�nition 4 (Narrowing). Let R be a TRS. A term t narrows to a term t

0

via the substitution � if there exists a non-variable position p in t, � is the most

general uni�er of tj

p

and l for some rewrite rule l ! r of R, and t

0

= t�[r�℄

p

.

(Here, the variables of l ! r must have been renamed to fresh variables.)

De�nition 5 (Narrowing pairs). Let R be a TRS. If a term t narrows to a

term t

0

via the substitution �, then we say that the pair of terms s! t narrows

to the pair s�! t

0

.

Theorem 3 (Narrowing re�nement for termination). Let R be a TRS and

let P be a set of pairs of terms. Let s! t in P suh that t is linear and for all

v ! w in P the terms t and v are not uni�able (after renaming the variables).

Let

P

0

= P n fs! tg [fs

0

! t

0

j s

0

! t

0

is a narrowing of s! tg:

There exists an in�nite R-hain of pairs from P if and only if there exists an

in�nite R-hain of pairs from P

0

.

Stritly spoken, if in a set P a dependeny pair is replaed by its narrowings,

the resulting set is not a set of dependeny pairs, but rather a set of pairs. The

above theorem, however, states that we may use these sets of pairs instead of the

original sets of dependeny pairs in the other theorems stated here.

In order to hek that no in�nite hain of dependeny pairs exists, sets of

inequalities are generated. These inequalities should be satis�ed by some pair

(%;�) onsisting of a quasi-rewrite ordering % (i.e., % must be a reexive and

transitive relation that is (weakly) monotoni and losed under substitutions)

and an ordering � with the properties

� � is losed under substitutions and well founded

� % Æ ��� or � Æ %��.

(Note that � need not be monotoni.) Suh a pair is alled a redution pair

[KNT99℄. A termination proof for a ertain TRS is transformed into the problem

of �nding several redution pairs [AG98,GAO01℄.

5

Theorem 4 (Modular termination proofs I). A TRS R is terminating if

and only if for eah yle P in the dependeny graph there is a redution pair

(%

P

;�

P

) suh that

(a) l %

P

r for all rules l ! r in R,

(b) s %

P

t for all dependeny pairs s! t from P, and

() s �

P

t for at least one dependeny pair s! t from P.

Of ourse, our aim is to use standard tehniques to generate suitable re-

dution pairs satisfying the onstraints of Theorem 4. However, most existing

methods generate orderings whih are strongly monotoni, whereas for the de-

pendeny pair approah we only need a weakly monotoni quasi-ordering. For

that reason, before synthesizing a suitable ordering, some of the arguments of the

funtion symbols an be eliminated. To perform this elimination of arguments

resp. of funtion symbols the onept of argument �ltering was introdued in

[AG97a,AG00℄ (here we use the notation of [KNT99℄).

De�nition 6 (Argument �ltering). An argument �ltering for a signature

F is a mapping � that assoiates with every n-ary funtion symbol an argument

position i 2 f1; : : : ; ng or a (possibly empty) list [i

1

; : : : ; i

m

℄ of argument positions

with 1 � i

1

< : : : < i

m

� n. The signature F

�

onsists of all funtion symbols f

suh that �(f) = [i

1

; : : : ; i

m

℄, where in F

�

the arity of f is m. Every argument

�ltering � indues a mapping from T (F ;V) to T (F

�

;V), also denoted by �, whih

is de�ned as:

�(t) =

8

<

:

t if t is a variable,

�(t

i

) if t = f(t

1

; : : : ; t

n

) and �(f) = i,

f(�(t

i

1

); : : : ; �(t

i

m

)) if t = f(t

1

; : : : ; t

n

) and �(f) = [i

1

; : : : ; i

m

℄.

Theorem 5 (Modular termination proofs II). A TRS R over a signature

F is terminating if and only if for eah yle P in the dependeny graph there is

an argument �ltering �

P

for F

℄

and a redution pair (%

P

;�

P

) suh that

(a) �

P

(l) %

P

�

P

(r) for all rules l ! r in R,

(b) �

P

(s) %

P

�

P

(t) for all dependeny pairs s! t from P, and

() �

P

(s) �

P

�

P

(t) for at least one dependeny pair s! t from P.

For the automation of the tehnique, we need to ompute the dependeny

graph, �nd argument �lterings, and synthesize a redution pair for eah set of

inequalities. Sine it is in general undeidable whether two dependeny pairs form

a hain, we need to estimate the dependeny graph in suh a way that all yles

in the real graph are also yles in the estimated graph. Our estimation depends

on two transformations that are applied to the right-hand side of a dependeny

pair [AG97a,AG00℄.

Let ap(t) result from replaing all subterms of t that have a de�ned root

symbol by di�erent fresh variables and let ren(t) result from replaing all vari-

ables in t by di�erent fresh variables. Then, to determine whether v ! w an

follow s! t in a hain, we hek whether ren(ap(t)) uni�es with v.

6

De�nition 7 (Estimated dependeny graph). The estimated dependeny

graph of a TRS R is the direted graph whose nodes are the dependeny pairs

and there is an ar from s! t to v ! w if and only if ren(ap(t)) and v are

uni�able.

With this de�nition Theorems 2, 4, and 5 also hold if we replae dependeny

graph by estimated dependeny graph [GAO01℄.

The estimated dependeny graph is omputable, hene all the yles in the

graph are omputable. The argument �ltering an be found automatially by

an exhaustive searh. For every possible argument �ltering one an try quasi-

simpli�ation orderings (QSOs) like RPO, LPO, KBO, polynomial interpreta-

tions, et., to �nd a redution pair that satis�es the inequalities [Art00℄. Ter-

mination proved in this way is alled DP quasi-simple termination. Beause

of the tehniques we use to �nd a redution pair, we restrit ourselves in the

following to argument �lterings suh that for every pair/rule s ! t we have

Var(�(t)) � Var(�(s)) and �(s) 62 V . Only for those argument �lterings the

tehniques are potentially suessful in pratie.

De�nition 8 (DP quasi-simple termination). A TRS R over a signature

F is alled DP quasi-simply terminating if and only if for eah yle P in the

estimated dependeny graph there exists an argument �ltering �

P

for F

℄

and a

redution pair (%

P

;�

P

) with a QSO %

P

suh that

(a) �

P

(l) %

P

�

P

(r) for all rules l ! r in R,

(b) �

P

(s) %

P

�

P

(t) for all dependeny pairs s! t from P, and

() �

P

(s) �

P

�

P

(t) for at least one dependeny pair s! t from P.

If a quasi-simpli�ation ordering exists suh that either s � t or s is synta-

tially equal to t for all inequalities s % t, one obtains the notion of DP simple

termination.

De�nition 9 (DP simple termination). A TRS R over a signature F is

alled DP simply terminating if and only if for eah yle P in the estimated

dependeny graph there is an argument �ltering � for F

℄

and a simpli�ation

ordering �

P

suh that

(a) �

P

(l) �

P

�

P

(r) for all rules l ! r in R,

(b) �

P

(s) �

P

�

P

(t) for all dependeny pairs s! t from P, and

() �

P

(s) �

P

�

P

(t) for at least one dependeny pair s! t from P.

The information that systems are DP quasi-simple terminating an be used

when ombining these systems and proving termination of the resulting TRS

[GO00,GAO01℄.

Theorem 6 (Modularity of DP quasi-simple termination). Let R

1

and

R

2

be two TRSs over disjoint signatures F

1

and F

2

, respetively. Then their

union R = R

1

[R

2

is DP quasi-simply terminating if and only if both R

1

and

R

2

are DP quasi-simply terminating.

7

For DP simple termination the modularity result for disjoint unions does not

hold. The problem is that one of the two systems might have no yle at all in

the graph and is therefore, trivially, DP simply terminating. Combined with a

system with a yle, however, the inequalities orresponding to the rules should

be satis�ed, whih is not always possible by a QSO in whih the equivalene

part is syntati equivalene. Thus, Constraint (a) of De�nition 9 must even be

satis�ed if the TRS only has the empty yle P . Furthermore, by restriting the

argument �lterings used in a suitable way, one an even extend the modularity

result to onstrutor-sharing and omposable ombinations of TRSs [GAO01℄.

For that purpose, we introdue the notion of G-restrited DP simple termination.

De�nition 10 (G-restrited DP simple termination). A TRS R over a

signature F is alled G-restrited DP simply terminating for a signature G if and

only if for eah yle P in the estimated dependeny graph (inluding the empty

one) there is an argument �ltering �

P

for F

℄

and a simpli�ation ordering �

P

suh that

(a) �

P

(l) �

P

�

P

(r) for all rules l ! r in R,

(b) �

P

(s) �

P

�

P

(t) for all dependeny pairs s! t from P,

() �

P

(s) �

P

�

P

(t) for at least one dependeny pair s! t from P if P 6= ;,

(d) �

P

(f) = [1; : : : ; n℄ for every f 2 F \ G, where n is the arity of f , and

(e) for every rule l ! r 2 R: if root(l) 62 G, then root(�

P

(l)) 62 G.

From the de�nition it is lear that G-restrited DP simple termination implies

DP simple termination. With this restrited notion of DP simple termination we

obtain modularity for omposable systems (and therefore also for systems with

shared onstrutors and disjoint unions).

Theorem 7 (Modularity of G-restrited DP simple termination). Let

R

1

and R

2

be omposable TRSs over the signatures F

1

and F

2

, respetively.

If F

1

\ F

2

� G, then their ombined system R = R

1

[R

2

is G-restrited DP

simply terminating if and only if both R

1

and R

2

are G-restrited DP simply

terminating.

2.2 Innermost termination

In [AG97b,AG00℄, we showed that the dependeny pair approah an be modi�ed

in order to verify innermost termination.

De�nition 11 (Innermost hain). A sequene of dependeny pairs s

1

! t

1

,

s

2

! t

2

, : : : is an innermost R-hain if there exists a substitution � suh that

all s

j

� are in normal form and t

j

�

i

!

�

R

s

j+1

� holds for every two onseutive

pairs s

j

! t

j

and s

j+1

! t

j+1

in the sequene. Here, `

i

!' denotes innermost

redutions.

The absene of in�nite innermost hains is a suÆient and neessary riterion

for innermost termination.

8

Theorem 8 (Innermost termination riterion). A TRS R is innermost

terminating if and only if there exists no in�nite innermost R-hain.

Analogous to Setion 2.1, the notion of a graph is de�ned for innermost

hains.

De�nition 12 (Innermost dependeny graph). The innermost dependeny

graph of a TRS R is the direted graph whose nodes are the dependeny pairs

and there is an ar from s! t to v ! w i� s! t, v ! w is an innermost hain.

Similar to termination, one an also prove innermost termination of TRSs in

a modular way [AG98,GAO01℄.

Theorem 9 (Modular innermost termination riterion). A TRS R is in-

nermost terminating if and only if for eah yle P in the innermost dependeny

graph there is no in�nite innermost R-hain of dependeny pairs from P.

This theorem an also be re�ned by narrowing ertain dependeny pairs

[AG00,GA01℄.

Theorem 10 (Narrowing re�nement for innermost termination). Let

R be a TRS and let P be a set of pairs of terms. Let s! t in P suh that

Var(t) � Var(s) and suh that for all v ! w in P the terms t and v are not

uni�able (after renaming the variables). Let

P

0

= P n fs! tg [fs

0

! t

0

j s

0

! t

0

is a narrowing of s! tg:

If there exists no in�nite innermost hain of pairs from P

0

, then there exists no

in�nite innermost hain of pairs from P either.

Moreover, if R is innermost terminating and non-overlapping, then the on-

verse holds as well (i.e., if there exists no in�nite innermost hain of pairs from

P, then there exists no in�nite innermost hain of pairs from P

0

either).

Further re�nements of this theorem as well as additional tehniques for modifying

dependeny pairs by rewriting and by instantiation an be found in [GA01℄.

To prove innermost termination automatially, we again generate a set of

inequalities for every yle P and searh for a redution pair (%

P

;�

P

) satisfying

them. However, to ensure t� %

P

v� whenever t� redues to v�, now it is suÆient

to require l %

P

r only for those rules that are usable in a redution of t� (for

normal substitutions �).

De�nition 13 (Usable rules). Let R be a term rewrite system. For any symbol

f let Rules

R

(f) = fl ! r 2 R j root(l) = fg. For any term we de�ne the usable

rules:

� U

R

(x) = ;,

� U

R

(f(t

1

; : : : ; t

n

)) = Rules

R

(f) [

S

l!r2Rules

R

(f)

U

R

0

(r) [

S

n

j=1

U

R

0

(t

j

),

9

where R

0

= RnRules

R

(f). Moreover, for any set P of dependeny pairs we de�ne

U

R

(P) =

S

s!t2P

U

R

(t).

Now we an state the theorem for innermost termination proofs.

Theorem 11 (Modular innermost termination proofs). A TRS R over

a signature F is innermost terminating if for eah yle P in the innermost

dependeny graph there is an argument �ltering � for F

℄

and a redution pair

(%

P

;�

P

) suh that

(a) �(l) %

P

�(r) for all rules l ! r in U

R

(P),

(b) �(s) %

P

�(t) for all dependeny pairs s! t from P, and

() �(s) �

P

�(t) for at least one dependeny pair s! t from P.

For the purpose of automation we again need an estimation of the innermost

dependeny graph, sine in general it is undeidable whether two dependeny

pairs s! t and v ! w form an innermost hain. To this end, we again replae

subterms in t with de�ned root symbols by new variables and hek whether this

modi�ation of t uni�es with v, but in ontrast to Setion 2.1 we do not rename

multiple ourrenes of the same variable.

Moreover, to eliminate de�ned symbols we use a modi�ed transformation

ap

s

where ap

s

(t) only replaes those subterms of t by di�erent fresh variables

whih have a de�ned root symbol and whih are no subterms of s. Then to re�ne

the approximation of innermost dependeny graphs instead of ap(t) we hek

whether ap

s

(t) uni�es with v. Finally, if � is the most general uni�er (mgu)

of ap

s

(t) and v, then there an only be an ar from s! t to v ! w in the

innermost dependeny graph, if both s� and v� are in normal form.

De�nition 14 (Estimated innermost dependeny graph). The estimated

innermost dependeny graph of a TRS R is the direted graph whose nodes are

the dependeny pairs and there is an ar from s! t to v ! w if and only if

ap

s

(t) and v are uni�able by a most general uni�er � suh that s� and v� are

normal forms.

With this de�nition Theorems 9 and 11 also hold if we replae innermost depen-

deny graph by estimated innermost dependeny graph.

In [AG98,GAO01℄, two orollaries of the above results were presented whih

are partiularly useful in pratie.

Corollary 15 (Innermost termination for hierarhial ombinations)

Let R be the hierarhial ombination of R

1

and R

2

.

(a) R is innermost terminating if and only if R

1

is innermost terminating and

there exists no in�nite innermost R-hain of R

2

-dependeny pairs.

(b) R is innermost terminating if R

1

is innermost terminating and if there exists

a redution pair (%;�) suh that for all dependeny pairs s! t of R

2

10

� l % r for all rules l ! r in U

R

(t) and

� s � t.

The following orollary of Theorem 9 shows that the onsideration of yles

in the (estimated) innermost dependeny graph an also be used to deompose

a TRS into modular subsystems. In the following, let O(P) denote the origin of

the dependeny pairs in P , i.e., O(P) is a set of those rules where the dependeny

pairs of P stem from. If a dependeny pair of P may stem from several rules,

then it is suÆient if O(P) just ontains one of them.

Corollary 16 (Modularity for subsystems) Let R be a TRS, let P

1

; : : : ;P

n

be the yles in its (estimated) innermost dependeny graph, and let R

j

be subsys-

tems of R suh that U

R

(P

j

)[O(P

j

) � R

j

(for all j 2 f1; : : :; ng). If R

1

; : : : ;R

n

are innermost terminating, then R is also innermost terminating.

For further orollaries and results on the relation of our modularity results

to previous modularity results the reader is referred to [GAO01℄.

3 Examples for termination

This setion ontains a olletion of TRSs where termination an be proved

by the tehnique desribed above. The majority of them ourred as hallenge

problems in the literature, whereas the other examples are added to point out

spei� failures of existing tehniques. Several of these examples are not simply

terminating. Thus, all methods based on simpli�ation orderings fail in proving

termination of these systems. For those examples whih are overlay systems with

joinable ritial pairs, termination an also be veri�ed by proving innermost

termination using the tehnique of Setion 2.2.

In the examples, we refer to the sets of inequalities that result from a yle in

the estimated dependeny graph and the rules of the system as \the inequalities"

(f. Theorem 4 and 5). However, in most of the examples, only the inequalities

resulting from dependeny pairs on yles are mentioned. But of ourse, the

inequalities l % r are also synthesized for eah rewrite rule l ! r in the term

rewrite system. The argument �lterings that we use are only desribed for those

funtion symbols f with arity n for whih �(f) 6= [1; : : : ; n℄, i.e., only those

funtion symbols where some arguments are really �ltered.

In this olletion of examples, three di�erent tehniques are used to �nd a

redution pair, viz. the reursive path ordering, the lexiographi path ordering,

and polynomial interpretations. For Examples 3.39 { 3.46 we need the re�nement

of narrowing dependeny pairs and Examples 3.47 { 3.57 illustrate the use of our

modularity results.

3.1 Division, version 1

The TRS

11

minus(x; 0)! x

minus(s(x); s(y))! minus(x; y)

quot(0; s(y))! 0

quot(s(x); s(y))! s(quot(minus(x; y); s(y)))

is not simply terminating. In this example, we have two yles, viz.

fMINUS(s(x); s(y))! MINUS(x; y)g

fQUOT(s(x); s(y))! QUOT(minus(x; y); s(y))g:

Apart from the four inequalities orresponding to the rewrite rules, one strit

inequality is obtained per yle. Both sets of inequalities are solved by the argu-

ment �ltering �(minus) = [1℄ and RPO. Hene DP simple termination is proved.

3.2 Division, version 2

This TRS for division uses di�erent minus-rules. Again, it is not simply termi-

nating.

pred(s(x))! x

minus(x; 0)! x

minus(x; s(y))! pred(minus(x; y))

quot(0; s(y))! 0

quot(s(x); s(y))! s(quot(minus(x; y); s(y)))

The yles in the estimated dependeny graph are given by:

fMINUS(x; s(y))! MINUS(x; y)g

fQUOT(s(x); s(y))! QUOT(minus(x; y); s(y))g

Finding a suitable ordering is as easy as it was for the previous example, by

hoosing the argument �ltering �(minus) = 1 and �(pred) = 1. Then DP simple

termination an be shown by RPO.

3.3 Division, version 3

This TRS for division uses again di�erent minus-rules. Similar to the preeding

examples it is not simply terminating. In the examples of this olletion, we often

use funtions like if

minus

to enode onditions. This ensures that onditions are

evaluated �rst (to true or to false) and that the orresponding result is evaluated

afterwards. Hene, the �rst argument of if

minus

is the ondition that has to be

tested and the other arguments are the original arguments of minus. Further

12

evaluation is only possible after the ondition has been redued to true or to

false.

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y))! le(x; y)

minus(0; y)! 0

minus(s(x); y)! if

minus

(le(s(x); y); s(x); y)

if

minus

(true; s(x); y)! 0

if

minus

(false; s(x); y)! s(minus(x; y))

quot(0; s(y))! 0

quot(s(x); s(y))! s(quot(minus(x; y); s(y)))

The yles are

fLE(s(x); s(y))! LE(x; y)g

fMINUS(s(x); y)! IF

minus

(le(s(x); y); s(x); y);

IF

minus

(false; s(x); y)! MINUS(x; y)g

fQUOT(s(x); s(y))! QUOT(minus(x; y); s(y))g:

Note that only one of the dependeny pairs on a yle in the dependeny graph

should result in a strit inequality, therefore the inequality

�(MINUS(s(x); y)) % �(IF

minus

(le(s(x); y); s(x); y))

need not be strit. By normalizing the inequalities with respet to the argument

�ltering �(minus) = �(MINUS) = 1 and �(if

minus

) = �(IF

minus

) = 2 the inequali-

ties for DP simple termination are satis�ed by the reursive path ordering.

3.4 Plus and minus

The following example demonstrates the use of the dependeny graph. For that

purpose we extend the TRS of Ex. 3.1 by three additional rules and write in�x

operators for the de�ned symbols minus and plus to ease readability.

x� 0! x

s(x)� s(y)! x� y

quot(0; s(y))! 0

quot(s(x); s(y))! s(quot(x� y; s(y)))

0+ y! y

s(x) + y! s(x+ y)

(x� y)� z ! x� (y + z)

13

In this example, termination annot be proved with our method using a sim-

pli�ation ordering, unless we use the dependeny graph to determine that the

dependeny pair MINUS(: : :) ! PLUS(: : :) does not our on any yle. There

are �ve yles in the estimated dependeny graph.

fMINUS(s(x); s(y))! MINUS(x; y)g

fMINUS(x� y; z)! MINUS(x; y + z)g

fMINUS(s(x); s(y))! MINUS(x; y);

MINUS(x� y; z)! MINUS(x; y + z)g

fQUOT(s(x); s(y))! QUOT(x� y; s(y))g

fPLUS(s(x); y)! PLUS(x; y)g

After applying the argument �ltering �(�) = [1℄, �(MINUS) = [1℄, the inequal-

ities are satis�ed by the reursive path ordering and DP simple termination is

proved. Note that in suh examples, we need not onsider all subyles of a yle

if the inequalities in the larger yle are all hosen to be strit.

3.5 Remainder, version 1 { 3

Similar to the TRSs for division, three versions of the following TRS are obtained,

whih again are not simply terminating. Only one of them is presented.

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y))! le(x; y)

minus(x; 0)! x

minus(s(x); s(y))! minus(x; y)

mod(0; y)! 0

mod(s(x); 0)! 0

mod(s(x); s(y))! if

mod

(le(y; x); s(x); s(y))

if

mod

(true; s(x); s(y))! mod(minus(x; y); s(y))

if

mod

(false; s(x); s(y))! s(x)

The yles are

fLE(s(x); s(y))! LE(x; y)g

fMINUS(s(x); s(y))! MINUS(x; y)g

fMOD(s(x); s(y))! IF

mod

(le(y; x); s(x); s(y));

IF

mod

(true; s(x); s(y))! MOD(minus(x; y); s(y))g:

By applying the argument �ltering, �(minus) = �(mod) = �(MOD) = 1 and

�(if

mod

) = �(IF

mod

) = 2, the inequalities obtained for DP simple termination are

satis�ed by the reursive path ordering.

14

3.6 Greatest ommon divisor, version 1 { 3

There are also three versions of the following TRS for the omputation of the

greatest ommon divisor, whih are not simply terminating. Again, only one of

them is presented.

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y))! le(x; y)

pred(s(x))! x

minus(x; 0)! x

minus(x; s(y))! pred(minus(x; y))

gd(0; y)! y

gd(s(x); 0)! s(x)

gd(s(x); s(y))! if

gd

(le(y; x); s(x); s(y))

if

gd

(true; s(x); s(y))! gd(minus(x; y); s(y))

if

gd

(false; s(x); s(y))! gd(minus(y; x); s(x))

(Of ourse the ordering of the arguments in the right-hand side of the last rule

ould have been swithed. But this version here is even more diÆult: Termina-

tion of the orresponding algorithm annot be proved by the method of Walther

[Wal94℄, beause this method annot deal with permutations of arguments.)

The yles in the estimated dependeny graph of this TRS are

(1) fLE(s(x); s(y))! LE(x; y)g

(2) fMINUS(x; s(y))! MINUS(x; y)g

(3) fGCD(s(x); s(y))! IF

gd

(le(y; x); s(x); s(y));

IF

gd

(true; s(x); s(y))! GCD(minus(x; y); s(y));

IF

gd

(false; s(x); s(y))! GCD(minus(y; x); s(x))g;

where (3) has two subyles. Note that by the argument �ltering �(pred) =

�(minus) = 1, �(if

gd

) = �(IF

gd

) = [2; 3℄ the inequalities are solved by RPO,

also those that are related to the subyles. In this onstrution, however, GCD

and IF

gd

have to be hosen equal in the preedene and therefore we only show

DP quasi-simple termination.

This example was taken from Boyer and Moore [BM79℄ and Walther [Wal91℄.

A variant of this example ould be proved terminating using Steinbah's method

for the automated generation of transformation orderings [Ste95a℄, but there the

rules for le and minus were missing.

3.7 Logarithm, version 1

The following TRS omputes the dual logarithm.

15

half(0)! 0

half(s(s(x)))! s(half(x))

log(s(0))! 0

log(s(s(x)))! s(log(s(half(x))))

The yles are

fHALF(s(s(x)))! HALF(x)g

fLOG(s(s(x)))! LOG(s(half(x)))g:

Without �ltering arguments the inequalities are satis�ed by the reursive path

ordering. (Termination of the original system an also be proved using the re-

ursive path ordering with preedene log > s > half.)

3.8 Logarithm, version 2 { 4

The following TRS again omputes the dual logarithm, but instead of half now

the funtion quot is used. Depending on whih version of quot one hooses, three

di�erent versions of the TRS are obtained (all of whih are not simply terminat-

ing, sine the quot TRS already was not simply terminating).

minus(x; 0)! x

minus(s(x); s(y))! minus(x; y)

quot(0; s(y))! 0

quot(s(x); s(y))! s(quot(minus(x; y); s(y)))

log(s(0))! 0

log(s(s(x)))! s(log(s(quot(x; s(s(0))))))

There are three yles in the estimated dependeny graph:

fMINUS(s(x); s(y))! MINUS(x; y)g

fQUOT(s(x); s(y))! QUOT(minus(x; y); s(y))g

fLOG(s(s(x)))! LOG(s(quot(x; s(s(0)))))g:

After applying the argument �ltering �(quot) = �(minus) = 1, the inequalities

for DP simple termination are satis�ed by the reursive path ordering.

3.9 Eliminating dupliates

The following TRS eliminates dupliates from a list. To represent lists the on-

strutors nil and add are used, where nil represents the empty list and add(n; x)

represents the insertion of n into the list x.

eq(0; 0)! true

eq(0; s(x))! false

16

eq(s(x); 0)! false

eq(s(x); s(y))! eq(x; y)

rm(n; nil)! nil

rm(n; add(m;x))! if

rm

(eq(n;m); n; add(m;x))

if

rm

(true; n; add(m;x))! rm(n; x)

if

rm

(false; n; add(m;x))! add(m; rm(n; x))

purge(nil)! nil

purge(add(n; x))! add(n; purge(rm(n; x)))

The yles are

fEQ(s(x); s(y))! EQ(x; y)g

fRM(n; add(m;x))! IF

rm

(eq(n;m); n; add(m;x));

IF

rm

(true; n; add(m;x))! RM(n; x)g

fRM(n; add(m;x))! IF

rm

(eq(n;m); n; add(m;x));

IF

rm

(false; n; add(m;x))! RM(n; x)g

fRM(n; add(m;x))! IF

rm

(eq(n;m); n; add(m;x));

IF

rm

(true; n; add(m;x))! RM(n; x);

IF

rm

(false; n; add(m;x))! RM(n; x)g

fPURGE(add(n; x))! PURGE(rm(n; x))g:

By applying the argument �ltering �(rm) = �(RM) = 2, �(if

rm

) = �(IF

rm

) = 3,

the obtained inequalities are satis�ed by the reursive path ordering and DP

simple termination is proved.

This example omes from Walther [Wal91℄ and a similar example was men-

tioned by Steinbah [Ste95a℄, but in Steinbah's version the rules for eq and if

rm

were missing.

If in the right-hand side of the last rule, add(n; purge(rm(n; x))), the n is

replaed by a term ontaining add(n; x) then a non-simply terminating TRS is

obtained, but termination an still be proved in the same way.

3.10 Minimum sort

This TRS an be used to sort a list x by repeatedly removing its minimum. For

that purpose elements of x are shifted into the seond argument of minsort, until

the minimum of the list is reahed. Then the funtion rm is used to eliminate

all ourrenes of the minimum and �nally minsort is alled reursively on the

remaining list. Hene, minsort does not only sort a list but it also eliminates dupli-

ates. (The orresponding version of minsort where dupliates are not eliminated

ould also be proved terminating with our tehnique.)

eq(0; 0)! true

eq(0; s(x))! false

eq(s(x); 0)! false

17

eq(s(x); s(y))! eq(x; y)

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y))! le(x; y)

app(nil; y)! y

app(add(n; x); y)! add(n; app(x; y))

min(add(n; nil))! n

min(add(n; add(m;x)))! if

min

(le(n;m); add(n; add(m;x)))

if

min

(true; add(n; add(m;x)))! min(add(n; x))

if

min

(false; add(n; add(m;x)))! min(add(m;x))

rm(n; nil)! nil

rm(n; add(m;x))! if

rm

(eq(n;m); n; add(m;x))

if

rm

(true; n; add(m;x))! rm(n; x)

if

rm

(false; n; add(m;x))! add(m; rm(n; x))

minsort(nil; nil)! nil

minsort(add(n; x); y)! if

minsort

(eq(n;min(add(n; x))); add(n; x); y)

if

minsort

(true; add(n; x); y)! add(n;minsort(app(rm(n; x); y); nil))

if

minsort

(false; add(n; x); y)! minsort(x; add(n; y))

The yles in the estimated dependeny graph and an argument �ltering that

does not �lter any argument result in the following set of inequalities.

EQ(s(x); s(y)) � EQ(x; y)

LE(s(x); s(y)) � LE(x; y)

APP(add(n; x); y) � APP(x; y)

MIN(add(n; add(m;x))) % IF

min

(le(n;m); add(n; add(m;x)))

IF

min

(true; add(n; add(m;x))) �MIN(add(n; x))

IF

min

(false; add(n; add(m;x))) �MIN(add(m;x))

RM(n; add(m;x)) % IF

rm

(eq(n;m); n; add(m;x))

IF

rm

(true; n; add(m;x)) � RM(n; x)

IF

rm

(false; n; add(m;x)) � RM(n; x)

MINSORT(add(n; x); y) � IF

minsort

(eq(n;min(add(n; x))); add(n; x); y)

IF

minsort

(true; add(n; x); y) %MINSORT(app(rm(n; x); y); nil)

IF

minsort

(false; add(n; x); y) %MINSORT(x; add(n; y)):

These onstraints together with the onstraints on the rules are satis�ed by a

polynomial ordering where false, true, 0, nil, eq and le are mapped to 0, s(x) is

mapped to x + 1, min(x), if

min

(b; x), EQ(x; y), LE(x; y), MIN(x), and IF

min

(b; x)

are mapped to x, add(n; x) is mapped to n+ x+ 1, app(x; y) and APP(x; y) are

18

mapped to x + y, rm(n; x), if

rm

(b; n; x), RM(n; x), and IF

rm

(b; n; x) are mapped

to x, minsort(x; y) and if

minsort

(b; x; y) are mapped to x + y, MINSORT(x; y) is

mapped to (x+y)

2

+2x+y+1, and IF

minsort

(b; x; y) is mapped to (x+y)

2

+2x+y.

This example is inspired by an algorithm from Boyer and Moore [BM79℄ and

Walther [Wal94℄. In the orresponding example from Steinbah [Ste95a℄ the rules

for eq, le, if

rm

, and if

min

were missing.

Note that we have only shown DP quasi-simple termination by using this

polynomial interpretation in whih syntatially unequal terms are identi�ed by

the equivalene relation. (The given polynomial ordering is not a QSO, sine the

polynomials for symbols like eq or le do not ontain all variables orresponding to

their arguments. However, by using a suitable argument �ltering before (where

�(eq) = �(le) = [℄, et.), one an easily replae the urrent polynomial ordering

by a polynomial ordering whih is indeed a QSO. Similar observations also hold

for the other examples where polynomial interpretations are used.)

3.11 Quiksort

The following TRS is used to sort a list by the well-known quiksort algorithm.

It uses the funtions low(n; x) (resp. high(n; x)) whih return the sublist of x

ontaining only the elements smaller than or equal to (resp. greater than) n.

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y))! le(x; y)

app(nil; y)! y

app(add(n; x); y)! add(n; app(x; y))

low(n; nil)! nil

low(n; add(m;x))! if

low

(le(m;n); n; add(m;x))

if

low

(true; n; add(m;x))! add(m; low(n; x))

if

low

(false; n; add(m;x))! low(n; x)

high(n; nil)! nil

high(n; add(m;x))! if

high

(le(m;n); n; add(m;x))

if

high

(true; n; add(m;x))! high(n; x)

if

high

(false; n; add(m;x))! add(m; high(n; x))

quiksort(nil)! nil

quiksort(add(n; x))! app(quiksort(low(n; x));

add(n; quiksort(high(n; x))))

Every set of inequalities assoiated with a yle in the estimated dependeny

graph of this TRS is satis�ed when we solve the inequalities resulting from the

rules together with the following inequalities

19

�(LE(s(x); s(y))) � �(LE(x; y))

�(APP(add(n; x); y)) � �(APP(x; y))

�(LOW(n; add(m;x))) % �(IF

low

(le(m;n); n; add(m;x)))

�(IF

low

(true; n; add(m;x))) � �(LOW(n; x))

�(IF

low

(false; n; add(m;x))) � �(LOW(n; x))

�(HIGH(n; add(m;x))) % �(IF

high

(le(m;n); n; add(m;x)))

�(IF

high

(true; n; add(m;x))) � �(HIGH(n; x))

�(IF

high

(false; n; add(m;x))) � �(HIGH(n; x))

�(QUICKSORT(add(n; x))) � �(QUICKSORT(low(n; x)))

�(QUICKSORT(add(n; x))) � �(QUICKSORT(high(n; x))):

by applying the argument �ltering �(low) = �(high) = 2, �(if

low

) = �(if

high

) = 3,

�(IF

low

) = �(IF

high

) = [2; 3℄ and RPO. Sine in the inequalities �(LOW(: : :)) %

�(IF

low

(: : :)) and �(HIGH(: : :)) % �(IF

high

(: : :)) syntatially di�erent terms are

equivalent, this only proves DP-quasi simple termination (see the remarks in Ex.

3.10 on how to turn suh a polynomial ordering into a QSO).

Steinbah ould prove termination of a orresponding example with transfor-

mation orderings [Ste95a℄, but in his example the rules for le, if

low

, if

high

, and

app were omitted.

If in the right-hand side of the last rule,

app(quiksort(low(n; x)); add(n; quiksort(high(n; x))));

one of the n's is replaed by a term ontaining add(n; x) then a non-simply

terminating TRS is obtained. With our tehnique, termination an still be proved

in the same way.

3.12 Permutation of lists

This example is a TRS from Walther [Wal94℄ to ompute a permutation of a list.

For instane, shu�e([1; 2; 3; 4; 5℄) redues to [1; 5; 2; 4; 3℄.

app(nil; y)! y

app(add(n; x); y)! add(n; app(x; y))

reverse(nil)! nil

reverse(add(n; x))! app(reverse(x); add(n; nil))

shu�e(nil)! nil

shu�e(add(n; x))! add(n; shu�e(reverse(x)))

The yles in the estimated dependeny graph are

fAPP(add(n; x); y)! APP(x; y)g

fREVERSE(add(n; x))! REVERSE(x)g

fSHUFFLE(add(n; x))! SHUFFLE(reverse(x))g:

20

A suitable polynomial interpretation of the funtion symbols is: nil is mapped

to 0, add(n; x) is mapped to x + 1, shu�e(x), SHUFFLE(x), reverse(x), and

REVERSE(x) are mapped to x, and app(x; y) and APP(x; y) are mapped to x+y.

This proves DP-quasi simple termination.

3.13 Reahability on direted graphs

To hek whether there is a path from the node x to the node y in a direted

graph g, the term reah(x; y; g; �) must be reduible to true with the rules of the

following TRS from Giesl [Gie95℄. The fourth argument of reah is used to store

edges that have already been examined but that are not inluded in the atual

solution path. If an edge from u to v (with x 6= u) is found, then it is rejeted

at �rst. If an edge from x to v (with v 6= y) is found then one either searhes

for further edges beginning in x (then one will never need the edge from x to v

again) or one tries to �nd a path from v to y and now all edges that were rejeted

before have to be onsidered again.

The funtion union is used to unite two graphs. The onstrutor � denotes

the empty graph and edge(x; y; g) represents the graph g extended by an edge

from x to y. Nodes are labelled with natural numbers.

eq(0; 0)! true

eq(0; s(x))! false

eq(s(x); 0)! false

eq(s(x); s(y))! eq(x; y)

or(true; y)! true

or(false; y)! y

union(�; h)! h

union(edge(x; y; i); h)! edge(x; y; union(i; h))

reah(x; y; �; h)! false

reah(x; y; edge(u; v; i); h)! if

reah 1

(eq(x; u); x; y; edge(u; v; i); h)

if

reah 1

(true; x; y; edge(u; v; i); h)! if

reah 2

(eq(y; v); x; y; edge(u; v; i); h)

if

reah 2

(true; x; y; edge(u; v; i); h)! true

if

reah 2

(false; x; y; edge(u; v; i); h)! or(reah(x; y; i; h);

reah(v; y; union(i; h); �))

if

reah 1

(false; x; y; edge(u; v; i); h)! reah(x; y; i; edge(u; v; h))

The inequalities obtained from dependeny pairs on yles in the estimated de-

pendeny graph are given by

EQ(s(x); s(y)) � EQ(x; y)

UNION(edge(x; y; i); h) � UNION(i; h)

REACH(x; y; edge(u; v; i); h) % IF

reah 1

(eq(x; u); x; y; edge(u; v; i); h)

21

IF

reah 1

(true; x; y; edge(u; v; i); h) % IF

reah 2

(eq(y; v); x; y; edge(u; v; i); h)

IF

reah 2

(false; x; y; edge(u; v; i); h) � REACH(x; y; i; h)

IF

reah 2

(false; x; y; edge(u; v; i); h) � REACH(v; y; union(i; h); �)

IF

reah 1

(false; x; y; edge(u; v; i); h) � REACH(x; y; i; edge(u; v; h)):

A mapping to polynomials results in a suitable ordering. The interpretation

is: eq(x; y), true, false, �, and 0 are mapped to 0, or(x; y) is mapped to x +

y, s(x) is mapped to x + 1, EQ(x; y) is mapped to x, edge(x; y; g) is mapped

to g + 2, union(g; h) and UNION(g; h) are mapped to g + h, reah(x; y; g; h),

if

reah 1

(b; x; y; g; h), and if

reah 2

(b; x; y; g; h) are mapped to 0, REACH(x; y; g; h)

is mapped to (g+ h)

2

+ 2g+ h+ 2, IF

reah 1

(b; x; y; g; h) is mapped to (g+ h)

2

+

2g + h+ 1, and IF

reah 2

(b; x; y; g; h) is mapped to (g + h)

2

+ 2g + h.

Note that we showed DP quasi-simple termination of this TRS, sine synta-

tially di�erent terms in the %-inequalities are mapped to the same number by

this polynomial interpretation.

3.14 Comparison of binary trees

This TRS is used to �nd out if one binary tree has less leaves than another

one. It uses a funtion onat(x; y) to replae the rightmost leaf of x by y. Here,

ons(u; v) is used to built a tree with the two diret subtrees u and v.

onat(leaf; y)! y

onat(ons(u; v); y)! ons(u; onat(v; y))

less leaves(x; leaf)! false

less leaves(leaf; ons(w; z))! true

less leaves(ons(u; v); ons(w; z))! less leaves(onat(u; v); onat(w; z))

The yles in the dependeny graph are:

fCONCAT(ons(u; v); y)! CONCAT(v; y)g

fLESS LEAVES(ons(u; v); ons(w; z))! LESS LEAVES(onat(u; v); onat(w; z))g:

A suitable (polynomial) interpretation for DP-quasi simple termination is: leaf,

false, and true are mapped to 0, ons(u; v) is mapped to 1+u+v, onat(u; v) and

CONCAT(u; v) are mapped to u+v, and less leaves(x; y) and LESS LEAVES(x; y)

are mapped to x.

If onat(w; z) in the seond argument of less leaves (in the right-hand side

of the last rule) would be replaed by an appropriate argument, we would obtain

a non-simply terminating TRS whose termination ould be proved in the same

way.

22

3.15 Average of naturals

The following loally onuent overlay system omputes the average of two num-

bers [DH95℄.

average(s(x); y)! average(x; s(y))

average(x; s(s(s(y))))! s(average(s(x); y))

average(0; 0)! 0

average(0; s(0))! 0

average(0; s(s(0)))! s(0)

The inequalities resulting from the yles are

AVERAGE(s(x); y) � AVERAGE(x; s(y))

AVERAGE(x; s(s(s(y)))) � AVERAGE(s(x); y)):

By the following polynomial interpretation, DP-quasi simple termination of this

TRS is easily proved: 0 is mapped to 0, s(x) is mapped to x+ 1, average(x; y) is

mapped to x+ y, and AVERAGE(x; y) is mapped to 2x+ y.

3.16 Plus and times

The following TRS [DH95℄ is a loally onuent overlay system. To ease read-

ability we use an in�x notation for + and �.

x� 0! 0

x� s(y)! (x� y) + x

x+ 0! x

0+ x! x

x+ s(y)! s(x+ y)

s(x) + y! s(x+ y)

Applying the tehnique results in a set of inequalities whih is satis�ed by the

polynomial interpretation where 0 is mapped to 0, s(x) is mapped to x+1, x+y

is mapped to the sum of x and y, x � y is mapped to the produt of x and y,

TIMES(x; y) is mapped to y, and PLUS(x; y) is mapped to the sum of x and y

(where PLUS denotes `+

℄

').

3.17 Summing elements of lists

This TRS, whih has overlapping rules, an be used to ompute the sum of all

elements of a list [AG97a℄. Here, x�l represents the insertion of a number x into

a list l (where x�y�l abbreviates (x�(y�l))), app omputes the onatenation of

23

lists, and sum(l) is used to ompute the sum of all numbers in l (e.g., sum applied

to the list [1; 2; 3℄ returns [1 + 2 + 3℄).

app(nil; k)! k

app(l; nil)! l

app(x�l; k)! x�app(l; k)

sum(x�nil)! x�nil

sum(x�y�l)! sum((x+ y)�l)

sum(app(l; x�y�k))! sum(app(l; sum(x�y�k)))

0+ y! y

s(x) + y! s(x+ y)

While this system is not simply terminating, the inequalities generated by the

tehnique are satis�ed by the polynomial ordering where nil is mapped to the

onstant 0, x�l is mapped to l + 1, x + y is mapped to the sum of x and y,

app(l; k) is mapped to l + k + 1, sum(l) is mapped to the onstant 1, APP(l; k)

and SUM(l) are both mapped to l, and PLUS(x; y) is mapped to x. In this way we

have shown DP quasi-simple termination. The polynomial interpretation is suh

that the syntatially unequal terms sum(x�y�l) and sum((x+ y)�l) are mapped

to the same value.

DP simple termination of this system an also be shown by �rst applying

the argument �ltering �(�) = [2℄, �(sum) = [℄, �(SUM) = �(APP) = 1. Now the

inequalities

�(sum(x�y�l)) % �(sum((x+ y)�l))

�(sum(app(l; x�y�k))) % �(sum(app(l; sum(x�y�k))))

have syntatially idential left- and right-hand sides. For all other inequalities

we need to give an ordering that satis�es them in a strit way. We provide again

a polynomial interpretation, viz. 0 and nil are mapped to 0, s(x) is mapped to

x + 1, �l is mapped to l + 2, PLUS(x; y) is mapped to x + y, sum is mapped to

3, and both app(x; y) and x+ y are mapped to 2x+ y + 1.

If the above TRS is extended by the rules

sum(0�x+ y�l)! pred(sum(s(x)�y�l))

pred(s(x)�nil)! x�nil;

then DP quasi-simple termination an still be proved by the �rst polynomial

ordering (where the polynomial interpretation should map pred(l) to the onstant

1).

3.18 Addition and subtration

The following system is again overlapping and not simply terminating.

24

minus(x; 0)! x

minus(s(x); s(y))! minus(x; y)

double(0)! 0

double(s(x))! s(s(double(x)))

plus(0; y)! y

plus(s(x); y)! s(plus(x; y))

plus(s(x); y)! plus(x; s(y))

plus(s(x); y)! s(plus(minus(x; y); double(y)))

After applying the argument �ltering �(minus) = 1, the inequalities generated

for DP simple termination by our tehnique are satis�ed by the lexiographi

path ordering.

3.19 Addition with nested reursion, version 1

If the following additional rule is added to the above system, then it is turned into

a TRS that is not an overlay system any more and whih furthermore introdues

nested reursion.

plus(s(plus(x; y)); z) ! s(plus(plus(x; y); z))

Still, the resulting inequalities are satis�ed using the same argument �ltering and

the lexiographi path ordering.

3.20 Addition with nested reursion, version 2

The following alternative TRS for addition from Steinbah [Ste95a℄ has nested

reursion, too.

0+ y! y

s(x) + 0! s(x)

s(x) + s(y)! s(s(x) + (y + 0))

The `natural' polynomial interpretation (where + is mapped to the addition)

maps left and right-hand sides of the rules to the same numbers. Therefore this

polynomial ordering annot be used for a diret termination proof, but it never-

theless satis�es the inequalities generated by the dependeny pair tehnique. In

this way, DP-quasi simple termination an easily be proved.

3.21 Multipliation and addition

The following example is taken from Dershowitz [Der87℄.

x� (y + 1)! (x� (y + (1� 0))) + x

x� 1! x

x+ 0! x

x� 0! 0

25

The only inequality resulting from a dependeny pair on a yle in the estimated

dependeny graph is TIMES(x; y + 1) � TIMES(x; y + (1� 0)).

This system is not simply terminating (and Dershowitz illustrates the use of

the semanti path ordering with it). However, termination of this example an

be proved automatially. The inequalities obtained are satis�ed by the natural

polynomial ordering, where TIMES(x; y) is mapped to y.

By hoosing the natural interpretation on numbers, the terms x � 0 in the

inequality orresponding to the last rule are equivalent to 0, even though synta-

tially they are not equal. Therefore, we have shown DP quasi-simple termination

of this TRS.

3.22 Extended multipliation and addition

Similarly, termination of the following `extended' version of the above system

an be proved. In this system, the full rules for + and � are added. Again, this

system is not an overlay system.

x� (y + s(z))! (x� (y + (s(z)� 0))) + (x� s(z))

x� 0! 0

x� s(y)! (x� y) + x

x+ 0! x

x+ s(y)! s(x+ y)

The generated inequalities for this extended example, i.e., the inequalities orre-

sponding to the rewrite rules and

TIMES(x; y + s(z)) % TIMES(x; s(z))

TIMES(x; y + s(z)) � TIMES(x; y + (s(z)� 0))

TIMES(x; s(y)) � TIMES(x; y)

PLUS(x; s(y)) � PLUS(x; y)

are satis�ed by the same polynomial ordering that has been used above (where

PLUS(x; y) and TIMES(x; y) are both mapped to y).

3.23 Nested reursion, version 1

The following system was introdued by Giesl [Gie97, `nest2'℄ as an example for

a small TRS with nested reursion where all simpli�ation orderings fail.

f(0; y)! 0

f(s(x); y)! f(f(x; y); y)

For this example, a polynomial ordering an be used where 0 and s are interpreted

as usual and both f(x; y) and F(x; y) are mapped to x.

Alternatively, one an use the argument �ltering �(f) = 1 and RPO to prove

termination. In that way, one easily sees that the system is DP simply terminat-

ing.

26

3.24 Nested reursion, version 2

This system byWalther, whih is similar to the preeding one, has been examined

in [Ste95a℄.

f(0)! s(0)

f(s(0))! s(0)

f(s(s(x)))! f(f(s(x)))

The inequalities resulting from our transformation are satis�ed by the polynomial

ordering, where f(x) is mapped to the onstant 1, F(x) is mapped to x, and where

0 and s are interpreted as usual. In this way, we have shown DP quasi-simple

termination of this TRS.

3.25 Nested reursion, version 3

The following TRS by Ferreira and Zantema [FZ93℄ is a string rewrite system

with minimal ordinal !

!

assoiated to it.

f(g(x))! g(f(f(x)))

f(h(x))! h(g(x))

The yles in the estimated dependeny graph are

fF(g(x))! F(x)g

fF(g(x))! F(f(x))g

fF(g(x))! F(x);F(g(x))! F(f(x))g:

After applying the argument �ltering �(h) = [℄, �(f) = 1, all inequalities are

satis�ed by the reursive path ordering. This shows that the system is DP simply

terminating.

3.26 Nested reursion, version 4

The following TRS is again an example of a TRS for whih all kind of path

orderings annot show termination diretly, but these path orderings an be

used for solving the inequalities resulting from our tehnique.

f(x)! s(x)

f(s(s(x)))! s(f(f(x)))

The inequalities to satisfy are

f(x) % s(x)

f(s(s(x))) % s(f(f(x)))

F(s(s(x))) � F(x)

F(s(s(x))) � F(f(x)):

An appropriate path ordering is found by hoosing f and s to be equal in the

preedene. Note that therefore we proved DP quasi-simple termination of the

system.

27

3.27 Nested symbols on left-hand sides

The following example is from Dershowitz [Der93℄. It has been proved terminat-

ing by a lexiographi ombination of two orderings.

f(f(x))! g(f(x))

g(g(x))! f(x)

The inequalities orresponding to dependeny pairs on yles in the estimated

dependeny graph are

F(f(x)) � F(x)

F(f(x)) % G(f(x))

G(g(x)) � F(x):

By hoosing f and g as well as F and G equal in the preedene, the inequalities

are satis�ed by the reursive path ordering. Again, this shows DP quasi-simple

termination of the TRS.

3.28 Nested symbols on both sides of rules

Termination of the following TRS annot be proved by the lexiographi path

ordering and therefore this is one of the systems for whih the semanti path

ordering has been used in literature [Der93℄. However, the system an be shown

to terminate using the lexiographi path ordering after applying our tehnique,

sine the demanded ordering may now be a weakly monotoni ordering instead

of a monotoni ordering. Therefore, after mapping some funtion symbols to

some of their arguments or to a onstant the lexiographi path ordering an

nevertheless be used to prove termination of the TRS.

(x� y)� z ! x� (y � z)

(x+ y)� z ! (x� z) + (y � z)

z � (x+ f(y))! g(z; y)� (x+ a)

Apart from the three inequalities orresponding to the rewrite rules, four other

inequalities are obtained from the yles in the dependeny graph.

TIMES(x� y; z) � TIMES(y; z)

TIMES(x� y; z) � TIMES(x; y � z)

TIMES(x+ y; z) � TIMES(x; z)

TIMES(x+ y; z) � TIMES(y; z)

After applying the argument �ltering �(g) = 1, the seven inequalities are satis�ed

by the lexiographi path ordering, whih proves DP simple termination.

28

3.29 A TRS that is not left-linear, version 1

The following TRS, originally from Geerling [Gee91℄, annot be proved terminat-

ing by the reursive path ordering (but one needs a generalization of the reursive

path ordering as de�ned by Ferreira [Fer95℄). It is also very easily proved termi-

nating by the automati tehnique desribed in this paper.

f(s(x); y; y)! f(y; x; s(x))

The only two generated inequalities are

f(s(x); y; y) % f(y; x; s(x))

F(s(x); y; y) � F(y; x; s(x))

whih are satis�ed by mapping f(x; y; z) to 0, mapping s(x) to x+1, and mapping

F(x; y; z) to x+ y. For showing DP simple termination of this TRS, one an use

the argument �ltering �(f) = [℄, �(F) = [1; 2℄ and RPO.

3.30 Advantage of the dependeny graph, version 1

The following system is from [Ste95a℄.

f(a; b)! f(a;)

f(; d)! f(b; d)

With our method, the termination proof for this system is trivial, beause its

estimated dependeny graph does not ontain any yles. Similar, termination

of the one rule TRS f(g(x)) ! f(h(g(x))) from Bellegarde and Lesanne [BL88℄

and of the one rule system f(g(x; y); y)! f(h(g(x; y)); a) from Steinbah [Ste95a℄

an also be proved by absene of yles.

3.31 Advantage of the dependeny graph, version 2

Another example where the dependeny graph plays an important role is a TRS

introdued by Ferreira and Zantema [FZ95℄ to demonstrate the tehnique of

`dummy elimination'.

f(g(x))! f(a(g(g(f(x))); g(f(x))))

Sine F(a(y; z)) does not unify with F(g(x)), the only two inequalities to satisfy

are

�(f(g(x))) % �(f(a(g(g(f(x))); g(f(x)))))

�(F(g(x))) � �(F(x)):

For �(a) = [℄ these inequalities are trivially satis�ed by the reursive path order-

ing and DP simple termination of the TRS is shown. For a thorough omparison

of dependeny pairs and dummy elimination see [GM00℄.

29

3.32 A TRS that is not totally terminating, version 1

The most famous example of a TRS that is terminating, but not totally termi-

nating is the following [Der87℄.

f(a)! f(b)

g(b)! g(a)

With our approah, termination of this system is obvious, beause the estimated

dependeny graph does not ontain any yles.

3.33 A TRS that is not totally terminating, version 2

A TRS introdued by Ferreira [Fer95℄ as an example of a TRS that is not totally

terminating and in partiular for whih the reursive path ordering and the

Knuth-Bendix ordering annot be used to prove termination, is given by:

p(f(f(x)))! q(f(g(x)))

p(g(g(x)))! q(g(f(x)))

q(f(f(x)))! p(f(g(x)))

q(g(g(x)))! p(g(f(x))):

Termination is trivially onluded from the fat that there are no yles in the

estimated dependeny graph.

3.34 Systems with `unde�ned' funtion symbols

The following well-known system from Dershowitz [Der87℄ is one of the smallest

non-simply terminating TRSs.

f(f(x)) ! f(g(f(x)))

The only dependeny pair on a yle of the estimated dependeny graph is

F(f(x))! F(x). By the argument �ltering �(g) = 1 and RPO the system is shown

DP simply terminating.

3.35 Mutual reursion, version 1

The following system is from Steinbah [Ste95a℄ again.

g(s(x))! f(x)

f(0)! s(0)

f(s(x))! s(s(g(x)))

g(0)! 0

30

The inequalities resulting from yles are

�(G(s(x))) % �(F(x))

�(F(s(x))) � �(G(x)):

After applying the argument �ltering �(g) = 1, the onstraints are satis�ed by

the reursive path ordering. Sine s and f have to be equal in the preedene in

order to satisfy the resulting inequalities s(x) % f(x) and f(0) % s(0), this proves

DP-quasi simple termination.

3.36 Mutual reursion, version 2

The following system was given to us by K�uhler.

minus(x; 0)! x

minus(s(x); s(y))! minus(x; y)

f(0)! s(0)

f(s(x))! minus(s(x); g(f(x)))

g(0)! 0

g(s(x))! minus(s(x); f(g(x)))

The inequalities resulting from dependeny pairs on yles of the estimated de-

pendeny graph are

�(MINUS(s(x); s(y))) � �(MINUS(x; y))

�(F(s(x))) � �(F(x))

�(F(s(x))) % �(G(f(x)))

�(G(s(x))) � �(G(x))

�(G(s(x))) � �(F(g(x))):

After applying the argument �ltering �(minus) = 1, the resulting inequalities are

satis�ed by the reursive path ordering (using a preedene where f and s are

equal and greater than g). Thus, the system is DP quasi-simply terminating.

3.37 Even and odd

The following (non-simply terminating) TRS an be used to �nd out whether a

natural number is even resp. odd. More preisely, evenodd(t; 0) redues to true if t

is even and evenodd(t; s(0)) redues to true if t is odd. (In other words, the seond

argument of evenodd determines whether evenodd omputes the `even' or the `odd'

funtion. Suh rewrite systems are often obtained when transforming mutually

reursive funtions into one funtion without mutual reursion, f. [Gie97℄.)

31

not(true)! false

not(false)! true

evenodd(x; 0)! not(evenodd(x; s(0)))

evenodd(0; s(0))! false

evenodd(s(x); s(0))! evenodd(x; 0)

We obtain one yle in the estimated dependeny graph.

fEVENODD(x; 0)! EVENODD(x; s(0));

EVENODD(s(x); s(0))! EVENODD(x; 0)g

With the argument �ltering �(not) = [℄, �(EVENODD) = 1 and the reursive

path ordering, DP simple termination is shown.

3.38 Reversing lists

The following system is a slight variant of a TRS proposed by Huet and Hullot

[HH82, `brev'℄. Given a list x�l, the funtion rev alls two other funtions rev1

and rev2, where rev1(x; l) returns the last element of x�l and rev2(x; l) returns

the reversed list rev(x�l) without its �rst element. Hene, rev(rev2(y; l)) returns

the list y�l without its last element. Note that this system is mutually reursive

and that mutually reursive funtions also our nested.

rev(nil)! nil

rev(x�l)! rev1(x; l)�rev2(x; l)

rev1(0; nil)! 0

rev1(s(x); nil)! s(x)

rev1(x; y�l)! rev1(y; l)

rev2(x; nil)! nil

rev2(x; y�l)! rev(x�rev(rev2(y; l)))

The inequalities resulting from the yles of the estimated dependeny graph are

�(REV(x�l)) � �(REV2(x; l))

�(REV1(x; y�l)) � �(REV1(y; l))

�(REV2(x; y�l)) � �(REV2(y; l))

�(REV2(x; y�l)) � �(REV(rev2(y; l)))

�(REV2(x; y�l)) % �(REV(x�rev(rev2(y; l)))):

By using the argument �ltering �(�) = [2℄, �(s) = [℄, �(rev) = �(REV) = 1,

�(rev1) = �(rev2) = �(REV1) = �(REV2) = 2, the resulting onstraints are

satis�ed by the reursive path ordering. This proves DP simple termination of

the TRS.

32

3.39 Narrowing of dependeny pairs

The following example [AG00℄ demonstrates the need for narrowing dependeny

pairs. We replae the last rule of the TRS in Ex. 3.4 by a `ommutativity' rule:

x� 0! x

s(x)� s(y)! x� y

quot(0; s(y))! 0

quot(s(x); s(y))! s(quot(x� y; s(y)))

0+ y! y

s(x) + y! s(x+ y)

(x� s(0)) + (y � s(s(z)))! (y � s(s(z))) + (x� s(0)):

Without the use of narrowing, we would obtain the onstraint

�(PLUS(x� s(0); y � s(s(z)))) � �(PLUS(y � s(s(z)); x� s(0)));

beause the dependeny pair PLUS(x� s(0); y� s(s(z)))! PLUS(y� s(s(z)); x�

s(0)) forms a yle of the estimated dependeny graph. In order to use a simpli-

�ation ordering we have to hose an argument �ltering � suh that �(�) = [1℄

or �(�) = 1. However, then this onstraint is not satis�ed by any well-founded

ordering losed under substitution. Therefore we replae this dependeny pair

by its narrowings

PLUS(x� s(0); sy � s(s(z)))! PLUS(y � s(z); x� s(0))

PLUS(s(x)� s(0); y � s(s(z)))! PLUS(y � s(s(z)); x� 0):

Now the resulting onstraints are again satis�ed by the reursive path ordering

if we use the argument �ltering �(�) = �(�

℄

) = 1.

3.40 Narrowing to approximate the dependeny graph

Narrowing of dependeny pairs may also be helpful in examples where the fail-

ure of the automation is due to our approximation of dependeny graphs. For

example, let us add the following seond `ommutation' rule to the TRS from

Ex. 3.39

(x+ s(0)) + (y + s(s(z)))! (y + s(s(z))) + (x+ s(0)):

Now we obtain three additional dependeny pairs.

PLUS(x+ s(0); y + s(s(z)))! PLUS(y; s(s(z))) (1)

PLUS(x+ s(0); y + s(s(z)))! PLUS(x; s(0)) (2)

PLUS(x+ s(0); y + s(s(z)))! PLUS(y + s(s(z)); x+ s(0)) (3)

33

We have to ompute a graph ontaining the dependeny graph. For that purpose,

we draw an ar from a dependeny pair s! t to v ! w whenever ren(ap(t))

and v are uni�able. However, for some examples this approximation is too rough.

Note that in our approximation of the dependeny graph there would be an

ar from (3) to itself, beause after replaing y + s(s(z)) and x + s(0) by new

variables, the right- and the left-hand side of (3) obviously unify. Hene, we have

to demand that the dependeny pair (3) is stritly dereasing, i.e.,

�(PLUS(x+ s(0); y + s(s(z)))) � �(PLUS(y + s(s(z)); x+ s(0))):

But this onstraint is not satis�ed by any polynomial or any path ordering

amenable to automation

1

.

However, in the real dependeny graph, there is no ar from (3) to itself,

beause there is no substitution � suh that y + s(s(z))� redues to x + s(0)�.

Hene, there is no yle onsisting of (3) only and therefore it is suÆient if

(3) is just weakly dereasing. In this way, the onstraints resulting from this

example would again be satis�ed by the reursive path ordering (after applying

the argument �ltering mentioned in Ex. 3.39).

Note that the narrowing re�nement [AG00℄ also serves to ompute a better

approximation of the dependeny graph. The right-hand side of (3) is linear and

it does not unify with the left-hand side of any dependeny pair. Hene, we may

replae (3) by its narrowings:

PLUS(x+ s(0); 0+ s(s(z)))! PLUS(s(s(z)); x+ s(0)) (4)

PLUS(x+ s(0); s(y) + s(s(z)))! PLUS(s(y + s(z)); x+ s(0)) (5)

PLUS(0+ s(0); y + s(s(z)))! PLUS(y + s(s(z)); s(0)) (6)

PLUS(s(x) + s(0); y + s(s(z)))! PLUS(y + s(s(z)); s(x+ 0)): (7)

Now it is immediately lear that (4) - (7) are not on a yle of the estimated

dependeny graph, beause appliation of ren and ap to their right-hand sides

yields terms of the form PLUS(s(: : :); : : :) or PLUS(: : : ; s(: : :)) whih do not unify

with PLUS(: : :+ : : : ; : : :+ : : :).

3.41 Fatorial

The following non-simply terminating TRS for omputing the fatorial of a nat-

ural number (f. [Ste95a,Zan95℄)

1

This inequality is not satis�ed by any path ordering (that an be generated automati-

ally), beause neither a lexiographi omparison nor a omparison as multisets makes

(x+ s(0); y + s(s(z))) greater than (y + s(s(z)); x+ s(0)). When using polynomial orderings,

PLUS is mapped to some polynomial p. Then we either have lim

y!1

(p(y; x)� p(x; y)) =1

or lim

y!1

(p(y; x)�p(x; y)) = �1. In the �rst ase, PLUS(y+s(s(z)); x+s(0)) � PLUS(x+

s(0); y+s(s(z))) holds for large enough y and in the seond ase PLUS(y+s(s(z)); x+s(0)) �

PLUS(x+ s(0); y + s(s(z))) holds for large enough x.

34

p(s(x))! x

fa(0)! s(0)

fa(s(x))! s(x)� fa(p(s(x)))

annot be proved terminating by the tehnique desribed in [AG97a℄, sine there

narrowing dependeny pairs was not onsidered. By using narrowing, the depen-

deny pair

FAC(s(x))! FAC(p(s(x)))

is replaed by the pair

FAC(s(x))! FAC(x)

resulting in inequalities whih an easily be satis�ed.

3.42 Binary numbers

The following non-simply terminating example is due to Geser [BL90,Ste95a℄.

half(0)! 0

half(s(0))! 0

half(s(s(x)))! s(half(x))

lastbit(0)! 0

lastbit(s(0))! s(0)

lastbit(s(s(x)))! lastbit(x)

onv(0)! nil�0

onv(s(x))! onv(half(s(x)))�lastbit(s(x))

Narrowing the dependeny pair CONV(s(x))! CONV(half(s(x))) results in

CONV(s(0))! CONV(0) and CONV(s(s(x)))! CONV(s(half(x))). After this re-

plaement, the pairs on a yle in the estimated dependeny graph are

fHALF(s(s(x)))! HALF(x)g

fLASTBIT(s(s(x)))! LASTBIT(x)g

fCONV(s(s(x)))! CONV(s(half(x)))g:

After applying the argument �ltering �(half) = �(�) = 1, the onstraints are

satis�ed by the reursive path ordering.

3.43 Termination by narrowing, version 1

The following TRS by Plaisted [Pla86,Ste95a℄

f()! g(h())

h(g(x))! g(h(f(x)))

k(x; h(x);)! h(x)

k(f(x); y; x)! f(x)

35

an automatially be proved terminating by only replaing the dependeny pair

H(g(x))! H(f(x)) by its narrowing H(g())! H(g(h())) and omputing the

estimated dependeny graph. As there is no yle onsisting of the resulting

pairs, the TRS is terminating.

3.44 Termination by narrowing, version 2

To prove termination of the following TRS from Bahmair [Ba87,Ste95a℄

f(h(x))! f(i(x))

g(i(x))! g(h(x))

h(a)! b

i(a)! b

the dependeny pairs

F(h(x))! F(i(x))

G(i(x))! G(h(x))

are replaed by their narrowings

F(h(a))! F(b)

G(i(a))! G(b):

Then termination is automatially proved by the fat that the estimated depen-

deny graph has no yles.

3.45 Termination by narrowing, version 3

For the following TRS we also need narrowing in order to prove its termination

using a quasi-simpli�ation ordering.

f(s(x))! f(x)

g(0�y)! g(y)

g(s(x)�y)! s(x)

h(x�y)! h(g(x�y))

Narrowing the dependeny pair H(x�y)! H(g(x�y)) results in

H(0�y)! H(g(y))

H(s(x)�y)! H(s(x)):

Now the yles are

fF(s(x))! F(x)g

fG(0�y)! G(y)g

fH(0�y)! H(g(y))g:

After applying the argument �ltering �(h) = [℄, the resulting onstraints are

satis�ed by the reursive path ordering.

36

3.46 A non-totally terminating TRS

The following example is from Steinbah [Ste95a℄.

f(x; x)! f(a; b)

b!

This TRS is not totally terminating and without using narrowing, the inequal-

ities generated by our tehnique are not satis�ed by any total well-founded

weakly monotoni quasi-ordering. However, after applying one narrowing step

to F(x; x)! F(a; b), the pair F(x; x)! F(a;) is obtained, whose right-hand side

is not uni�able with F(x; x). Hene, there is no yle in the dependeny graph.

Thus, the TRS is terminating.

3.47 An overlapping system

The following TRS is a leading example of [AG98℄ and [GAO01℄ whih is not

simply terminating.

f(x; (y))! f(x; s(f(y; y)))

f(s(x); y)! f(x; s((y)))

The yles in the estimated dependeny graph are:

fF(x; (y))! F(y; y)g

fF(s(x); y)! F(x; s((y)))g

and the two sets of generated inequalities are:

�

1

(f(x; (y))) %

1

�

1

(f(x; s(f(y; y))))

�

1

(f(s(x); y)) %

1

�

1

(f(x; s((y))))

�

1

(F(x; (y))) �

1

�

1

(F(y; y))

�

2

(f(x; (y))) %

2

�

2

(f(x; s(f(y; y))))

�

2

(f(s(x); y)) %

2

�

2

(f(x; s((y))))

�

2

(F(s(x); y)) �

2

�

2

(F(x; s((y)))):

By hoosing the argument �lterings �

1

(f) = 1, �

1

(F) = 2 and �

2

(f) = �

2

(F) = 1

the inequalities are solved by RPO and the TRS is proved to be DP simply

terminating.

Note that the onstraints obtained without using our modularity results

would inlude �(F(x; (y))) � �(F(y; y)) and �(F(s(x); y)) � �(F(x; s((y)))). In

this example � annot eliminate the arguments of s or . Then no simpli�ation

ordering satis�es the above onstraints, as they imply

�(F(x; (s(x)))) � �(F(s(x); s(x))) � �(F(x; s((s(x))))):

Note also that the system is overlapping (and not loally onuent). Hene,

we annot prove termination by verifying innermost termination, but we really

have to use Thm. 5 for the termination proof instead.

37

3.48 Another overlapping system

The following system is an overlapping TRS whih is inspired by Ex. 4.35 for

renaming in the Lambda Calulus.

f(0)! true

f(1)! false

f(s(x))! f(x)

if(true; s(x); s(y))! s(x)

if(false; s(x); s(y))! s(y)

g(x; (y))! (g(x; y))

g(x; (y))! g(x; if(f(x); (g(s(x); y)); (y)))

The system is not simply terminating as the last rule is self-embedding. As

it is overlapping (and not loally onuent), here it is not suÆient to prove

innermost termination only. Without modularity, the automated termination

proof would fail, beause the third argument of if and the argument of an-

not be eliminated. But no quasi-simpli�ation ordering satis�es G(x; (y)) �

G(x; if(: : : ; : : : ; (y))).

There is just one yle in the estimated dependeny graph whih ontains

an F-dependeny pair, viz. fF(s(x))! F(x)g. Absene of in�nite hains of this

dependeny pair an be proved by RPO, if we use the argument �ltering �() =

�(g) = [℄. Then all rules are weakly dereasing (using the preedene f > true,

f > false, g >). For all other yles one an eliminate the arguments of s, f, and

if before using RPO.

3.49 Maximal yles

One ould think of formulating Thm. 5 (and also the other modularity theorems)

in an alternative way by just onsidering maximal yles for modularity. Here,

a yle P is alled maximal if there is no proper superset of P whih is also a

yle. As an example onsider the following system:

f((s(x); y))! f((x; s(y)))

f((s(x); s(y)))! g((x; y))

g((x; s(y)))! g((s(x); y))

g((s(x); s(y)))! f((x; y))

We obtain the following dependeny pairs:

F((s(x); y)! F((x; s(y))) (8)

F((s(x); s(y)))! G((x; y)) (9)

G((x; s(y)))! G((s(x); y)) (10)

G((s(x); s(y)))! F((x; y)) (11)

38

The yles of the estimated dependeny graph are f(8)g; f(10)g; f(9); (11)g; f(8);

(9); (11)g; f(9); (10); (11)g; and f(8); (9); (10); (11)g. So the only maximal yle

in this example is f(8); (9); (10); (11)g. A simple way to ompute the set of all

maximal yles is to eliminate all edges and all dependeny pairs in the esti-

mated dependeny graph whih are not part of any yle. Then the remaining

unonneted graphs orrespond to the maximal yles.

Now a modi�ation of Thm. 2 would be that a TRS is terminating i� for eah

maximal yle P there exists no in�nite R-hain of dependeny pairs from P .

Then, for eah subyle P

0

of P one would have to use the same quasi-ordering

%

P

to prove the absene of in�nite hains from P

0

.

However, to use the same quasi-ordering for all subyles of the maximal

yle an be too weak. In our example, all dependeny pairs are on the maximal

yle. However, if one would have to use the same quasi-ordering for all subyles

of this maximal yle, then the resulting onstraints would not be satis�ed by

any path ordering amenable to automation or by any polynomial ordering.

Due to our modularity result we an prove absene of in�nite hains sep-

arately for every yle. We use polynomial orderings where both f(x; y) and

g(x; y) are mapped to 0 and s(x) is mapped to x+1. For the yle f(8)g, (x; y)

is mapped to x, whereas for the yle f(10)g we map (x; y) to y. For the other

yles, (x; y) is mapped to x+ y. Then these polynomial orderings an be used

to prove absene of in�nite hains for all yles.

3.50 DP quasi-simple, but not DP simple, version 1

The following is an example of a TRS that is DP quasi-simply terminating, but

not DP simply terminating (f. [GAO01℄).

f(f(x))! f((f(x)))

f(f(x))! f(d(f(x)))

g((x))! x

g(d(x))! x

g((0))! g(d(1))

g((1))! g(d(0))

The only yle in the estimated dependeny graph is

fF(f(x))! F(x)g:

In order to show DP quasi-simple termination, we hoose the argument �ltering

�() = �(d) = 1 and use RPO with 0 and 1 equal in the preedene. However,

the TRS is not DP simply terminating, beause due to the �rst four rules, the

argument �ltering must redue (x) and d(x) to their arguments. But then g(0) �

g(1) and g(1) � g(0) lead to a ontradition.

39

3.51 DP quasi-simple, but not DP simple, version 2

The de�nition of argument �ltering ould be modi�ed by not only eliminating

arguments but by also identifying di�erent funtion symbols. This would hange

the notion of DP simple termination, but DP simple termination and DP quasi-

simple termination would still not oinide. This is demonstrated by the following

example [GAO01℄.

f(f(x))! f((f(x)))

f(f(x))! f(d(f(x)))

g((x))! x

g(d(x))! x

g((h(0)))! g(d(1))

g((1))! g(d(h(0)))

g(h(x))! g(x):

The dependeny graph of this TRS has two yles:

fF(f(x))! F(x)g

fG(h(x))! G(x)g:

For the �rst yle we use the argument �ltering �() = �(d) = �(h) = 1 and

RPO with 0 and 1 equal in the preedene. For the seond yle we annot

hoose �(h) = 1. Without any �ltering on arguments, but with a polynomial

interpretation that maps 0 to 0, 1 to 1, h(x) to x + 1, and all other symbols to

the identity, the inequalities are solved.

However, even with the new de�nition of argument �ltering, the system is

still not DP simply terminating. The reason is that again, the argument �lter-

ing � must map and d to their arguments. Then the third and fourth g-rule

imply �(g(h(0))) = �(g(1)). Sine �(g) 6= [℄ due to the �rst g-rule, this implies

�(h(0)) = �(1). Due to the dependeny pair G(h(x))! G(x), � may neither map

h to its argument nor to any onstant like 1. Hene, even with this alternative

de�nition of argument �ltering, these onstraints are not satis�able.

3.52 A TRS that is not left-linear, version 2

The following TRS ours in [GAO01℄.

f(0; 1; x)! f(s(x); x; x)

f(x; y; s(z))! s(f(0; 1; z)):

The yles in the estimated dependeny graph are

fF(0; 1; x)! F(s(x); x; x); (12)

F(x; y; s(z))! F(0; 1; z)g (13)

fF(x; y; s(z))! F(0; 1; z)g: (14)

40

Therefore, it suÆes to �nd an argument �ltering suh that the following in-

equalities are satis�ed:

�(f(0; 1; x)) % �(f(s(x); x; x))

�(f(x; y; s(z))) % �(s(f(0; 1; z)))

�(F(0; 1; x)) % �(F(s(x); x; x))

�(F(x; y; s(z))) � �(F(0; 1; z)):

A suitable argument �ltering is �(f) = �(F) = 3. By using RPO, DP simple

termination of the TRS is proved.

3.53 Disjoint systems, DP quasi-simple termination

By Theorem 6 we may onlude DP quasi-simple termination of several ombi-

nations of the above TRSs. To mention only a few:

{ the ombination of the TRSs in Ex. 3.1, 3.12, and 3.14 is DP quasi-simply

terminating,

{ the TRS g(x; y)! x, g(x; y)! y in ombination with either Ex. 3.29 or Ex.

3.52 is DP quasi-simply terminating.

3.54 Disjoint systems, G-restrited DP simple termination

If G is hosen to be the empty set, ;-restrited DP simple termination of the

TRS onsisting of Ex. 3.25 and Ex. 3.29 follows immediately from Theorem 7

(where unary f and ternary f are di�erent symbols).

3.55 Shared onstrutors, G-restrited DP simple termination 1

By Theorem 7 we may onlude G-restrited DP simple termination of the om-

bination of the division example (Ex. 3.1) and the quiksort example (Ex. 3.11)

where G = f0; sg.

3.56 Shared onstrutors, G-restrited DP simple termination 2

The TRS

g((x; s(y)))! g((s(x); y))

is simply terminating, as an for example be shown by LPO omparing subterms

right-to-left. The TRS

f((s(x); y))! f((x; s(y)))

f(f(x))! f(d(f(x)))

f(x)! x

41

also has and s as onstrutors. DP simple termination of the TRS an be

shown by an argument �ltering �(d) = [℄ and LPO omparing subterms left-

to-right. A simple hek on�rms that both systems are fs; g-restrited DP

simply terminating. Hene, the ombination is also fs; g-restrited DP simply

terminating.

DP simple termination of both R

1

and R

2

an be proved with a standard

tehnique like LPO, whereas suh standard orderings fail if one wants to prove

DP simple termination of their union diretly. The reason is that the onstraints

for the yle fG((x; s(y)))! G((s(x); y))g are not satis�ed by LPO (nor by

RPO nor by any polynomial ordering). Thus, there are indeed TRSs where ter-

mination of the subsystems an be shown with dependeny pairs and LPO, but

(without our modularity result) termination of their union annot be proved with

dependeny pairs and LPO.

3.57 Composable systems, G-restrited DP simple termination

The TRSs of Ex. 3.4 and of Ex. 3.17 are both f0; s;+g-restrited DP simply

terminating. Note that the resulting TRSs are omposable, sine they both on-

tain the same onstrutors 0 and s and they also share the de�ned symbol +,

but both TRSs ontain the same +-rules. As both TRSs are f0; s;+g-restrited

DP simply terminating, Theorem 7 allows us to onlude f0; s;+g-restrited DP

simple termination of the ombined system.

4 Examples for innermost termination

This setion ontains a olletion of examples to demonstrate the use of the

innermost termination tehnique presented in Set. 2.2. The examples 4.1 { 4.21

are term rewrite systems that are innermost terminating, but not terminating.

The remainder of the examples (4.22 { 4.37) are non-overlapping term rewrite

systems for whih innermost termination suÆes to guarantee termination. Note

that for the examples 4.6 { 4.9, 4.14 { 4.21, and 4.25 { 4.37 we used re�nements

whih were not inluded in the method of [AG97b℄. In partiular, the examples

4.19 { 4.21 and 4.32 { 4.37 are TRSs, where an innermost termination proof

without modularity is impossible with quasi-simpli�ation orderings (or, in some

examples, at least with the standard path orderings amenable to automation),

whereas with our modularity results innermost termination an easily be veri�ed

automatially.

4.1 Toyama example

A famous example of a TRS that is innermost terminating, but not terminating,

is the following system by Toyama [Toy87℄.

f(0; 1; x)! f(x; x; x)

g(x; y)! x

g(x; y)! y

42

This TRS has only one dependeny pair, viz. F(0; 1; x)! F(x; x; x). This depen-

deny pair does not our on a yle in the innermost dependeny graph, sine

F(x

1

; x

1

; x

1

) does not unify with F(0; 1; x

2

). Thus, no inequalities are generated

and therefore the TRS is innermost terminating.

4.2 Variations on the Toyama example, version 1

The following example is a non-terminating TRS

f(g(x); s(0); y)! f(y; y; g(x))

g(s(x))! s(g(x))

g(0)! 0

with only one dependeny pair on a yle in the innermost dependeny graph,

viz. G(s(x))! G(x). Sine no de�ned symbols our in G(x), there are no usable

rules. Therefore, the only onstraint on the ordering is given by

G(s(x)) � G(x)

whih is easily satis�ed by the reursive path ordering. Hene, the TRS is inner-

most terminating.

4.3 Variations on the Toyama example, version 2

Similar to the preeding example, the following modi�ation of the Toyama ex-

ample

f(g(x; y); x; z)! f(z; z; z)

g(x; y)! x

g(x; y)! y

is not a onstrutor system, sine the subterm g(x; y) ours in the left-hand side

of the �rst rule. Again the innermost dependeny graph does not ontain any

yles and hene, this TRS is innermost terminating. This TRS is, however, not

terminating.

4.4 Variations on the Toyama example, version 3

The non-terminating TRS

f(g(x); x; y)! f(y; y; g(y))

g(g(x))! g(x)

is no onstrutor system either. The pair F(g(x); x; y)! F(y; y; g(y)) annot o-

ur in an in�nite innermost hain, sine ap

F(g(x

1

); x

1

; y

1

)

(F(y

1

; y

1

; g(y

1

))) does

not unify with F(g(x

2

); x

2

; y

2

). The dependeny pair G(g(x))! G(x) annot o-

ur in an in�nite innermost hain either, sine by unifying the right projetion

of this dependeny pair with a renaming of it, the left projetion is instantiated

in suh a way that it is not a normal form. Hene, there are no yles in the

innermost dependeny graph and therefore the TRS is innermost terminating.

43

4.5 Redex in left-hand side

The following system

f(0)! f(0)

0! 1

is innermost terminating, beause there is no yle in the innermost dependeny

graph. The reason is that the left-hand side F(0) of the (only) dependeny pair

is not a normal form.

4.6 Narrowing required, version 1

In the following, again non-terminating, variant of the Toyama example

f(0; 1; x)! f(g(x; x); x; x)

g(x; y)! x

g(x; y)! y

one narrowing step is needed to determine that there are no yles in the inner-

most dependeny graph (beause F(0; 1; x)! F(g(x; x); x; x) narrows to F(0; 1; x)

! F(x; x; x)). Thus, this TRS is also innermost terminating.

4.7 Narrowing required, version 2

The following example an be solved in a similar way:

f(s(x))! f(g(x; x))

g(0; 1)! s(0)

0! 1:

The dependeny pair F(s(x))! F(g(x; x)) may be deleted as it annot be nar-

rowed. Hene, there is no dependeny pair left and therefore, innermost termi-

nation is proved.

4.8 Narrowing required, version 3

Consider the following TRS

x+ 0! x

x+ s(y)! s(x+ y)

f(0; s(0); x)! f(x; x+ x; x)

g(x; y)! x

g(x; y)! y

44

whih is not terminating as an be seen by the in�nite redution

f(0; s(0); g(0; s(0)))! f(g(0; s(0)); g(0; s(0)) + g(0; s(0)); g(0; s(0)))

! f(0; g(0; s(0)) + g(0; s(0)); g(0; s(0)))

! f(0; s(0) + g(0; s(0)); g(0; s(0)))

! f(0; s(0) + 0; g(0; s(0)))

! f(0; s(0); g(0; s(0)))

! : : :

Innermost termination of this TRS an be proved if the dependeny pair F(0; s(0);

x)! F(x; x+ x; x) is replaed by its narrowings

F(0; s(0); 0)! F(0; 0; 0)

F(0; s(0); s(y))! F(s(y); s(s(y) + y); s(y)):

Now our approximation determines that these dependeny pairs are not on yles

in the innermost dependeny graph. Therefore, the only inequality generated for

this TRS is

PLUS(x; s(y)) � PLUS(x; y)

whih is satis�ed by the reursive path ordering. Hene, this TRS is proved

innermost terminating.

4.9 Narrowing required, version 4

The following modi�ation of the above TRS

x+ 0! x

x+ s(y)! s(x+ y)

double(x)! x+ x

f(0; s(0); x)! f(x; double(x); x)

g(x; y)! x

g(x; y)! y

is also non-terminating. Similar to the example above, we now need two narrow-

ing steps to derive that the narrowings of the dependeny pair

F(0; s(0); x)! F(x; double(x); x)

do not our on yles in the innermost dependeny graph. The generated in-

equality is therefore the same as for the above example, whih is satis�ed by the

reursive path ordering. Hene, this TRS is proved innermost terminating.

45

4.10 Non-normal most general uni�er

The following TRS

f(x; g(x))! f(1; g(x))

g(1)! g(0)

is obviously not terminating as f(1; g(1)) an be redued to itself. The dependeny

pair

F(x; g(x))! F(1; g(x))

does not our on a yle in the innermost dependeny graph, beause

ap

F(x

1

; g(x

1

))

(F(1; g(x

1

))) = F(1; g(x

1

))

and the most general uni�er of F(1; g(x

1

)) and F(x

2

; g(x

2

)) replaes x

1

and x

2

by

1. Hene, the instantiation of the left projetion is not a normal form. Obviously,

the other dependeny pairs F(x; g(x))! G(x) and G(1)! G(0) annot our

on yles either. Thus, there are no yles in the innermost dependeny graph.

Hene, the TRS is innermost terminating.

4.11 Innermost hains of arbitrary �nite length

The following non-terminating TRS has an innermost hain of any �nite length,

but it has no in�nite innermost hain, hene it is innermost terminating.

h(x; z)! f(x; s(x); z)

f(x; y; g(x; y))! h(0; g(x; y))

g(0; y)! 0

g(x; s(y))! g(x; y)

An in�nite redution is given by

h(0; g(0; s(0))! f(0; s(0); g(0; s(0)))! h(0; g(0; s(0))! : : :

So the TRS is not terminating.

The inequality resulting from the dependeny pair on the only yle in the

innermost dependeny graph is

G(x; s(y)) � G(x; y):

(The reason is that the most general uni�er of ap

H(x

1

; z

1

)

(F(x

1

; s(x

1

); z

1

)) and

F(x

2

; y

2

; g(x

2

; y

2

)) does not instantiate the latter term to a normal form.)

There are no usable rules. Thus, innermost termination is easily proved by

the reursive path ordering.

46

4.12 Negative oeÆients

The following non-terminating TRS has two dependeny pairs on a yle in the

innermost dependeny graph, but it has no in�nite innermost hain. Hene, it is

innermost terminating.

h(0; x)! f(0; x; x)

f(0; 1; x)! h(x; x)

g(x; y)! x

g(x; y)! y

An in�nite redution is given by

f(0; 1; g(0; 1))! h(g(0; 1); g(0; 1))

! h(0; g(0; 1))

! f(0; g(0; 1); g(0; 1))

! f(0; 1; g(0; 1)) ! : : :

The inequalities resulting from the dependeny pairs on a yle in the innermost

dependeny graph are

H(0; x) % F(0; x; x)

F(0; 1; x) � H(x; x)

and there are no usable rules. These inequalities are satis�ed by the polynomial

interpretation where 0 and 1 are interpreted as usual and where H(x; y) and

F(x; y; z) are both mapped to (x� y)

2

.

Note that the inequalities obtained in this example are not satis�ed by any

weakly monotoni total well-founded quasi-ordering. For that reason a polyno-

mial ordering with negative oeÆients has been used. In innermost termination

proofs this is possible if the quasi-ordering is weakly monotoni on all symbols

apart from the tuple symbols and if it satis�es the ondition

x

1

% y

1

^ : : : ^ x

n

% y

n

) C[x

1

; : : : ; x

n

℄ % C[y

1

; : : : ; y

n

℄;

for all dependeny pairs s! C[f

1

(u

1

); : : : ; f

n

(u

n

)℄, where C is a ontext without

de�ned symbols and f

1

; : : : ; f

n

are de�ned symbols.

In a similar way one an also prove innermost termination of the system

where the �rst rule has been hanged to

h(x; y)! f(x; y; x):

47

4.13 Drosten example

A onuent and innermost terminating TRS that is not terminating was given

by Drosten [Dro89℄.

f(0; 1; x)! f(x; x; x)

f(x; y; z)! 2

0! 2

1! 2

g(x; x; y)! y

g(x; y; y)! x

As there exists no yle in the innermost dependeny graph, the TRS is innermost

terminating.

4.14 Better approximations of the innermost dependeny graph,

version 1

For the approximation of innermost dependeny graphs we use the funtion ap

s

(instead of just the funtion ap). An example where this re�nement is needed

an be obtained from Ex. 4.2 by modi�ation of the �rst rule.

f(g(x); s(0))! f(g(x); g(x))

g(s(x))! s(g(x))

g(0)! 0

If we would approximate the innermost dependeny graph by just using ap

then in our approximation we would draw an ar from the dependeny pair

F(g(x); s(0))! F(g(x); g(x))

to itself, beause ap(F(g(x); g(x))) = F(x

1

; x

2

) uni�es with its left-hand side.

But then we would have to demand that this dependeny pair is stritly dereas-

ing, i.e., F(g(x); s(0)) � F(g(x); g(x)). However, then the resulting onstraints

would imply

F(g(s(0)); s(0)) � F(g(s(0)); g(s(0))) % F(g(s(0)); s(g(0))) % F(g(s(0)); s(0)):

Hene, they would not be satis�ed by any well-founded ordering losed under

substitution. Therefore the approah of [AG97b℄ would fail with this example.

However, by the re�ned approximation of using ap

s

we an immediately

determine that this dependeny pair is not on a yle of the innermost depen-

deny graph. The reason is that ap

F(g(x

1

); s(0))

(F(g(x

1

); g(x

1

)) = F(g(x

1

); g(x

1

))

does not unify with F(g(x

2

); s(0)). (This example ould also be solved by nar-

rowing the dependeny pair. But there are also examples where the innermost

48

termination proof using ap

s

sueeds whereas it would not sueed when using

narrowing and ap, f. the next example, Ex. 4.15.) Now the only remaining

onstraint is

G(s(x)) � G(x)

from the seond rule of the TRS. For example, this onstraint is satis�ed by the

reursive path ordering.

In a similar way we an also handle the following modi�ation of Ex. 4.4:

f(g(x); x)! f(g(x); g(x))

g(g(x))! g(x):

4.15 Better approximations of the innermost dependeny graph,

version 2

This is a variation of the Toyama example where the approximation using ap

s

is

neessary to perform the innermost termination proof. In ontrast to the preed-

ing example, here narrowing the dependeny pairs (and just using ap instead

of ap

s

) would not help.

f(0; 1; g(x; y); z)! f(g(x; y); g(x; y); g(x; y); h(x))

g(0; 1)! 0

g(0; 1)! 1

h(g(x; y))! h(x)

The dependeny pair

F(0; 1; g(x; y); z)! F(g(x; y); g(x; y); g(x; y); h(x))

is not on a yle of the innermost dependeny graph. This an also be determined

by our approximation, beause ap

F(0; 1; g(x;y); z)

(F(g(x; y); g(x; y); g(x; y); h(x)))

= F(g(x; y); g(x; y); g(x; y); h(x)) does not unify with F(0; 1; : : :).

However, if we use just the approximation with ap, then we would have

an ar from this dependeny pair to itself. Now the resulting onstraints would

imply

F(0; 1; g(0; 1); h(0)) � F(g(0; 1); g(0; 1); g(0; 1); h(0)) % F(0; 1; g(0; 1); h(0)):

Hene, they would not be satis�ed by any well-founded ordering losed under

substitution.

Note that in this example narrowing the dependeny pair would not help,

beause the narrowings would inlude the pair

F(0; 1; g(g(x

0

; y

0

); y); z)! F(g(g(x

0

; y

0

); y); g(g(x

0

; y

0

); y); g(g(x

0

; y

0

); y); h(x

0

))

whih would lead to the same problem. (The same statement holds for repeated

appliations of narrowing.) Hene, this example demonstrates that we really need

the re�nement of ap

s

to approximate innermost dependeny graphs.

49

4.16 Instantiation with normal form

The following TRS

f(s(0); g(x))! f(x; g(x))

g(s(x))! g(x)

is obviously not terminating as an be seen by the following in�nite redution

f(s(0); g(s(0)))! f(s(0); g(s(0)))! : : :

The dependeny pair

F(s(0); g(x))! F(x; g(x))

is not on a yle of the innermost dependeny graph, as ap

F(s(0); g(x

1

))

(F(x

1

;

g(x

1

))) and F(s(0); g(x

2

)) unify using a most general uni�er that instantiates

F(s(0); g(x

2

)) in suh a way that it is not a normal form. (However, this would

not have been determined by the approximation of innermost dependeny graphs

as presented in [AG97b℄.) The only dependeny pair that ours on a yle in

the innermost dependeny graph is G(s(x))! G(x), resulting in the inequality

G(s(x)) � G(x)

whih is easily satis�ed by the reursive path ordering.

4.17 Narrowing of pairs where right-hand sides unify with left-hand

sides

In the following example we have to narrow a pair whose right-hand side uni�es

with a left-hand side of a dependeny pair. When proving innermost termination,

we may indeed perform this narrowing as long as the mgu does not instantiate

the left-hand sides of the dependeny pairs under onsideration to normal forms.

f(g(x); s(0); y)! f(g(s(0)); y; g(x))

g(s(x))! s(g(x))

g(0)! 0

The dependeny pair

F(g(x); s(0); y)! F(g(s(0)); y; g(x))

does not form a yle in the innermost dependeny graph, beause an instantia-

tion of its right-hand side an only redue to an instantiation of its left-hand side

where x is instantiated by s(0). But then this instantiated left-hand side would

ontain the redex g(s(0)).

However, in our approximation there would be an ar from this dependeny

pair to itself, beause ap

F(g(x

1

); s(0); y

1

)

(F(g(s(0)); y

1

; g(x

1

))) = F(z; y

1

; g(x

1

))

50

uni�es with F(g(x

2

); s(0); y

2

) (and the mgu instantiates the left-hand sides to

normal forms). So one would have to demand that this dependeny pair should

be stritly dereasing, i.e., one would obtain the onstraint F(g(x); s(0); y) �

F(g(s(0)); y; g(x)). However, together with the remaining onstraints, this in-

equality is not satis�ed by any well-founded ordering losed under substitution,

beause we would have

F(g(s(0)); s(0); s(0)) � F(g(s(0)); s(0); g(s(0)))

% F(g(s(0)); s(0); s(g(0)))

% F(g(s(0)); s(0); s(0)):

So we have to narrow this dependeny pair. Note that the right-hand side

uni�es with the left-hand side of this dependeny pair. However, the mgu instan-

tiates the left-hand side to a term ontaining the redex g(s(0)). Hene, by Thm.

10 we may indeed replae this dependeny pair by its narrowings.

F(g(x); s(0); y)! F(s(g(0)); y; g(x))

F(g(s(x)); s(0); y)! F(g(s(0)); y; s(g(x)))

F(g(0); s(0); y)! F(g(s(0)); y; 0)i

None of these new pairs is on a yle of the estimated innermost dependeny

graph. Hene, the only onstraint in this example is

G(s(x)) � G(x)

from the seond rule of the TRS. A well-founded ordering satisfying this on-

straint an of ourse be synthesized easily (e.g., the reursive path ordering).

4.18 Smallest normalizing non-terminating one-rule string rewrite

system

The following example from Geser [Ges00℄ is the smallest normalizing non-

terminating one-rule string rewrite system.

a(b(a(b(x))))! b(a(b(a(a(b(x))))))

The dependeny pairs in this example are

A(b(a(b(x))))! A(b(x))

A(b(a(b(x))))! A(a(b(x)))

A(b(a(b(x))))! A(b(a(a(b(x))))):

The seond and the third dependeny pair an be narrowed to

A(b(a(b(a(b(x))))))! A(b(a(b(a(a(b(x)))))))

A(b(a(b(a(b(x))))))! A(b(a(b(a(b(a(a(b(x))))))))):

51

These dependeny pairs are not on yles of the innermost dependeny graph,

beause their left-hand sides ontain redexes. Hene, the only onstraint in this

example is

A(b(a(b(x)))) � A(b(x))

whih is satis�ed by the reursive path ordering.

4.19 An innermost terminating system whih requires modularity

The following system is a variant of the well-known example of Toyama [Toy87℄

whih requires modularity results for its innermost termination proof.

f(x; (x); (y))! f(y; y; f(y; x; y))

f(s(x); y; z)! f(x; s((y)); (z))

f((x); x; y)! (y)

g(x; y)! x

g(x; y)! y

The system is not terminating as an be seen from the following in�nite

(yling) redution.

f(x; (x); (g(x; (x)))) !

f(g(x; (x)); g(x; (x)); f(g(x; (x)); x; g(x; (x))))!

�

f(x; (x); f((x); x; g(x; (x)))) !

f(x; (x); (g(x; (x)))) ! : : :

However, this is not an innermost redution, beause the �rst term ontains the

redex g(: : :) as a proper subterm.

Here, we an use Cor. 16 for the innermost termination proof. The esti-

mated innermost dependeny graph only ontains two non-empty yles on-

sisting of F(x; (x); (y))! F(y; x; y) and F(s(x); y; z)! F(x; s((y)); (z)), re-

spetively. (In this example, the estimated innermost dependeny graph is not

idential to the estimated dependeny graph, beause in the latter there would

also be an ar from F(x; (x); (y))! F(y; y; f(y; x; y)) to itself.)

As both yles onsist of dependeny pairs without usable rules, it suÆes

to prove innermost termination of the two one-rules systems onsisting of the

�rst and the seond rule respetively. In fat, these subsystems are even simply

terminating. For

f(x; (x); (y))! f(y; y; f(y; x; y))

one an use a polynomial interpretation mapping f(x; y; z) to x+ y+ z and (x)

to 5x+ 1 and for

f(s(x); y; z)! f(x; s((y)); (z))

one an use LPO with the preedene f > s and f > . Hene, Cor. 16 allows

us to split a non-terminating, but innermost terminating system into two simply

terminating subsystems.

52

Alternatively, with Thm. 11 we would obtain the following onstraints for

our example:

F(x; (x); (y)) �

1

F(y; x; y) F(s(x); y; z) �

2

F(x; s((y)); (z)):

For �

1

we may use LPO omparing subterms right-to-left and for �

2

we may

use LPO omparing subterms left-to-right. Hene, innermost termination of this

example an easily be proved automatially.

Note that without our modularity result, no simpli�ation ordering would

satisfy the resulting onstraints F(x; (x); (y)) � F(y; x; y) and F(s(x); y; z) �

F(x; s((y)); (z)). The reason is that one annot use an argument �ltering whih

eliminates the arguments of or s, and hene, these onstraints imply

F(x; (x); (s(x))) � F(s(x); x; s(x)) � F(x; s((x)); (s(x))):

4.20 Di�erent eliminations, version 1

The following TRS is also a short example for a system where modularity is

neessary.

f(f(x))! f(x)

g(0)! g(f(0))

The system is not simply terminating and an automated innermost termina-

tion proof using dependeny pairs requires the use of our modularity results. The

reason is that due to F(f(x)) � F(x), the argument of f annot be eliminated and

hene, no quasi-simpli�ation ordering satis�es the onstraint G(0) � G(f(0)).

But innermost termination an easily be proved using Cor. 15. TheR

0

-system

(onsisting of the f-rule) is obviously terminating and for the R

1

-onstraints the

argument of f is eliminated. Then these onstraints are satis�ed by RPO (using

the preedene 0 > f).

A similar innermost termination proof is also possible for the TRS

f(f(x))! f(x)

f(s(x))! f(x)

g(s(0))! g(f(s(0))):

4.21 Di�erent eliminations, version 2

By adding two symmetrial rules, the TRS of Ex. 4.20 is turned into a system

whih is no hierarhial ombination any more.

f(1)! f(g(1))

f(f(x))! f(x)

g(0)! g(f(0))

g(g(x))! g(x):

53

The dependeny pairs in this example are

F(1)! F(g(1)) (15)

F(1)! G(1) (16)

F(f(x))! F(x) (17)

G(0)! G(f(0)) (18)

G(0)! F(0) (19)

G(g(x))! G(x): (20)

The yles are f(15)g; f(17)g; f(15); (17)g; f(18)g; f(20)g; f(18); (20)g. For the

onstraints resulting from the �rst three yles we eliminate the arguments of

g, whereas for the last three yles we eliminate the arguments of f. Then the

onstraints are satis�ed by RPO.

4.22 Another division example, version 1

The TRS

quot(0; s(y); s(z))! 0

quot(s(x); s(y); z)! quot(x; y; z)

quot(x; 0; s(z))! s(quot(x; s(z); s(z)))

is a non-simply terminating system. This TRS annot be proved terminating

automatially by the tehnique of Set. 2.1. The only two generated inequalities

are

QUOT(s(x); s(y); z) � QUOT(x; y; z)

QUOT(x; 0; s(z)) % QUOT(x; s(z); s(z));

sine there are no usable rules. By using the argument �ltering �(QUOT) = 1,

the obtained inequalities are satis�ed by the reursive path ordering. Thus, the

TRS is innermost terminating. Termination of the TRS an now be onluded

from the fat that it is non-overlapping.

4.23 Narrowing to approximate the innermost dependeny graph

Similar to Ex. 3.40, narrowing of pairs also helps to obtain a better approximation

of the innermost dependeny graph. To illustrate this, let us replae the last rule

of the TRS in Ex. 4.22 by the following three rules.

0+ y ! y

s(x) + y ! s(x+ y)

quot(x; 0; s(z))! s(quot(x; z + s(0); s(z)))

54

Now instead of dependeny pair

QUOT(x; 0; s(z))! QUOT(x; s(z); s(z)) (21)

we obtain the dependeny pair

QUOT(x; 0; s(z))! QUOT(x; z + s(0); s(z)): (22)

Note that in the estimated innermost dependeny graph there would be an ar

from (22) to itself, beause after replaing z + s(0) by a new variable, the right-

and the left-hand side of (22) obviously unify (and an instantiation with the mgu

is a normal form). Hene, due to Thm. 11 we would have to �nd an ordering

suh that (22) is stritly dereasing. But then no linear or weakly monotoni

polynomial ordering satis�es all resulting inequalities in this example (and the

reursive path ordering does not sueed either).

However, in the real innermost dependeny graph, there is no ar from (22)

to itself, beause, similar to the original dependeny pair (21), there is no sub-

stitution � suh that (z+ s(0))� redues to 0. Hene, there is no yle onsisting

of (22) only and therefore it is suÆient if (22) is just weakly dereasing. For this

reason we replae the dependeny pair (22) by its narrowings, viz.

QUOT(x; 0; s(0))! QUOT(x; s(0); s(0)) (23)

QUOT(x; 0; s(s(z)))! QUOT(x; s(z + s(0)); s(0)) (24)

and ompute the innermost dependeny graph afterwards. Now neither (23) nor

(24) are on a yle in the estimated innermost dependeny graph. Hene, if in our

example we perform at least one narrowing step, then we an determine that the

dependeny pair (22) does not form a yle in the innermost dependeny graph

and then termination an again be veri�ed using the reursive path ordering.

4.24 Intervals of natural numbers

The following TRS from Steinbah [Ste95a℄

intlist(nil)! nil

intlist(x�y)! s(x)�intlist(y)

int(0; 0)! 0�nil

int(0; s(y))! 0�int(s(0); s(y))

int(s(x); 0)! nil

int(s(x); s(y))! intlist(int(x; y))

is non-overlapping, too. The set of usable rules is empty and the generated in-

equalities are

INTLIST(x�y) � INTLIST(y)

INT(0; s(y)) % INT(s(0); s(y))

INT(s(x); s(y)) � INT(x; y):

55

By using the argument �ltering �(INT) = 2 these inequalities are satis�ed by

the reursive path ordering. Thus, the TRS is terminating. Again, termination

of this system annot be proved automatially using the method of Set. 2.1.

4.25 Another non-totally terminating TRS

To prove termination of the system

f(x; x)! f(g(x); x)

g(x)! s(x);

we apply narrowing on the dependeny pair F(x; x)! F(g(x); x). In this way we

an diretly determine that the innermost dependeny graph does not ontain

any yles.

4.26 Narrowing of dependeny pairs for innermost termination

In the following example we also have to apply narrowing of dependeny pairs.

p(0)! 0

p(s(x))! x

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y))! le(x; y)

minus(x; y)! if(le(x; y); x; y)

if(true; x; y)! 0

if(false; x; y)! s(minus(p(x); y))

Note that without narrowing, the resulting onstraints would imply MINUS(s(x);

0) � MINUS(p(s(x)); 0). Therefore an automati innermost termination proof

using quasi-simpli�ation orderings would fail.

However, if we replae the dependeny pair MINUS(x; y)! IF(le(x; y); x; y)

by its narrowings

MINUS(0; y)! IF(true; 0; y);

MINUS(s(x); 0)! IF(false; s(x); 0);

MINUS(s(x); s(y))! IF(le(x; y); s(x); s(y))

then this also enables a narrowing of the dependeny pair IF(false; x; y) !

MINUS(p(x); y) (whose right-hand side uni�ed with a left-hand side before).

Hene, now this dependeny pair an be replaed by

IF(false; 0; y)! MINUS(0; y);

IF(false; s(x); y)! MINUS(x; y):

56

Note that the �rst narrowing step would not have been possible with the method

of Set. 2.1, beause the right-hand side is not linear. The inequalities orrespond-

ing to yles are

LE(s(x); s(y)) � LE(x; y)

MINUS(s(x); 0) % IF(false; s(x); 0)

MINUS(s(x); s(y)) % IF(le(x; y); s(x); s(y))

IF(false; s(x); y) �MINUS(x; y):

Using the argument �ltering �(IF) = [2; 3℄, the resulting onstraints are satis�ed

by the reursive path ordering. As the TRS is non-overlapping, in this way we

have also proved its termination.

4.27 Subtration and predeessor

The following system is an alternative way to de�ne subtration using the pre-

deessor funtion. Again this TRS is terminating, but not simply terminating.

p(0)! 0

p(s(x))! x

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y))! le(x; y)

minus(x; 0)! x

minus(x; s(y))! if(le(x; s(y)); 0; p(minus(x; p(s(y)))))

if(true; x; y)! x

if(false; x; y)! y

If we narrow the dependeny pair MINUS(x; s(y))! MINUS(x; p(s(y))), then we

obtain the new pair MINUS(x; s(y))! MINUS(x; y). Now (as there are no usable

rules any more) the only onstraints are

LE(s(x); s(y)) � LE(x; y)

MINUS(x; s(y)) �MINUS(x; y);

whih are satis�ed by the reursive path ordering. Hene, innermost termination

(and thereby, termination) has been proved, as the TRS is non-overlapping.

A similar example was mentioned by Steinbah [Ste95a℄, but there the rules

for le and if were missing.

4.28 Length of bit representation

The following non-simply terminating TRS orresponds to the logarithm exam-

ple (Ex. 3.7). Here, bits(x) omputes the number of bits that are neessary to

57

represent all numbers smaller than or equal to x.

half(0)! 0

half(s(0))! 0

half(s(s(x)))! s(half(x))

bits(0))! 0

bits(s(x))! s(bits(half(s(x))))

After narrowing BITS(s(x))! BITS(half(s(x))) to BITS(s(0)) ! BITS(0) and

BITS(s(s(x)))! BITS(s(half(x)) we obtain the inequalities

HALF(s(s(x))) � HALF(x)

BITS(s(s(x))) � BITS(s(half(x)):

The resulting onstraints are satis�ed by the reursive path ordering.

4.29 Multipliation for even and odd numbers

The following non-simply terminating example is inspired by Walther [Wal91℄.

even(0)! true

even(s(0))! false

even(s(s(x)))! even(x)

half(0)! 0

half(s(s(x)))! s(half(x))

plus(0; y)! y

plus(s(x); y)! s(plus(x; y))

times(0; y)! 0

times(s(x); y)! if

times

(even(s(x)); s(x); y)

if

times

(true; s(x); y)! plus(times(half(s(x)); y); times(half(s(x)); y))

if

times

(false; s(x); y)! plus(y; times(x; y))

To prove termination using a quasi-simpli�ation ordering, we have to narrow

the dependeny pair IF

times

(true; s(x); y)! TIMES(half(s(x)); y) to

IF

times

(true; s(s(x)); y)! TIMES(s(half(x)); y):

Now the inequalities orresponding to yles are the following.

EVEN(s(s(x))) � EVEN(x)

HALF(s(s(x))) � HALF(x)

PLUS(s(x); y) � PLUS(x; y)

TIMES(s(x); y) % IF

times

(even(s(x)); s(x); y)

IF

times

(true; s(s(x)); y) � TIMES(s(half(x)); y)

IF

times

(false; s(x); y) � TIMES(x; y)

58

If an argument �ltering �(IF

times

) = [2; 3℄ is used, then the resulting onstraints

are satis�ed by the reursive path ordering.

4.30 Narrowing for division, remainder, and gd

The TRSs for division (Ex. 3.1{3.3) an also be transformed into systems where

we need narrowing for the (innermost) termination proof. We only present one

of them.

minus(x; 0)! x

minus(s(x); s(y))! minus(x; y)

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y))! le(x; y)

quot(x; s(y))! if

quot

(le(s(y); x); x; s(y))

if

quot

(true; x; y)! s(quot(minus(x; y); y))

if

quot

(false; x; y)! 0

Again this system is not simply terminating. After narrowing the dependeny

pair QUOT(x; s(y))! IF

quot

(le(s(y); x); x; s(y)) to

QUOT(0; s(y))! IF

quot

(false; 0; s(y))

QUOT(s(x); s(y))! IF

quot

(le(y; x); s(x); s(y))

we an narrow IF

quot

(true; x; y)! QUOT(minus(x; y); y) to

IF

quot

(true; x; 0)! QUOT(x; y)

IF

quot

(true; s(x); s(y))! QUOT(minus(x; y); s(y)):

Now the inequalities orresponding to yles are

MINUS(s(x); s(y)) �MINUS(x; y)

LE(s(x); s(y)) � LE(x; y)

QUOT(s(x); s(y)) % IF

quot

(le(y; x); s(x); s(y))

IF

quot

(true; s(x); s(y)) � QUOT(minus(x; y); s(y)):

Using the argument �ltering �(minus) = 1, �(IF) = [2; 3℄ the onstraints are sat-

is�ed by the reursive path ordering. Hene, in this way (innermost) termination

of this TRS is proved.

A simpler modi�ation of the quotient TRS where one should also use nar-

rowing is obtained if instead of the last three rules the following rules are used.

quot(0; s(y))! 0

quot(s(x); s(y))! s(quot(minus(s(x); s(y)); s(y)))

59

A similar modi�ation is also possible for the remainder TRSs (Ex. 3.5), i.e.,

the rule if

mod

(true; s(x); s(y))! mod(minus(x; y); s(y)) may be replaed by

if

mod

(true; x; y)! mod(minus(x; y); y):

In an analogous way, in the greatest ommon divisor TRSs (Ex. 3.6) one

ould also replae the last two rules by

if

gd

(true; x; y)! gd(minus(x; y); y)

if

gd

(false; x; y)! gd(minus(y; x); x):

All these modi�ed TRSs ould again be proved (innermost) terminating by using

narrowing �rst.

4.31 Braid problem

The following string rewrite system (whih enodes a braid problem from topol-

ogy) was given by Zantema as a hallenge during the 3rd International Termi-

nation Workshop. As shown by Geser, it is not simply terminating.

a(d(x))! d((b(a(x))))

b((x))! (d(a(b(x))))

a((x))! x

b(d(x))! x

The dependeny pairs in this example are

A(d(x))! A(x) (25)

A(d(x))! B(a(x)) (26)

B((x))! B(x) (27)

B((x))! A(b(x)): (28)

Dependeny pair (26) an be replaed by its narrowings

A(d(d(x)))! B(d((b(a(x)))))

A(d((x)))! B(x)

and dependeny pair (28) an be narrowed to

B(((x)))! A((d(a(b(x)))))

B((d(x)))! A(x):

As there are no usable rules, the resulting onstraints are

A(d(x)) � A(x)

A(d((x))) % B(x)

B((x)) � B(x)

B((d(x))) % A(x);

whih are satis�ed by the reursive path ordering. Hene, as the TRS is non-

overlapping, its termination is proved.

60

4.32 A non-overlapping system whih requires modularity

The following system is a non-overlapping variant of Ex. 3.47, whih an be

obtained by replaing y in the seond rule by s(y).

f(x; (y))! f(x; s(f(y; y)))

f(s(x); s(y))! f(x; s((s(y))))

Again the system is not simply terminating (we have the same redution as

in Ex. 3.47). Similar to that example, an automati termination or innermost

termination proof without modularity fails, beause the resulting onstraints

imply F(x; (s(x))) � F(x; s((s(x)))), whih is not satis�ed by any simpli�ation

ordering.

In this example, we obtain the estimated dependeny graph in Fig. 1 (whih

is idential to the estimated innermost dependeny graph).

F(s(x); s(y))! F(x; s((s(y))))

F(x; (y))! F(x; s(f(y; y))) F(x; (y))! F(y; y)

Fig. 1. The estimated (innermost) dependeny graph in Ex. 4.32.

This example is non-overlapping and hene, we an prove termination by

verifying innermost termination. For that purpose we may use Cor. 16. As the

sets of usable rules are empty for both dependeny pairs F(x; (y))! F(y; y)

and F(s(x); s(y))! F(x; s((s(y)))), we an split the original TRS into the two

subsystems onsisting of one of the rules respetively. Now termination of

f(x; (y))! f(x; s(f(y; y)))

is proved using the lexiographi or the reursive path ordering with preedene

 > s and > f. Termination of

f(s(x); s(y))! f(x; s((s(y))))

is proved using the lexiographi path ordering with preedene f > s and f > .

In this way, the two simply terminating subsystems imply termination of the

whole (non-simply terminating) TRS.

61

4.33 Sum and weight

The following TRS omputes the weighted sum of a list.

sum(s(n)�x;m�y)! sum(n�x; s(m)�y)

sum(0�x; y)! sum(x; y)

sum(nil; y)! y

weight(n�m�x)! weight(sum(n�m�x; 0�x))

weight(n�nil)! n

The system is a hierarhial ombination of the sum-rules (R

0

) and the

weight-rules (R

1

). Note that it is not a proper extension and R

1

is not oblivious

of R

0

. Moreover, the TRS is obviously not simply terminating. Its estimated

dependeny graph (whih is idential to the estimated innermost dependeny

graph) is skethed in Fig. 2.

6

Æ Æ

6

?

��

?

�

�

�

�

�

�

�)

P

P

P

P

P

P

Pq

�

-

WEIGHT(n�m�x)!WEIGHT(sum(n�m�x; 0�x))

WEIGHT(n�m�x)! SUM(n�m�x; 0�x)

SUM(s(n)�x;m�y)! SUM(n�x; s(m)�y SUM(0�x; y)! SUM(x; y)

Fig. 2. The estimated (innermost) dependeny graph in Ex. 4.33.

As the TRS is non-overlapping, it suÆes to prove innermost termination.

However, without modularity, the resulting onstraints would not be satis�ed

by any quasi-simpli�ation ordering: Due to the onstraint SUM(s(n)�x;m�y) �

SUM(n�x; s(m)�y), neither the argument of s nor the �rst argument of `�' an be

eliminated. As we annot eliminate all arguments of sum (due to the onstraint

sum(nil; y) % y), the onstraint sum(s(n)�x;m�y) % sum(n�x; s(m)�y) enfores

that the �rst argument of summay not be deleted either. ButWEIGHT(n�m�x) �

WEIGHT(sum(n�m�x; : : :)) does not hold for any quasi-simpli�ation ordering.

Termination of the sum and weight-example an be proved by Cor. 15. The

sum-subsystem (R

0

) is terminating (this an be proved by LPO with the pree-

dene sum > � and sum > s). For the weight-subsystem (R

1

) we obtain the

onstraints

sum(s(n)�x;m�y) % sum(n�x; s(m)�y)

sum(0�x; y) % sum(x; y)

sum(nil; y) % y

WEIGHT(n�m�x) �WEIGHT(sum(n�m�x; 0�x));

62

whih are also satis�ed by LPO after deleting the �rst arguments of sum and `�'.

This time we have to use the preedene � > sum.

Note that the onstraints for termination (aording to Set. 2.1) are not

satis�ed by any quasi-simpli�ation ordering amenable to automation, i.e., this

example again shows that proving innermost termination is essentially easier

than proving termination.

To see this, regard the onstraints for the yle onsisting of the �rst SUM-

dependeny pair. We show that they are not satis�ed by any argument �lter-

ing � and any redution pair (%;�) where % is a path or a polynomial quasi-

simpli�ation ordering. The onstraint �(SUM(s(n)�x;m�y)) � �(SUM(n�x;

s(m)�y)) implies �(s(0)�nil) �

s

�(0�nil) where �

s

is the strit part of the quasi-

ordering %. (For polynomial orderings this holds beause then % is total.) More-

over, one an show that the onstraints entail that �(weight(sum(0�0�s(0)�nil;

0�x))) ontains x and if one uses polynomial orderings, this term is mapped to

a polynomial whih is strongly monotoni in x w.r.t. the ordering �

s

. Then we

obtain the following ontradition to the well-foundedness of �

s

:

�(weight(sum(0�0�s(0)�nil; 0�s(0)�nil)))

�

s

�(weight(sum(0�0�s(0)�nil; 0�0�nil))) by monotoniity

and �(s(0)�nil) �

s

�(0�nil)

% �(weight(0�0�s(0)�nil)) by the subterm property

% �(weight(sum(0�0�s(0)�nil; 0�s(0)�nil))) by the onstraint

from the �rst weight-rule

(To show the strong monotoniity of �(weight(sum(0�0�s(0)�nil; 0�x))) note

that the seond weight-rule implies that �(weight(x)) must depend on x. More-

over, the onstraint for the last sum-rule implies that �(sum(0�0�s(0)�nil; x)) must

depend on x. It remains to show that �(0�x) depends on x. To this end, note that

the onstraint from the �rst sum-rule implies that �(sum(x; 0�nil)) depends on x.

Therefore, the onstraint from the seond sum-rule implies that �(sum(0�x; 0�nil))

also depends on x. But then �(0�x) must also depend on x.)

4.34 Renaming in the Lambda Calulus (simpli�ed variant)

The following TRS is a shortened and simpli�ed variant of a system for renaming

in the lambda alulus. The full system is presented in Ex. 4.35.

f(0)! true

f(1)! false

f(s(x))! f(x)

if(true; x; y)! x

if(false; x; y)! y

g(s(x); s(y))! if(f(x); s(x); s(y))

g(x; (y))! g(x; g(s((y)); y))

63

The system is not simply terminating, as the left-hand side of the last rule

is embedded in its right-hand side. As it is non-overlapping, it is suÆient to

prove innermost termination only. For that purpose we need modularity results,

beause otherwise we would have

G(x; (s(x))) � G(x; g(s((s(x))); s(x))) % G(x; if(: : : ; s((s(x))); : : :))

and neither the argument of s nor the seond argument of if an be eliminated.

The system is a hierarhial ombination (but not a proper extension). Hene,

we an prove innermost termination by Cor. 15. Termination of R

0

(the f- and

if-rules) an for instane be veri�ed by RPO. For R

1

(the g-rules) we obtain the

following onstraints after �ltering the arguments of s and f:

f % true

f % false

f % f

if(true; x; y) % x

if(false; x; y) % y

g(s; s) % if(f; s; s)

g(x; (y)) % g(x; g(s; y))

G(x; (y)) � G(x; g(s; y))

G(x; (y)) � G(s; y):

These inequalities are satis�ed by RPO using the preedene f > true, f >

false, g > if, g > f, > g, > s.

4.35 Renaming in the Lambda Calulus

The following system is a variant of an algorithm from [MA96℄. The purpose

of the funtion ren(x; y; t) is to replae every free ourrene of the variable x

in the term t by the variable y. If the substitution of x by y should be applied

to a lambda term lambda(z; t) (whih represents �z:t), then we �rst apply an

�-onversion step to lambda(z; t), i.e., we rename z to a new variable (whih is

di�erent from x or y and whih does not our in lambda(z; t)). Subsequently,

the renaming of x to y is applied to the resulting term. For that reason in this

TRS there is a nested reursive all of the funtion ren.

Variables are represented by var(l) where l is a list of terms. Therefore, the

variable var(x�y�lambda(z; t)�nil) is distint from x and y and from all variables

ourring in lambda(z; t).

and(true; y)! y

and(false; y)! false

eq(nil; nil)! true

64

eq(t�l; nil)! false

eq(nil; t�l)! false

eq(t�l; t

0

�l

0

)! and(eq(t; t

0

); eq(l; l

0

))

eq(var(l); var(l

0

))! eq(l; l

0

)

eq(var(l); apply(t; s))! false

eq(var(l); lambda(x; t))! false

eq(apply(t; s); var(l))! false

eq(apply(t; s); apply(t

0

; s

0

))! and(eq(t; t

0

); eq(s; s

0

))

eq(apply(t; s); lambda(x; t))! false

eq(lambda(x; t); var(l))! false

eq(lambda(x; t); apply(t; s))! false

eq(lambda(x; t); lambda(x

0

; t

0

))! and(eq(x; x

0

); eq(t; t

0

))

if(true; var(k); var(l

0

))! var(k)

if(false; var(k); var(l

0

))! var(l

0

)

ren(var(l); var(k); var(l

0

))! if(eq(l; l

0

); var(k); var(l

0

))

ren(x; y; apply(t; s))! apply(ren(x; y; t); ren(x; y; s))

ren(x; y; lambda(z; t))! lambda(var(x�y�lambda(z; t)�nil);

ren(x; y; ren(z; var(x�y�lambda(z; t)�nil); t)))

Let R

0

onsist of all rules but the last three ren-rules, and let R

1

be the

ren-subsystem. Then this TRS is a hierarhial ombination of R

0

and R

1

. The

TRS is not simply terminating as the left-hand side of the last rule is embedded

in its right-hand side, but it is non-overlapping. Hene, Cor. 15 an be used for

the termination proof.

Termination of R

0

an for instane be proved by RPO. To omplete the

termination proof, we have to �nd a quasi-ordering suh that all rules are weakly

dereasing and suh that the following strit inequalities are satis�ed:

REN(x; y; apply(t; s)) � REN(x; y; t)

REN(x; y; apply(t; s)) � REN(x; y; s)

REN(x; y; lambda(z; t)) � REN(x; y; ren(z; var(x�y�lambda(z; t)�nil); t))

REN(x; y; lambda(z; t)) � REN(z; var(x�y�lambda(z; t)�nil); t):

A well-founded ordering satisfying these onstraints an be synthesized au-

tomatially. For instane, one an use the following polynomial interpretation

where REN(x; y; t) is mapped to t, ren(x; y; t) is also mapped to t, lambda(x; t) is

mapped to t+1, apply(t; s) is mapped to t+ s+1, and(x; y) is mapped to y, and

where nil, var(l), true, false, eq(t; s), and if(x; y; z) are all mapped to the onstant

0.

Note that the modularity result of Cor. 15 is essential for this termination

proof. If termination of the whole system would have to be proved at one, then

65

the resulting inequalities would not be satis�ed by any quasi-simpli�ation or-

dering. The reason is that due to EQ(var(l); var(l

0

)) � EQ(l; l

0

) the argument of

var annot be deleted. Hene, (as if's seond argument annot be deleted either),

ren(var(l); var(k); var(l

0

)) % if(eq(l; l

0

); var(k); var(l

0

)) enfores that ren must de-

pend on its seond argument. Moreover, due to EQ(t�l; t

0

�l

0

) � EQ(t; t

0

), the �rst

argument of `�' annot be eliminated. But the inequality

REN(x; y; lambda(z; t)) � REN(x; y; ren(z; var(x�y�lambda(z; t)�nil); t))

is not satis�ed by any quasi-simpli�ation ordering.

The simpli�ed system of Ex. 4.34 is obtained from the subsystem

eq(nil; nil)! true

eq(nil; t�l)! false

eq(var(l); var(l

0

))! eq(l; l

0

)

if(true; var(k); var(l

0

))! var(k)

if(false; var(k); var(l

0

))! var(l

0

)

ren(var(l); var(k); var(l

0

))! if(eq(l; l

0

); var(k); var(l

0

))

ren(x; y; lambda(z; t))! lambda(var(x�y�lambda(z; t)�nil);

ren(x; y; ren(z; var(x�y�lambda(z; t)�nil); t)))

by removing the �rst arguments of eq, ren, and lambda, by eliminating the ar-

guments of `�' in the seond eq-rule, by replaing var by its arguments in the

if-rules, by deleting a lambda and `unneessary' arguments of var in the last ren-

rule, and by renaming the variables and funtion symbols (eq orresponds to f,

nil orresponds to 0, `�' orresponds to 1, var orresponds to s, ren orresponds

to g, and lambda orresponds to).

4.36 Seletion sort

This TRS from [Wal94℄ is obviously not simply terminating. The TRS an be

used to sort a list by repeatedly replaing the minimum of the list by the head

of the list. It uses replae(n;m; x) to replae the leftmost ourrene of n in the

list x by m.

eq(0; 0)! true

eq(0; s(m))! false

eq(s(n); 0)! false

eq(s(n); s(m))! eq(n;m)

le(0;m)! true

le(s(n); 0)! false

le(s(n); s(m))! le(n;m)

min(0�nil)! 0

66

min(s(n)�nil)! s(n)

min(n�m�x)! if

min

(le(n;m); n�m�x)

if

min

(true; n�m�x)! min(n�x)

if

min

(false; n�m�x)! min(m�x)

replae(n;m; nil)! nil

replae(n;m; k�x)! if

replae

(eq(n; k); n;m; k�x)

if

replae

(true; n;m; k�x)!m�x

if

replae

(false; n;m; k�x)! k�replae(n;m; x)

sort(nil)! nil

sort(n�x)! min(n�x)�sort(replae(min(n�x); n; x))

The TRS is non-overlapping and hene, veri�ation of innermost termination

is suÆient. As this is a hierarhial ombination (but no proper extension and

not oblivious), we an use Cor. 15.

The TRS R

0

(onsisting of all rules but the the last two ones) is innermost

terminating (resp. terminating) as an be proved by the dependeny pair ap-

proah. To omplete the innermost termination proof we obtain the following

inequality for R

1

:

SORT(n�x) � SORT(replae(min(n�x); n; x)):

Moreover, we have to demand l % r for all rules of R

0

, as all these rules are

usable.

We use the argument �ltering �(�) = 2, �(s) = �(eq) = �(le) = [℄, and

�(replae) = �(if

replae

) = 3. Then the resulting inequalities are satis�ed by the

reursive path ordering (where `�' must be greater than min in the preedene).

Note that without using modularity, no path ordering like LPO or RPO whih

is amenable to automation would satisfy the resulting onstraints. The reason is

that due to EQ(s(n); s(m)) � EQ(n;m), the argument of s annot be eliminated

and hene, min(s(n)�nil) % s(n) implies that the �rst argument of `�' annot be

deleted either. Now due to if

replae

(true; n;m; k�x) % m�x, the third argument

of if

replae

annot be removed. Then replae(n;m; k�x) % if

replae

(: : : ; n;m; k�x)

implies that replae must depend on its seond argument and that replae must

be greater than or equal to if

replae

in the preedene, i.e., replae � if

replae

. As

replae depends on its seond argument, if

replae

(false; n;m; k�x) % k�replae(n;m;

x) implies if

replae

� �. Hene, we have replae � �. But then SORT(n�x) �

SORT(replae(: : : ; n; x)) does not hold.

However, a (non-modular) termination proof with dependeny pairs would

be possible by the polynomial ordering where eq(x; y), 0, true, false, le(x; y), and

nil are mapped to 0, s(x) is mapped to x+ 1, sum(n; x) is mapped to n+ x+ 1,

min(x) and if

min

(b; x) are mapped to x, replae(n;m; x) and if

replae

(b; n;m; x) are

mapped tom+x, EQ(x; y), LE(x; y),MIN(x), IF

min

(b; x), SORT(x), and IF

sort

(b; x)

are mapped to x, and REPLACE(n;m; x) and IF

replae

(b; n;m; x) are mapped to

67

m+ x. Hene, as the TRS is non-overlapping, in this way its termination is also

proved. (If the �rst min rule would be replaed by min(sum(n; nil))! element(n),

then termination ould also be proved by the termination tehnique of Set. 2.1

using an appropriate argument �ltering and the reursive path ordering to satisfy

the onstraints obtained.)

4.37 Di�erent termination arguments

The following TRS is one of the shortest systems to demonstrate the use of

modularity.

f((s(x); y))! f((x; s(y)))

g((x; s(y)))! g((s(x); y))

Without modularity results, termination of this system annot be proved by

path orderings like LPO or RPO that are amenable to automation and a termina-

tion proof with polynomial orderings fails, too. (The reason for the latter is that

if [f ℄ is the polynomial orresponding to a funtion f , then lim

x!1

[℄(x; [s℄(x))�

[℄([s℄(x); x) is1 or �1. But then (for large enough arguments) the inequalities

orresponding to either the �rst or the seond rule are not satis�ed.) By Cor. 16

however, it suÆes to prove termination of the two one-rule subsystems. Their

termination an easily be veri�ed (e.g., by using LPO and omparing subterms

left-to-right for the �rst rule, whereas for the seond rule they are ompared

right-to-left).

While termination of the above TRS ould also be proved by existing mod-

ularity riteria (as it was split into subsystems with disjoint de�ned symbols),

adding a third rule turns it into a hierarhial ombination whih is no proper

extension and not oblivious.

f((s(x); y))! f((x; s(y)))

g((x; s(y)))! g((s(x); y))

g(s(f(x)))! g(f(x))

Using Cor. 15 for the innermost termination proof, termination of R

0

(the

f-rule) is proved with LPO (omparing subterms left-to-right). For the R

1

-on-

straints we eliminate the arguments of f and use LPO omparing subterms right-

to-left.

Referenes

[AG97a℄ T. Arts and J. Giesl. Automatially proving termination where simpli�ation order-

ings fail. In Proeedings of the 7th International Joint Conferene on the Theory and

Pratie of Software Development, TAPSOFT-97, volume 1214 of Leture Notes in

Computer Siene, pages 261{272, Lille, Frane, 1997. Springer Verlag, Berlin.

68

[AG97b℄ T. Arts and J. Giesl. Proving innermost normalisation automatially. In Proeedings

of the 8th International Conferene on Rewriting Tehniques and Appliations, RTA-

97, volume 1232 of Leture Notes in Computer Siene, pages 157{171, Sitges, Spain,

1997. Springer Verlag, Berlin.

[AG98℄ T. Arts and J. Giesl. Modularity of termination using dependeny pairs. In Proeedings

of the 9th International Conferene on Rewriting Tehniques and Appliations, RTA-98,

volume 1379 of Leture Notes in Computer Siene, pages 226{240, Tsukuba, Japan,

1998. Springer Verlag, Berlin.

[AG00℄ T. Arts and J. Giesl. Termination of term rewriting using dependeny pairs. Theoretial

Computer Siene, 236:133{178, 2000.

[Art00℄ T. Arts. System desription: The dependeny pair method. In Proeedings of the 11th

International Conferene on Rewriting Tehniques and Appliations, RTA-00, volume

1833 of Leture Notes in Computer Siene, pages 261{264, Norwih, England, 2000.

Springer Verlag, Berlin.

[Ba87℄ L. Bahmair. Proof methods for equational theories. PhD thesis, University of Illinois,

Urbana-Champaign (Illinois), 1987.

[BL88℄ F. Bellegarde and P. Lesanne. Termination proofs based on transformation tehniques.

Tehnial report, Centre de Reherhe en Informatique de Nany, Nany, Frane, 1988.

[BL90℄ F. Bellegarde and P. Lesanne. Termination by ompletion. Appliable Algebra in

Engineering, Communiation and Computing, 1:79{96, 1990.

[BM79℄ R. S. Boyer and J S. Moore. A Computational Logi. Aademi Press, 1979.

[BN98℄ F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.

[CiM99℄ CiME 2, 1999. Pre-release available at http://www.lri.fr/~demons/ime-2.0.html.

[Der79℄ N. Dershowitz. A note on simpli�ation orderings. Information Proessing Letters,

9(5):212{215, 1979.

[Der87℄ N. Dershowitz. Termination of rewriting. Journal of Symboli Computation, 3(1-2):69{

116, 1987.

[Der93℄ N. Dershowitz. 33 examples of termination. In Term Rewriting, Proeedings Spring

Shool of Theoretial Computer Siene, volume 909 of Leture Notes in Computer

Siene, pages 16{27, Font Romeux, Frane, 1993. Springer Verlag, Berlin.

[DH95℄ N. Dershowitz and C. Hoot. Natural termination. Theoretial Computer Siene,

142(2):179{207, 1995.

[DJ90℄ N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Formal Models and Seman-

tis, volume B of Handbook of Theoretial Computer Siene, pages 243{320. North-

Holland, 1990.

[Dro89℄ K. Drosten. Termersetzungssysteme: Grundlagen der Prototyp-Generierung algebrai-

sher Spezi�kationen. Springer Verlag, Berlin, Berlin, 1989.

[Fer95℄ M. Ferreira. Termination of Term Rewriting,Well-foundedness, Totality and Trans-

formations. PhD thesis, Utreht University, PO Box 80.089, 3508 TB Utreht, The

Netherlands, 1995.

[FZ93℄ M. Ferreira and H. Zantema. Total termination of term rewriting. In Proeedings of

the 5th Conferene on Rewrite Tehniques and Appliations, RTA-93, volume 690 of

Leture Notes in Computer Siene, pages 213{227, Montreal, Canada, 1993. Springer

Verlag, Berlin.

[FZ95℄ M. Ferreira and H. Zantema. Dummy elimination: Making termination easier. In

Proeedings of the 10th International Conferene on Fundamentals of Computation

Theory, FCT-95, volume 965 of Leture Notes in Computer Siene, pages 243{252,

Dresden, Germany, 1995. Springer Verlag, Berlin.

[GA01℄ J. Giesl and T. Arts. Veri�ation of Erlang proesses by dependeny pairs. Appliable

Algebra in Engineering, Communiation, and Computing, 12(1-2):39{72, 2001.

[GAO01℄ J. Giesl, T. Arts, and E. Ohlebush. Modular termination proofs for rewriting using

dependeny pairs. Submitted to the Journal of Symboli Computation, 2001.

[Gee91℄ M. Geerling. Termination of term rewriting systems. Master's thesis, Utreht Univer-

sity, PO Box 80.089, 3508 TB Utreht, The Netherlands, 1991.

69

[Ges00℄ A. Geser. Note on normalizing, non-terminating one-rule string rewriting systems.

Theoretial Computer Siene, 243:489{498, 2000.

[Gie95℄ J. Giesl. Automatisierung von Terminierungsbeweisen f�ur rekursiv de�nierte Algorith-

men. DISKI 96. In�x Verlag, 1995. Dotoral Dissertation, TH Darmstadt, Germany.

[Gie97℄ J. Giesl. Termination of nested and mutually reursive algorithms. Journal of Auto-

mated Reasoning, 19:1{29, 1997.

[GM00℄ J. Giesl and A. Middeldorp. Eliminating dummy elimination. In Proeedings of the

17th International Conferene on Automated Dedution, CADE-17, volume 1831 of

Leture Notes in Arti�ial Intelligene, pages 309{323, Pittsburgh, PA, USA, 2000.

Springer Verlag, Berlin.

[GO00℄ J. Giesl and E. Ohlebush. Pushing the frontiers of ombining rewrite systems far-

ther outwards. In Proeedings of the Seond International Workshop on Frontiers of

Combining Systems, FroCoS-98, volume 7 of Studies in Logi and Computation, pages

141{160, Amsterdam, The Netherlands, 2000. Researh Studies Press, John Wiley &

Sons.

[HH82℄ G. Huet and J.-M. Hullot. Proofs by indution in equational theories with onstrutors.

Journal of Computer and System Sienes, 25:239{299, 1982.

[HL78℄ G. Huet and D. Lankford. On the uniform halting problem for term rewriting systems.

Tehnial Report 283, INRIA, Le Chesnay, Frane, 1978.

[Klo92℄ J. W. Klop. Term rewriting systems. In Bakground: Computational Strutures, vol-

ume 2 of Handbook of Logi in Computer Siene, pages 1{116. Oxford University

Press, New York, 1992.

[KNT99℄ K. Kusakari, M. Nakamura, and Y. Toyama. Argument �ltering transformation. In

Proeedings of the First International Conferene on Priniples and Pratie of Delar-

ative Programming, PPDP-99, volume 1702 of Leture Notes in Computer Siene,

pages 48{62, Paris, Frane, 1999. Springer Verlag, Berlin.

[MA96℄ D. MAllester and K. Arkoudas. Walther reursion. In Proeedings of the 13th In-

ternational Conferene on Automated Dedution, CADE-13, volume 1104 of Leture

Notes in Computer Siene, pages 643{657, New Brunswik, NJ, USA, 1996. Springer

Verlag, Berlin.

[MZ97℄ A. Middeldorp and H. Zantema. Simple termination of rewrite systems. Theoretial

Computer Siene, 175:127{158, 1997.

[OCM00℄ E. Ohlebush, C. Claves, and C. Marh�e. TALP: A tool for the termination analysis

of logi programs. In Proeedings of the 11th International Conferene on Rewrit-

ing Tehniques and Appliations, RTA-00, volume 1833 of Leture Notes in Computer

Siene, pages 270{273, Norwih, England, 2000. Springer Verlag, Berlin.

[Ohl01℄ E. Ohlebush. Termination of logi programs: transformational methods revisited.

Appliable Algebra in Engineering, Communiation, and Computing, 12(1-2):73{116,

2001.

[Pla86℄ D. A. Plaisted. A simple non-termination test for the Knuth-Bendix method. In

Proeedings of the 8th International Conferene on Automated Dedution, volume 230

of Leture Notes in Computer Siene, pages 79{88, Oxford, England, 1986. Springer

Verlag, Berlin.

[Ste95a℄ J. Steinbah. Automati termination proofs with transformation orderings. In Pro-

eedings of the 6th International Conferene on Rewriting Tehniques and Applia-

tions, RTA-95, volume 914 of Leture Notes in Computer Siene, pages 11{25, Kaiser-

slautern, Germany, 1995. Springer Verlag, Berlin. Full Version appeared as Tehnial

Report SR-92-23, Universit�at Kaiserslautern, Germany, 1992.

[Ste95b℄ J. Steinbah. Simpli�ation orderings: History of results. Fundamenta Informatiae,

24:47{87, 1995.

[Toy87℄ Y. Toyama. Counterexamples to the termination for the diret sum of term rewriting

systems. Information Proessing Letters, 25:141{143, 1987.

[Wal91℄ C. Walther. Automatisierung von Terminierungsbeweisen. Vieweg Verlag, Braun-

shweig, 1991.

70

[Wal94℄ C. Walther. On proving the termination of algorithms by mahine. Arti�ial Intelli-

gene, 71(1):101{157, 1994.

[Zan95℄ H. Zantema. Termination of term rewriting by semanti labelling. Fundamenta Infor-

matiae, 24:89{105, 1995.

71

72

Aahener Informatik-Berihte

This is a list of reent tehnial reports. To obtain opies of tehnial reports

please onsult http://aib.informatik.rwth-aahen.de/ or send your request

to: Informatik-Bibliothek, RWTH Aahen, Ahornstr. 55, 52056 Aahen,

Email: biblio�informatik.rwth-aahen.de

95-11

�

M. Staudt / K. von Thadden: Subsumption Cheking in Knowledge

Bases

95-12

�

G.V. Zemanek / H.W. Nissen / H. Hubert / M. Jarke: Requirements

Analysis from Multiple Perspetives: Experienes with Coneptual Mod-

eling Tehnology

95-13

�

M. Staudt / M. Jarke: Inremental Maintenane of Externally Material-

ized Views

95-14

�

P. Peters / P. Szzurko / M. Jeusfeld: Business Proess Oriented Infor-

mation Management: Coneptual Models at Work

95-15

�

S. Rams / M. Jarke: Proeedings of the Fifth Annual Workshop on

Information Tehnologies & Systems

95-16

�

W. Hans / St. Winkler / F. S�aenz: Distributed Exeution in Funtional

Logi Programming

96-1

�

Jahresberiht 1995

96-2 M. Hanus / Chr. Prehofer: Higher-Order Narrowing with De�nitional

Trees

96-3

�

W. Sheufele / G. Moerkotte: Optimal Ordering of Seletions and Joins

in Ayli Queries with Expensive Prediates

96-4 K. Pohl: PRO-ART: Enabling Requirements Pre-Traeability

96-5 K. Pohl: Requirements Engineering: An Overview

96-6

�

M. Jarke / W. Marquardt: Design and Evaluation of Computer{Aided

Proess Modelling Tools

96-7 O. Chitil: The &-Semantis: A Comprehensive Semantis for Funtional

Programs

96-8

�

S. Sripada: On Entropy and the Limitations of the Seond Law of Ther-

modynamis

96-9 M. Hanus (Ed.): Proeedings of the Poster Session of ALP'96 | Fifth

International Conferene on Algebrai and Logi Programming

96-10 R. Conradi / B. Westfehtel: Version Models for Software Con�guration

Management

96-11

�

C. Weise / D. Lenzkes: A Fast Deision Algorithm for Timed Re�nement

96-12

�

R. D�omges / K. Pohl / M. Jarke / B. Lohmann / W. Marquardt: PRO-

ART/CE

�

| An Environment for Managing the Evolution of Chemial

Proess Simulation Models

96-13

�

K. Pohl / R. Klamma / K. Weidenhaupt / R. D�omges / P. Haumer /

M. Jarke: A Framework for Proess-Integrated Tools

73

96-14

�

R. Gallersd�orfer / K. Klabunde / A. Stolz / M. E�major: INDIA| Intel-

ligent Networks as a Data Intensive Appliation, Final Projet Report,

June 1996

96-15

�

H. Shimpe / M. Staudt: VAREX: An Environment for Validating and

Re�ning Rule Bases

96-16

�

M. Jarke / M. Gebhardt, S. Jaobs, H. Nissen: Conit Analysis Aross

Heterogeneous Viewpoints: Formalization and Visualization

96-17 M. Jeusfeld / T. X. Bui: Deision Support Components on the Internet

96-18 M. Jeusfeld / M. Papazoglou: Information Brokering: Design, Searh and

Transformation

96-19

�

P. Peters / M. Jarke: Simulating the impat of information ows in

networked organizations

96-20 M. Jarke / P. Peters / M. Jeusfeld: Model-driven planning and design

of ooperative information systems

96-21

�

G. de Mihelis / E. Dubois / M. Jarke / F. Matthes / J. Mylopoulos

/ K. Pohl / J. Shmidt / C. Woo / E. Yu: Cooperative information

systems: a manifesto

96-22

�

S. Jaobs / M. Gebhardt, S. Kethers, W. Rzasa: Filling HTML forms

simultaneously: CoWeb arhiteture and funtionality

96-23

�

M. Gebhardt / S. Jaobs: Conit Management in Design

97-01 Jahresberiht 1996

97-02 J. Faassen: Using full parallel Boltzmann Mahines for Optimization

97-03 A. Winter / A. Sh�urr: Modules and Updatable Graph Views for PRO-

grammed Graph REwriting Systems

97-04 M. Mohnen / S. Tobies: Implementing Context Patterns in the Glasgow

Haskell Compiler

97-05

�

S. Gruner: Shemakorrespondenzaxiome unterst�utzen die paargramma-

tishe Spezi�kation inkrementeller Integrationswerkzeuge

97-06 M. Niola / M. Jarke: Design and Evaluation of Wireless Health Care

Information Systems in Developing Countries

97-07 P. Hofstedt: Taskparallele Skelette f�ur irregul�ar strukturierte Probleme

in deklarativen Sprahen

97-08 D. Blostein / A. Sh�urr: Computing with Graphs and Graph Rewriting

97-09 C.-A. Krapp / B. Westfehtel: Feedbak Handling in Dynami Task Nets

97-10 M. Niola / M. Jarke: Integrating Repliation and Communiation in

Performane Models of Distributed Databases

97-13 M. Mohnen: Optimising the Memory Management of Higher-Order

Funtional Programs

97-14 R. Baumann: Client/Server Distribution in a Struture-Oriented Data-

base Management System

97-15 G. H. Botorog: High-Level Parallel Programming and the EÆient Im-

plementation of Numerial Algorithms

98-01

�

Jahresberiht 1997

74

98-02 S. Gruner/ M. Nagel / A. Sh�urr: Fine-grained and Struture-oriented

Integration Tools are Needed for Produt Development Proesses

98-03 S. Gruner: Einige Anmerkungen zur graphgrammatishen Spezi�kation

von Integrationswerkzeugen nah Westfehtel, Janning, Lefering und

Sh�urr

98-04

�

O. Kubitz: Mobile Robots in Dynami Environments

98-05 M. Leuker / St. Tobies: Truth | A Veri�ation Platform for Distributed

Systems

98-07 M. Arnold / M. Erdmann / M. Glinz / P. Haumer / R. Knoll / B.

Paeh / K. Pohl / J. Ryser / R. Studer / K. Weidenhaupt: Survey on

the Senario Use in Twelve Seleted Industrial Projets

98-08

�

H. Aust: Sprahverstehen und Dialogmodellierung in nat�urlihsprah-

lihen Informationssystemen

98-09

�

Th. Lehmann: Geometrishe Ausrihtung medizinisher Bilder am

Beispiel intraoraler Radiographien

98-10

�

M. Niola / M. Jarke: Performane Modeling of Distributed and Repli-

ated Databases

98-11

�

A. Shleiher / B. Westfehtel / D. J�ager: Modeling Dynami Software

Proesses in UML

98-12

�

W. Appelt / M. Jarke: Interoperable Tools for Cooperation Support

using the World Wide Web

98-13 K. Indermark: Semantik rekursiver Funktionsde�nitionen mit Strikt-

heitsinformation

99-01

�

Jahresberiht 1998

99-02

�

F. Huh: Verifation of Erlang Programs using Abstrat Interpretation

and Model Cheking | Extended Version

99-03

�

R. Gallersd�orfer / M. Jarke / M. Niola: The ADR Repliation Manager

99-04 M. Alpuente / M. Hanus / S. Luas / G. Vidal: Speialization of Fun-

tional Logi Programs Based on Needed Narrowing

99-07 Th. Wilke: CTL+ is exponentially more suint than CTL

99-08 O. Matz: Dot-Depth and Monadi Quanti�er Alternation over Pitures

2000-01

�

Jahresberiht 1999

2000-02 Jens V�oge / Marin Jurdzi�nski: A Disrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-04 Andreas Beks, Stefan Sklorz, Matthias Jarke: Exploring the Semanti

Struture of Tehnial Doument Colletions: A Cooperative Systems

Approah

2000-05

�

Mareike Shoop: Cooperative Doument Management

2000-06

�

Mareike Shoop, Christoph Quix (Ed.): Proeedings of the Fifth Interna-

tional Workshop on the Language-Ation Perspetive on Communiation

Modelling

2000-07

�

Markus Mohnen / Pieter Koopman (Eds.): Proeedings of the 12th In-

ternational Workshop of Funtional Languages

75

2000-08 Thomas Arts / Thomas Noll: Verifying Generi Erlang Client-Server

Implementations

2001-01

�

Jahresberiht 2000

2001-02 Benedikt Bollig / Martin Leuker: Deiding LTL over Mazurkiewiz

Traes

2001-03 Thierry Cahat: The power of one-letter rational languages

2001-04 Benedikt Bollig / Martin Leuker / Mihael Weber: Loal Parallel Model

Cheking for the Alternation free �-alulus

2001-05 Benedikt Bollig / Martin Leuker / Thomas Noll: Regular MSC lan-

guages

2001-06 Ahim Blumensath: Pre�x-Reognisable Graphs and Monadi Seond-

Order Logi

2001-07 Martin Grohe / Stefan W�ohrle: An Existential Loality Theorem

�

These reports are only available as a printed version.

Please ontat biblio�informatik.rwth-aahen.de to obtain opies.

76

