
Pushing the Frontiers of Combining Rewrite

Systems Farther Outwards

�

J�urgen Giesl

y

Enno Ohlebusch

z

Abstract

It is well known that simple termination ismodular for certain kinds

of combinations of term rewriting systems (TRSs). This result is of

practical relevance because most techniques for (automated) termina-

tion proofs use simpli�cation orderings, so they show in fact simple ter-

mination. On the other hand, in practice many systems are non-simply

terminating. In order to cope with such systems, Arts and Giesl de-

veloped the dependency pair approach. By using (quasi-)simpli�cation

orderings in combination with dependency pairs, it is possible to prove

termination of non-simply terminating systems automatically. It is nat-

ural to ask whether modularity of simple termination can be extended

to the class of those systems which can be handled by this technique.

In this paper we show that this is indeed the case. In this way, the

class of TRSs for which termination can be proved in a modular way

is extended signi�cantly.

1 Introduction

Modularity is a well-known paradigm in computer science. Programs should

be designed in a modular way, that is, as a combination of small programs.

These so-called modules are implemented separately and are then integrated

to form the whole program. Since TRSs have important applications in

computer science, it is essential to know under which conditions a combined

system inherits desirable properties from its constituent systems. For this

reason modular aspects of term rewriting have been studied extensively. A

property P of TRSs (like termination) is called modular if whenever R

1

and R

2

are TRSs both satisfying P, then their combined system R

1

[R

2

also satis�es P. The knowledge that (perhaps under certain conditions)

a property P is modular facilitates software engineering because it allows

an incremental development of programs. On the other hand, it provides

�

To appear in the Proceedings of FroCoS '98, Amsterdam, The Netherlands, Logic and

Computation Series, Research Studies Press, John Wiley & Sons, 2000.

y

Department of Computer Science, Darmstadt University of Technology, Alexander-

str. 10, 64283 Darmstadt, Germany, Email: giesl@informatik.tu-darmstadt.de

z

Technische Fakult�at, University of Bielefeld, P.O. Box 10 01 31, 33501 Bielefeld, Ger-

many, Email: enno@TechFak.Uni-Bielefeld.DE

1

a divide and conquer approach to establishing properties of TRSs. If one

wants to know whether a large TRS has a certain modular property P, then

this system can be decomposed into small subsystems and one merely has

to check whether each of these subsystems has property P.

As all interesting properties are in general not modular, the starting-

point of research were disjoint unions, i.e. combinations of TRSs without

common function symbols. Toyama

[

1987b

]

proved that conuence is mod-

ular for disjoint systems, but termination and completeness lack a modular

behavior

[

Toyama, 1987a

]

. So the question is what restrictions have to be im-

posed on the constituent TRSs so that their disjoint union is again terminat-

ing. The �rst results were obtained by investigating the distribution of col-

lapsing rules and duplicating rules among the TRSs; see

[

Rusinowitch, 1987;

Middeldorp, 1989

]

. In

[

Toyama et al., 1995

]

it is shown that termination is

modular for conuent and left-linear TRSs. Ever since an abundance of

modularity results for disjoint unions, constructor-sharing systems, compos-

able systems, and hierarchical combinations has been published; see

[

Mid-

deldorp, 1990; Ohlebusch, 1994a; Gramlich, 1996

]

for an overview. However,

most of the modularity results are often not applicable in practice. For ex-

ample, collapsing and duplicating rules occur naturally in most TRSs. In

contrast to this, since most methods for automated termination proofs work

with so-called simpli�cation orderings

[

Dershowitz, 1987; Steinbach, 1995;

Middeldorp and Zantema, 1997

]

, Kurihara and Ohuchi's

[

1992

]

result for

constructor-sharing systems is thus of practical relevance. They showed that

the combination of �nite simply terminating TRSs (systems whose termina-

tion can be veri�ed by a simpli�cation ordering) is again simply terminating.

Their result was extended to composable systems

[

Ohlebusch, 1995

]

and to

certain hierarchical combinations

[

Krishna Rao, 1994

]

. Moreover, all these

results also hold for in�nite TRSs; see

[

Middeldorp and Zantema, 1997

]

.

However, there are numerous relevant TRSs where simpli�cation order-

ings fail in proving termination. For that purpose, a new technique for

automated termination proofs, viz. the so-called dependency pair approach,

was developed by Arts and Giesl

[

1997a; 1997b; 1997c; 1998

]

. Given a TRS,

this approach generates a set of constraints and the existence of a well-

founded (quasi-)ordering satisfying these constraints is su�cient for termi-

nation. The advantage is that standard techniques can often generate such a

well-founded ordering even if a direct termination proof with the same tech-

niques fails. In this way, simpli�cation orderings can now be used to prove

termination of non-simply terminating TRSs. Several such systems from

di�erent areas of computer science (including many challenging problems

from the literature) can for instance be found in

[

Arts and Giesl, 1997c

]

.

Thus, the dependency pair approach pushed the frontier of those TRSs

whose termination is provable automatically a lot further. Now the class

of TRSs where automated termination proofs are (potentially) feasible are

no longer just the simply terminating systems, but the DP-(quasi) simply

2

terminating systems, i.e. those systems whose termination can be veri�ed by

using simpli�cation orderings in combination with dependency pairs. Hence,

a natural question is whether the current frontier of modularity can be

pushed further as well by extending the modularity results from simple to

DP-(quasi) simple termination. In this paper, we will show that this is

indeed possible. Thus, the class of TRSs whose termination can be proved

in a modular way is extended considerably.

The paper is organized as follows: First we briey recall the basic no-

tions of the combination of TRSs. Sect. 3 contains a short description of

the dependency pair method. In Sect. 4 we introduce the concept of DP-

(quasi) simple termination and show in Sect. 5 that DP-quasi simple termi-

nation is modular for disjoint unions. Sect. 6 contains similar results about

constructor-sharing TRSs.

2 Basic Notions of the Union of TRSs

For an introduction to term rewriting see e.g.

[

Dershowitz and Jouannaud,

1990; Klop, 1992

]

. Let R be a TRS over the signature F . A function symbol

f 2 F is called a de�ned symbol if there is a rewrite rule l ! r 2 R such

that f = root(l). Function symbols from F which are not de�ned symbols

are called constructors. Thus, if a TRS consists of the following two rules

f(0; 1; x) ! f(s(x); x; x) (1)

f(x; y; s(z)) ! s(f(0; 1; z)); (2)

then f is the only de�ned symbol, whereas 0, 1, and s are constructors.

Let R

1

and R

2

be TRSs over the signatures F

1

and F

2

, resp. Their

combined system is their unionR = R

1

[R

2

over the signature F = F

1

[F

2

.

Its set of de�ned symbols is D = D

1

[D

2

and its set of constructors is

C = F n D, where D

i

(C

i

) denotes the de�ned symbols (constructors) in R

i

.

(1) R

1

and R

2

are disjoint if F

1

\ F

2

= ;.

(2) R

1

and R

2

are constructor-sharing if F

1

\ F

2

= C

1

\ C

2

(� C).

(3) R

1

and R

2

are composable if C

1

\D

2

= D

1

\ C

2

= ; and both systems

contain all rewrite rules that de�ne a de�ned symbol whenever that

symbol is shared: fl ! r 2 R j root(l) 2 D

1

\D

2

g � R

1

\R

2

.

We next give a brief overview of the basic notions of disjoint unions.

In the sequel let t 2 T (F

1

[F

2

;V). Let 2 be a special constant 62 F

1

[

F

2

. A context C is a term in T (F

1

[F

2

[f2g;V) and C[t

1

; : : : ; t

n

] is

the result of replacing from left to right the n � 0 occurrences of 2 with

t

1

; : : : ; t

n

. We write t = C[[t

1

; : : : ; t

n

]] if C 2 T (F

i

[f2g;V), C 6= 2, and

root(t

1

); : : : root(t

n

) 2 F

3�i

for some i 2 f1; 2g. In this case, the t

j

are

3

the principal subterms of t and C is the topmost F

i

-homogeneous part of t,

denoted by top

i

(t) (whereas top

3�i

(t) is 2). So for example, if R

1

consists

of the rules (1) and (2), and R

2

contains the rules

g(x; y) ! x (3)

g(x; y) ! y; (4)

then R

1

and R

2

are disjoint and a term like f(g(0; 0); x; g(y; y)) can be

written as C[[g(0; 0); g(y; y)]], where C is f(2; x;2). Thus top

1

(f(g(0; 0); x;

g(y; y))) = f(2; x;2) and top

2

(f(g(0; 0); x; g(y; y))) = 2.

Moreover, for any term t its rank is the maximal number of alternating

function symbols (from F

1

and F

2

, resp.) in any path through the term, i.e.

rank(t) = 1 +maxfrank(t

j

) j 1 � j � ng where t = C[[t

1

; : : : ; t

n

]]

and max ; = 0. So for example we have rank(f(g(0; 0); x; g(y; y))) = 3. Our

modularity results crucially depend on the fact that s !

R

1

[R

2

t implies

rank(s) � rank(t) (the proof is straightforward by induction on rank(s)).

A rewrite step s !

R

1

[R

2

t is destructive at level 1 if root(s) 2 F

i

and

root(t) 2 F

3�i

for some i 2 f1; 2g. A reduction step s!

R

1

[R

2

t is destruc-

tive at level m + 1 (for some m � 1) if s = C[[s

1

; : : : ; s

j

; : : : ; s

n

]] !

R

1

[R

2

C[s

1

; : : : ; t

j

; : : : ; s

n

] = t with s

j

!

R

1

[R

2

t

j

destructive at level m. Obvi-

ously, if a rewrite step is destructive, then the rewrite rule applied is col-

lapsing, i.e. the right-hand side of the rule is a variable. For example, the

rewrite step f(g(0; 0); x; g(y; y)) ! f(0; x; g(y; y)) is destructive at level 2.

Finally, we recall that for every signature F the TRS Emb(F) (which is

important in the context of simple termination) is de�ned by

Emb(F) = ff(x

1

; : : : ; x

n

)! x

i

j f 2 F , f is n-ary and 1 � i � ng:

3 Dependency Pairs

In the dependency pair approach of Arts and Giesl

[

1997a; 1997c; 1998

]

for

showing termination, if f(s

1

; :::; s

n

) rewrites to C[g(t

1

; :::; t

m

)] (where g is

a de�ned symbol), then one has to compare the argument tuples s

1

; :::; s

n

and t

1

; :::; t

m

. To avoid the handling of tuples, a new tuple symbol F 62 F is

introduced for every de�ned symbol f . Instead of comparing tuples, now the

terms F (s

1

; :::; s

n

) and G(t

1

; :::; t

m

) are compared. Thus, to ease readability

we assume that the signature F consists of lower case symbols only and that

tuple symbols are denoted by the corresponding upper case symbols.

De�nition 1 (Dependency Pair) If f(s

1

; :::; s

n

) ! C[g(t

1

; :::; t

m

)] is a

rule of a TRS R and g is a de�ned symbol, then hF (s

1

; :::; s

n

); G(t

1

; :::t

m

)i

is a dependency pair of R.

So for the TRS R

1

= f(1); (2)g we obtain the following dependency pairs

4

hF (0; 1; x); F (s(x); x; x)i (5)

hF (x; y; s(z)); F (0; 1; z)i: (6)

To trace those subterms which may start new reductions, we examine

special sequences of dependency pairs, so-called chains. In the following,

we consider substitutions whose domains may be in�nite and assume that

di�erent (occurrences of) dependency pairs have disjoint sets of variables.

De�nition 2 (Chain) A sequence of dependency pairs hs

1

; t

1

ihs

2

; t

2

i::: is

an R-chain if there is a substitution � such that t

j

� !

�

R

s

j+1

� holds for

every two consecutive pairs hs

j

; t

j

i and hs

j+1

; t

j+1

i in the sequence.

For instance, in our example we have the chain

hF (0; 1; x

1

); F (s(x

1

); x

1

; x

1

)i hF (x

2

; y

2

; s(z

2

)); F (0; 1; z

2

)i hF (0; 1; x

3

); F (s(x

3

); x

3

; x

3

)i

because with � = fx

1

7! s(x

3

); x

2

7! s(s(x

3

)); y

2

7! s(x

3

); z

2

7! x

3

g we have

F (s(x

1

); x

1

; x

1

)� !

�

R

1

F (x

2

; y

2

; s(z

2

))� and F (0; 1; z

2

)� !

�

R

1

F (0; 1; x

3

)�.

In fact, every �nite alternating sequence of (5) and (6) is a chain. Arts and

Giesl

[

1997a; 1997c

]

proved that the absence of in�nite chains is a su�cient

and necessary criterion for termination.

Theorem 3 (Termination Criterion) A TRS R is terminating if and

only if there exists no in�nite R-chain.

Note that the �rst dependency pair (5) can never follow itself in a chain,

because F (s(x

1

); x

1

; x

1

)� !

�

R

1

F (0; 1; x

2

)� does not hold for any substitu-

tion �. To estimate which dependency pairs may occur consecutive in a

chain, the estimated dependency graph has been introduced, cf. Arts and

Giesl

[

1997a; 1997c; 1998

]

. We �rst recall the needed notions. CAP(t) re-

sults from replacing all subterms of t that have a de�ned root symbol by

di�erent fresh variables and REN(t) results from replacing all variables in t

by di�erent fresh variables. Then, in order to determine whether hu; vi can

follow hs; ti in a chain, we check whether REN(CAP(t)) uni�es with u. The

function REN is needed to rename multiple occurrences of the same variable

x in t because when instantiated with �, two occurrences of x� could re-

duce to di�erent terms. So in our example, the estimated dependency graph

contains an arc from (5) to (6) and arcs from (6) to (5) and to itself.

De�nition 4 (Estimated Dependency Graph) The estimated depen-

dency graph is the directed graph whose nodes are the dependency pairs and

there is an arc from hs; ti to hu; vi if REN(CAP(t)) and u are uni�able.

A set P of dependency pairs is called a cycle if for any two dependency

pairs hs; ti; hu; vi 2 P there is a path from hs; ti to hu; vi and from hu; vi to

hs; ti in the estimated dependency graph which traverses dependency pairs

from P only. (In particular, there must also be a path from hs; ti to itself.)

Thus, the only non-empty cycles in our example are f(6)g and f(5); (6)g. In

the remainder of the paper, we always restrict ourselves to �nite TRSs (and

5

to �nite signatures). Then any in�nite chain corresponds to a cycle, i.e. it

su�ces to prove that there is no in�nite chain of dependency pairs from any

cycle, cf.

[

Arts and Giesl, 1998

]

.

For an automation of this criterion, we generate a set of inequalities such

that the existence of a well-founded quasi-ordering satisfying these inequali-

ties is su�cient for the absence of in�nite chains. As usual, a quasi-ordering

% is a reexive and transitive relation. The corresponding strict relation

�

s

is de�ned as t �

s

u i� t % u and u 6% t. Moreover, we also de�ne a

corresponding stable-strict relation �

ss

as t �

ss

u i� t� �

s

u� holds for all

ground substitutions �, where a ground substitution is a substitution map-

ping all variables to ground terms. In other words, for all those substitutions

� we must have t� % u� and u� 6% t�.

For instance, many useful quasi-orderings are constructed by using map-

pings j:j from the set of ground terms to a well-founded set like the natural

numbers IN, cf. e.g.

[

Lankford, 1979, \polynomial orderings"

]

. Then % is

de�ned as t % u i� jt�j �

IN

ju�j holds for all ground substitutions �. A

natural way to de�ne a corresponding irreexive ordering � is to let t � u

hold i� jt�j >

IN

ju�j for all ground substitutions �. However, now � is not

the corresponding strict relation, but the corresponding stable-strict rela-

tion of %. Thus, the irreexive relation intuitively associated with a quasi-

ordering is often the stable-strict one instead of the strict one. In particular,

if the quasi-ordering % is stable under substitutions, then the corresponding

stable-strict relation �

ss

is stable under substitutions too, whereas this is

not necessarily true for the strict relation �

s

.

For example, if jaj = 0, jf

1

(t)j = jtj, and jf

2

(t)j = 2jtj for all ground

terms t, then we have f

2

(x) % f

1

(x) and f

1

(x) 6% f

2

(x). Hence, this implies

f

2

(x) �

s

f

1

(x). However, �

s

is not stable under substitutions because

f

2

(a) �

s

f

1

(a) does not hold. This example also demonstrates that in

general �

s

��

ss

is not true because for the stable-strict relation �

ss

we

have f

2

(x) 6�

ss

f

1

(x).

Moreover, in general �

ss

�% does not hold either (hence, �

ss

��

s

is false,

too). If R is the TRS containing only the rule h(a)! a and % is de�ned as

!

�

R

, then we have h(x) �

ss

x, but h(x) 6% x.

The following lemma states some straightforward properties of stable-

strict relations, where in the following we always assume that our signature

contains at least one constant (i.e. that there exist ground terms).

Lemma 5 (Properties of Stable-Strict Relations) Let % be a quasi-

ordering that is stable under substitutions. Then we have

(i) �

ss

is irreexive

(ii) �

ss

is transitive

(iii) �

ss

is stable under substitutions

(iv) if �

s

is stable under substitutions, then �

s

��

ss

(v) if �

s

is well founded, then �

ss

is well founded, too

6

(vi) s % t �

ss

u implies s �

ss

u

(vii) s �

ss

t % u implies s �

ss

u.

Proof. The conjectures (i) and (ii) follow from the reexivity and the tran-

sitivity of %. Conjectures (iii) and (iv) are direct consequences of the de�ni-

tion. For (v), every potential in�nite descending sequence t

0

�

ss

t

1

�

ss

: : :

would result in an in�nite descending sequence t

0

� �

s

t

1

� �

s

: : : Conjec-

tures (vi) and (vii) follow from the transitivity and stability of %. 2

In the following, instead of the corresponding strict relations we always

consider the corresponding stable-strict relations of quasi-orderings %. For

the sake of brevity, we write � instead of �

ss

, i.e. in this paper � always

denotes the stable-strict relation corresponding to %. Analogously, we will

call a quasi-ordering well-founded if the corresponding stable-strict relation

is well founded.

The following theorem is from

[

Arts and Giesl, 1998

]

, where instead of the

strict relation corresponding to the quasi-ordering we now use the stable-

strict relation. Note that the present formulation of Thm. 6 with stable-

strict relations is more powerful than the formulation with strict relations.

To use the strict relation �

s

of a quasi-ordering in Thm. 6, �

s

would have

to be stable under substitutions; cf.

[

Arts and Giesl, 1998, Thm. 6

]

. But

then by Lemma 5 (iv), s �

s

t always implies s �

ss

t. Hence, all constraints

satis�ed by �

s

are satis�ed by the corresponding stable-strict relation �

ss

as

well. Using Lemma 5 (vii), the proof for the if-part of this slightly modi�ed

theorem is identical to the corresponding one in

[

Arts and Giesl, 1998

]

. The

proof for the only-if-part can be found in

[

Arts and Giesl, 1997c

]

.

Theorem 6 (Dependency Pair Approach) A TRS R is terminating i�

for each cycle P in the estimated dependency graph there is a well-founded

weakly monotonic quasi-ordering % stable under substitutions such that

� l % r for all rules l ! r in R,

� s % t for all dependency pairs hs; ti from P,

� s � t for at least one dependency pair hs; ti from P.

Thus, to prove the absence of in�nite chains from the cycle f(6)g we

have to �nd a quasi-ordering satisfying

F (x; y; s(z)) � F (0; 1; z) (7)

f(0; 1; x) % f(s(x); x; x) (8)

f(x; y; s(z)) % s(f(0; 1; z)): (9)

4 DP-(quasi) simple termination

As mentioned, our aim is to use standard techniques to generate a suitable

quasi-ordering satisfying the constraints of Thm. 6. However, most existing

7

methods generate orderings which are strongly monotonic, whereas for the

dependency pair approach we only need a weakly monotonic ordering. For

that reason, before synthesizing a suitable ordering, some of the arguments

of the function symbols can be eliminated, cf. Arts and Giesl

[

1997a; 1997c

]

.

For instance, one may eliminate the �rst two arguments of the function

symbol f . Then every term f(t

1

; t

2

; t

3

) in the inequalities is replaced by

f

0

(t

3

), where f

0

is a new function symbol. So instead of (8) and (9) we

would obtain the inequalities f

0

(x) % f

0

(x) and f

0

(s(z)) % s(f

0

(z)). Now

the resulting constraints are satis�ed by the recursive path ordering (rpo)

with the precedence f

0

� s� 0� 1. Similarly, (by eliminating the �rst two

arguments of F) one can also prove the absence of in�nite chains from the

cycle f(5); (6)g. Hence, termination of the TRS consisting of the rules (1)

and (2) is proved. Note that this TRS is not simply terminating. So in the

dependency pair approach, simpli�cation orderings like the rpo can be used

to prove termination of TRSs where their direct application would fail.

Apart from eliminating arguments of function symbols, another possibil-

ity is to replace functions by one of their arguments. So instead of deleting

the �rst two arguments of f , one could replace all terms f(t

1

; t

2

; t

3

) by f 's

third argument t

3

. Then the resulting inequalities are again satis�ed by the

rpo. To perform this elimination of arguments resp. of function symbols the

following concept was introduced in

[

Arts and Giesl, 1997c

]

.

De�nition 7 (AFS) An argument �ltering system

1

(AFS) over F is a

TRS whose rewrite rules are of the form

f(x

1

; : : : ; x

n

)! r

with f 2 F and there is at most one such rule for every f 2 F . Here

x

1

; : : : ; x

n

are pairwise distinct variables and r is either one of these variables

or it is a term f

0

(y

1

; : : : ; y

m

), where f

0

62 F is a fresh function symbol and

y

1

; : : : ; y

m

are pairwise distinct variables out of x

1

; : : : ; x

n

.

As proved in

[

Arts and Giesl, 1997c

]

, in order to �nd a quasi-ordering

satisfying a particular set of inequalities, one may �rst normalize the terms

in the inequalities with respect to an AFS (where the AFS may also contain

rules for the tuple symbols). Subsequently, one only has to �nd a quasi-

ordering that satis�es these modi�ed inequalities. Hence, by combining the

synthesis of a suitable AFS with well-known techniques for the generation

of (strongly monotonic) simpli�cation orderings, now the search for a weakly

monotonic ordering satisfying the constraints can be automated.

In this paper, we impose a (minor) restriction

2

on the AFSs used, viz.

we restrict ourselves to AFSs A such that

1

AFSs are a special form of recursive program schemes

[

Courcelle, 1990; Klop, 1992

]

.

2

This restriction is not very severe. If there exists a quasi-simpli�cation ordering satis-

fying the constraints in Thm. 6 and if these constraints include at least one strict inequality

8

� Var(r #

A

) � Var(l #

A

) and l #

A

62 V or l #

A

= r #

A

for all rules l ! r in R

� Var(t #

A

) � Var(s #

A

) and s #

A

62 V or s #

A

= t #

A

for all hs; ti in cycles

As already mentioned, most methods for the automated generation of

well-founded orderings construct simpli�cation orderings or quasi-simpli�-

cation orderings

[

Dershowitz, 1987; Steinbach, 1995; Middeldorp and Zan-

tema, 1997

]

. Here we use the following de�nition of

[

Middeldorp and Zan-

tema, 1997

]

: A simpli�cation ordering is an ordering (i.e. an irreexive and

transitive relation) that is monotonic (closed under contexts), closed under

substitutions, and possesses the subterm property. It is a well-known conse-

quence of Kruskal's theorem that every simpli�cation ordering on T (F ;V)

is well founded provided that F is �nite.

3

Analogously, a quasi-simpli�cation ordering (qso) is a quasi-ordering

which is (weakly) monotonic, closed under substitutions, and has the (weak)

subterm property. Since we restrict ourselves to �nite signatures, every

quasi-simpli�cation ordering (more precisely, the corresponding stable-strict

relation) is well founded, too.

Examples of simpli�cation orderings and qso's include path orderings

like the rpo, the lexicographic path ordering (lpo), etc.

[

Dershowitz, 1987;

Steinbach, 1995

]

. Polynomial orderings, however, are not qso's in general.

For instance, if the constant 0 is associated with the number 0, s(x) is asso-

ciated with x+1, and f(x; y) is associated with the multiplication of x and

y, then this polynomial ordering does not satisfy the subterm property (for

example, f(s(0); 0) % s(0) does not hold). However, the following lemma

shows that if the polynomial ordering respects some restrictions, then it is

indeed a qso.

Lemma 8 (Polynomial Orderings as qso's) Let % be a polynomial or-

dering where every function symbol is associated with a polynomial contain-

ing only non-negative coe�cients.

� If every function symbol f(x

1

; : : : ; x

n

) is associated with a polynomial

containing all variables x

1

; : : : ; x

n

and if every constant is associated

with a number > 0, then % is a qso.

� If every function symbol f(x

1

; : : : ; x

n

) is associated with a polynomial

which contains a (non-mixed) monomial of the form mx

k

i

(with m; k �

1) for every i = 1; : : : ; n, then % is a qso.

Proof. Straightforward. 2

In fact, whenever polynomial orderings can be used in connection with

the dependency pair approach, one can usually apply a polynomial ordering

with variables in its right-hand side, then Var(r #

A

) � Var(l #

A

) and Var(t #

A

) �

Var(s #

A

) are always satis�ed, because otherwise the constraints would imply t � x for

some term t with x 62 Var(t).

3

For details on in�nite signatures see

[

Middeldorp and Zantema, 1997

]

.

9

which satis�es one of the above conditions. By restricting ourselves to qso's,

we obtain the following restricted notion of termination. Again, � denotes

the stable-strict relation corresponding to %.

De�nition 9 (DP-quasi simple termination) A TRS R is DP-quasi

simply terminating i� for every non-empty cycle P in the estimated de-

pendency graph there exists an AFS A and a qso % such that

(a) l #

A

% r #

A

for all rules l ! r in R,

(b) s #

A

% t #

A

for all dependency pairs hs; ti from P,

(c) s #

A

� t #

A

for at least one dependency pair hs; ti from P.

De�nition 9 captures all TRSs where an automated termination proof

using dependency pairs is potentially feasible. In fact, there are numerous

DP-quasi simply terminating TRSs which are not simply terminating; cf.

e.g. the collection in

[

Arts and Giesl, 1997c

]

. This observation motivated

the development of the dependency pair approach and it also motivated the

present work, as our aim is to extend well-known modularity results for

simple termination to DP-quasi simple termination.

A straightforward way to generate a qso � from a simpli�cation ordering

� is to de�ne t � u i� t � u or t = u, where = is syntactic equality. In the

following, we denote the reexive closure of a relation by underlining, i.e. �

denotes the reexive closure of �. By restricting ourselves to this class of

qso's, we obtain the notion of DP-simple termination.

De�nition 10 (DP-simple termination) A TRS R is DP-simply termi-

nating i� for every non-empty cycle P in the estimated dependency graph

there is an AFS A and a simpli�cation ordering � such that

(a) l #

A

� r #

A

for all rules l ! r in R,

(b) s #

A

� t #

A

for all dependency pairs hs; ti from P,

(c) s #

A

� t #

A

for at least one dependency pair hs; ti from P.

Note that (a) - (c) are equivalent to simple termination of the TRS

S

P

= fl #

A

! r #

A

j l ! r 2 R and l #

A

6= r #

A

g [

fs #

A

! t #

A

j hs; ti is a dependency pair from P and s #

A

6= t #

A

g

provided that s #

A

6= t #

A

holds for at least one dependency pair hs; ti 2 P.

It turns out that most of the examples in

[

Arts and Giesl, 1997c

]

are not

only DP-quasi simply terminating but even DP-simply terminating. The

following lemma illustrates the connections between the di�erent notions.

Lemma 11 (Characterizing DP-(quasi) simple termination)

simple termination) DP-simple termination) DP-quasi simple termina-

tion) termination

10

Proof. The second implication holds as � is stable under substitutions and

therefore � is contained in the stable-strict relation of �, cf. Lemma 5 (iv).

The last implication follows from Thm. 6 by using the quasi-ordering �

0

where u �

0

v holds i� u #

A

� v #

A

.

It remains to show the �rst implication. Let R be a simply terminating

TRS over the signature F = C[D and let T up

F

= fF j f 2 Dg be the set of

tuple symbols. If R is simply terminating, then there exists a simpli�cation

ordering � such that l � r holds for all rules l ! r of R.

Let
 be the function which in a term s 2 T (F[T up

F

;V) replaces every

tuple symbol F with its corresponding function symbol f 2 F . Then � can

be extended to a simpli�cation ordering �

0

on T (F [T up

F

;V) by de�ning

t �

0

u i�
(t) �
(u) holds. We claim that the simpli�cation ordering �

0

satis�es the constraints (a) - (c) of Def. 10 without applying an AFS.

Obviously, l �

0

r holds for all rules l ! r of R. Thus �

0

satis�es the

constraint (a). Moreover, for every dependency pair hs; ti we have s �

0

t. The reason is that each dependency pair hF (s

1

; : : : ; s

n

); G(t

1

; : : : ; t

m

)i

originates from a rule f(s

1

; : : : ; s

n

)! C[g(t

1

; : : : ; t

m

)] in R. Thus, f(: : :) �

C[g(: : :)] implies f(: : :) � g(: : :) which in turn implies F (: : :) �

0

G(: : :).

Hence, �

0

also satis�es the constraints (b) and (c) of Def. 10. 2

The following examples show that none of the converse implications of

Lemma 11 holds.

Example 12 The system ff(f(x)) ! f(c(f(x)))g is DP-simply terminat-

ing as the only dependency pair on a cycle is hF (f(x)); F (x)i. Hence, the

resulting constraints are satis�ed by the rpo if one uses the AFS c(x) ! x.

However, this TRS is not simply terminating. The TRS

f(f(x)) ! f(c(f(x))) g(c(x)) ! x g(c(0)) ! g(d(1))

f(f(x)) ! f(d(f(x))) g(d(x)) ! x g(c(1)) ! g(d(0))

is DP-quasi simply terminating as can be proved in a similar way using the

AFS with the rules c(x) ! x and d(x) ! x and the rpo where 0 and 1 are

equal in the precedence. However, it is not DP-simply terminating, because

due to the �rst four rules, the AFS must reduce c(x) and d(x) to their

arguments. But then g(0) � g(1) and g(1) � g(0) lead to a contradiction.

Finally, the system ff(0; 1; x) ! f(x; x; x)g is terminating but not DP-

quasi simply terminating. 2

5 Combining Disjoint Systems

In this section we show that DP-quasi simple termination is modular for

disjoint TRSs. For the proof, we need the following lemma.

11

Lemma 13 (Transforming Reduction Sequences) Let R

1

and R

2

be

two TRSs over disjoint signatures F

1

and F

2

, respectively. Furthermore, let

R = R

1

[R

2

be their union. If u; v are terms over the signature F

1

such

that u !

R

1

v and v� !

�

R

u� hold for a ground substitution � : Var(u) !

T (F

1

[F

2

), then there is also a ground substitution � : Var(u) ! T (F

1

)

such that u� !

R

1

v� !

�

R

1

[Emb(F

1

)

u� .

Proof. Clearly, all terms in the cyclic derivation

D : u� !

R

1

v� !

�

R

u�

have the same rank. Since the root symbol of u is in F

1

, the root symbol of

every term in the reduction sequence D is also in F

1

(reduction steps which

are destructive at level 1 would decrease the rank).

Suppose �rst that every function symbol in F

1

has arity � 1. In this case,

every reduction step in D which is destructive at level 2 strictly decreases

the rank. Consequently, there is no reduction step of this kind in D. Hence

top

1

(u�)!

R

1

top

1

(v�)!

�

R

1

top

1

(u�)

is anR

1

-reduction sequence of ground terms over F

1

. Let Var(u) = fx

1

; : : : ;

x

n

g and recall Var(v) � Var(u). In this case, we de�ne the substitution �

by � = fx

i

7! top

1

(x

i

�) j 1 � i � ng and indeed

u� = top

1

(u�)!

R

1

top

1

(v�) = v� !

�

R

1

top

1

(u�) = u�

is the reduction sequence we are looking for.

Suppose otherwise that there is a function symbol f in F

1

with arity

m > 1. Let Cons be a binary function symbol which neither occurs in F

1

nor

in F

2

and let C

E

= fCons(x

1

; x

2

) ! x

1

;Cons(x

1

; x

2

) ! x

2

g. By

[

Gramlich,

1994, Lemma 3.8

]

or

[

Ohlebusch, 1994b, Thm. 3.13

]

, the reduction sequence

D can be transformed by a transformation function

4

� into a reduction

sequence

�(u�)!

R

1

�(v�)!

�

R

1

[C

E

�(u�)

of terms over F

1

[fConsg. The transformation function � satis�es �(t) =

C[�(t

1

); : : : ;�(t

n

)] for every term t with root(t) 2 F

1

and t = C[[t

1

; : : : ; t

n

]],

cf.

[

Ohlebusch, 1994b

]

. In this case, we �rst de�ne �

0

= fx

i

7! �(x

i

�) j 1 �

i � ng and obtain

u�

0

= �(u�)!

R

1

�(v�) = v�

0

!

�

R

1

[C

E

�(u�) = u�

0

:

Let u�

0

= u

0

; u

1

; : : : ; u

k

= u�

0

be the sequence of terms occurring in the

above reduction sequence. Now in each term u

i

replace every Cons(t

1

; t

2

)

with f(t

1

; t

2

; z; : : : ; z), where z is a variable or constant, and denote the

4

More precisely, � is the transformation �

u�

1

de�ned in

[

Ohlebusch, 1994b, Def. 3.10

]

.

12

resulting term by 	(u

i

). The de�nition � = fx

i

7! 	(x

i

�

0

) j 1 � i � ng

yields the desired reduction sequence

u� = 	(u�

0

) = 	(u

0

)!

R

1

	(u

1

) = 	(v�

0

) = v� !

�

R

1

[Emb(F

1

)

	(u

k

) = u�

in which 	(u

i

) !

R

1

[Emb(F

1

)

	(u

i+1

) by the rule f(x

1

; : : : ; x

m

) ! x

j

, j 2

f1; 2g, if u

i

!

R

1

[C

E

u

i+1

by the rule Cons(x

1

; x

2

)! x

j

. 2

Now we are in a position to prove our �rst modularity theorem.

Theorem 14 (Modularity of DP-quasi simple termination) Let R

1

and R

2

be two TRSs over disjoint signatures F

1

and F

2

, respectively. Then

their union R = R

1

[R

2

is DP-quasi simply terminating i� both R

1

and

R

2

are DP-quasi simply terminating.

Proof. The only-if direction is trivial. For the if direction, let P be a cycle

in the estimated dependency graph of R. Since R

1

and R

2

are disjoint, P

is a cycle in the estimated dependency graph of R

1

or of R

2

. Without loss

of generality, let P be a cycle in the estimated dependency graph of R

1

.

As R

1

is DP-quasi simply terminating, there is an AFS A such that

inequalities (a) - (c) of Def. 9 are satis�ed for R

1

, P, and some qso %. Let

F

0

1

be the set of all function symbols occurring in the inequalities (a) - (c).

Without loss of generality we may assume that A contains no rules with

root symbols from F

2

. Now let

5

S

1

= fl #

A

! r #

A

j l ! r 2 R

1

and l #

A

62 Vg [Emb(F

0

1

) [

fs #

A

! t #

A

j hs; ti 2 P and s #

A

62 Vg

S

2

= R

2

[Emb(F

2

):

S

1

is a TRS over the signature F

0

1

. Hence R

0

= S

1

[S

2

is a TRS over F

0

1

[F

2

.

Note that !

�

R

0

is a qso.

6

Thus, (as the cycle P was chosen arbitrarily) to

prove DP-quasi simple termination of R, we only have to show

(a) l #

A

!

�

R

0

r #

A

for all rules l ! r in R

(b) s #

A

!

�

R

0

t #

A

for all dependency pairs hs; ti from P

(c) there exists a dependency pair hs; ti from P such that

t #

A

� 6!

�

R

0

s #

A

� holds for all ground substitutions �.

5

l #

A

= x 2 V implies l #

A

= x = r #

A

and x % x is satis�ed by every qso %.

6

If R is a TRS over the signature F then!

�

R[Emb(F)

is the smallest qso containing!

R

(that is, if % is a qso with !

R

�%, then !

�

R[Emb(F)

�%). Note however, that the strict

part of a qso!

�

R[Emb(F)

is not necessarily closed under substitutions. Hence, without the

extension of the dependency pair approach in Thm. 6 and Def. 9 to stable-strict relations,

such a qso cannot be used for termination proofs with dependency pairs. As this extension

leads to a more powerful criterion, we did not investigate whether Thm. 14 would also

hold for a formulation of Def. 9 with strict instead of stable-strict relations.

13

Conditions (a) and (b) are obviously satis�ed as for all l ! r 2 R

2

we

have l #

A

= l and r #

A

= r. Hence, we only have to show conjecture (c). Since

% is the qso used for the DP-quasi simple termination proof of R

1

, we have

!

�

S

1

�%. Let hs; ti be a dependency pair from P such that s #

A

� t #

A

.

Suppose that there exists a ground substitution � : Var(s #

A

)! T (F

0

1

[F

2

)

such that t #

A

� !

�

R

0

s #

A

�. By Lemma 13, this implies the existence of a

ground substitution � : Var(s #

A

) ! T (F

0

1

) such that t #

A

� !

�

S

1

s #

A

� .

This, however, would imply t #

A

� % s #

A

� and contradicts the fact that

s #

A

� t #

A

. Thus, t #

A

� 6!

�

R

0

s #

A

� holds for all ground substitutions �.

This proves conjecture (c). 2

Thus, ifR

1

is the TRS consisting of the rules (1) and (2) andR

2

contains

the rules (3) and (4), then this theorem allows us to conclude termination of

their combination because both systems are DP-quasi simply terminating.

This example cannot be handled by any of the previous modularity results.

Note also that in this example, modularity of termination is far from being

trivial because if R

1

's rule f(0; 1; x) ! f(s(x); x; x) would be just slightly

changed to f(0; 1; x) ! f(x; x; x), then R

1

would still be terminating, but

the union with R

2

would not terminate any more, cf.

[

Toyama, 1987a

]

.

DP-quasi simply terminating systems occur frequently in practice. For

example, the two TRSs

R

1

: x� 0 ! x

s(x)� s(y) ! x� y

q(0; s(y)) ! 0

q(s(x); s(y)) ! s(q(x � y; s(y)))

R

2

: app(nil; k) ! k

app(l; nil) ! l

app(x : l; k) ! x : app(l; k)

sum(x : nil) ! x : nil

sum(x : (y : l)) ! sum((x+ y) : l)

sum(app(l; x : (y : k))) ! sum(app(l; sum(x : (y : k))))

are not simply terminating, but they are both DP-quasi simply terminat-

ing, cf. Arts and Giesl

[

1997c; 1997a

]

. Hence, Thm. 14 now also allows to

conclude DP-quasi simple termination of their union.

6 Combining Constructor-Sharing Systems

It may be a bit surprising that Thm. 14 cannot be directly extended to

constructor-sharing TRSs (even if we disallow the use of AFSs). In other

words, there are constructor-sharing TRSs R

1

and R

2

which are both DP-

quasi simply terminating, but their union R = R

1

[R

2

is not DP-quasi

simply terminating.

14

Example 15 Consider the following TRSs:

R

1

: f(c(x)) ! f(x)

f(b(x)) ! x

R

2

: g(d(x)) ! g(x)

g(c(x))) ! c(g(b(c(x))))

The TRS R

1

is simply terminating and R

2

is DP-quasi simply termi-

nating. The latter can be shown without any AFS by using a polynomial

ordering which maps c, b, g, and G to the identity and which maps d(x)

to x + 1. However, their union is not DP-quasi simply terminating. As

hF (c(x)); F (x)i represents a cycle in the estimated dependency graph one

would have to �nd a qso satisfying

F (c(x)) � F (x) (10)

f(c(x)) % f(x) (11)

f(b(x)) % x (12)

g(d(x)) % g(x) (13)

g(c(x)) % c(g(b(c(x)))): (14)

With empty AFS, no qso satis�es (10) - (14), since otherwise we would have

F (c(g(c(x)))) � F (g(c(x))) due to (10)

% F (c(g(b(c(x))))) due to (14)

% F (c(g(c(x)))) due to the subterm property.

By (10), the AFS cannot contain any c-rules. If the argument of b would

be eliminated, then (12) would be transformed into f(b

0

) % x. But as there

exists the strict inequality (10) with a variable in its right-hand side, this

results in the contradiction F (c(f(b

0

))) � x. Similarly, the argument of g

cannot be eliminated either, since g

0

% c(g

0

) would be a contradiction to (10).

Thus, the only possible rules in the AFS are f - and d-rules and rules that

map b or g to its argument. But then we would again obtain F (c(g(c(x)))) �

F (c(g(c(x)))) or F (c(c(x))) � F (c(c(x))) as above. Hence, the TRS indeed

is not DP-quasi simply terminating. 2

Thus, in the remainder of the section we will restrict ourselves to DP-

simple termination instead of DP-quasi simple termination. Without apply-

ing AFSs, DP-simple termination of the TRS R

2

cannot be proved. How-

ever, if one uses for example the AFS b(x)! b

0

, then its resulting constraints

are again satis�ed by a simpli�cation ordering. Thus, to achieve modular-

ity results for constructor-sharing TRSs, we have to restrict ourselves to

systems where the AFSs contain no rules for shared symbols like b.

But we need another requirement to ensure modularity. For example,

let us eliminate the �rst rule g(d(x)) ! g(x) from R

2

. Now there is no

non-empty cycle in the estimated dependency graph of R

2

any more and

hence we obtain no constraints at all for R

2

. Thus, DP-simple termination

15

ofR

2

can now even be proved without using AFSs, but the combined system

R

1

[R

2

is still not DP-simply terminating. Here, the problem is due to the

fact that TRSs without non-empty cycles are DP-simply terminating, even

if there is no simpli�cation ordering � such that l � r holds for their rules.

To exclude such TRSs we will demand that the constraint (a) of Def. 10

should also be satis�ed for the empty cycle P.

7

Nonetheless, the following example shows that this restriction is not yet

su�cient for obtaining a modularity result for DP-simple termination of

constructor-sharing systems.

Example 16 Let R

1

consist of the rules

g(s(x)) ! g(x)

g(s(x)) ! x

g(0) ! g(1)

f(0) ! g(f(s(0)))

and let R

2

consist of the rule h(1)! h(0). To prove DP-simple termination

of R

1

we have to use an AFS containing the rule g(x)! x. This, however,

would imply 0 � 1 which is a contradiction to h(1) � h(0). Thus, the

combination of both systems is not DP-simply terminating. 2

So we also have to ensure that an application of the AFS to the resulting

inequalities does not transform left-hand sides which had a non-shared root

symbol like g into terms with a shared root symbol (like the former construc-

tor 0).

8

The restrictions needed are captured by the notion of C-restricted

DP-simple termination.

De�nition 17 (C-restricted DP-simple termination) Let R be a TRS

over F and let C � F . R is C-restricted DP-simply terminating i�

(1) For every cycle P (including P = ;), there is an AFS A such that

S = fl #

A

! r #

A

j l ! r 2 R and l #

A

6= r #

A

g [

fs #

A

! t #

A

j hs; ti is a dependency pair in P and s #

A

6= t #

A

g

is simply terminating and such that s #

A

6= t #

A

for some hs; ti 2 P

if P 6= ;. (Equivalently, some simpli�cation ordering � satis�es the

constraints (a), (b), and (c) of Def. 10 for every cycle, where (a) is also

required for P = ;).

(2) For every rule u #

A

! v #

A

in S: if root(u) 62 C, then root(u #

A

) 62 C.

(3) None of the AFSs contains a rule for a function symbol f 2 C.

The following theorem shows that under this C-restriction, DP-simple

termination is modular for constructor-sharing TRSs.

7

In fact, without this additional requirement DP-simple termination is not even mod-

ular for disjoint combinations. For reasons of space, a counterexample is omitted.

8

If all AFSs used are non-collapsing, then this requirement is always ful�lled.

16

Theorem 18 (Modularity of C-restricted DP-simple termination)

Let R

1

and R

2

be constructor-sharing TRSs over the signatures F

1

and F

2

,

respectively. If F

1

\F

2

� C, then their combined system R = R

1

[R

2

over

the signature F = F

1

[F

2

is C-restricted DP-simply terminating if and only

if both R

1

and R

2

are C-restricted DP-simply terminating.

Proof. The only-if direction is trivial. For the if direction, let P be a cycle

in the estimated dependency graph of R (where P may also be empty). It

is not di�cult to prove that P is also a cycle in the estimated dependency

graph of R

1

or in the estimated dependency graph of R

2

because R

1

andR

2

are constructor-sharing. Without loss of generality let P be a cycle in the

estimated dependency graph of R

1

. We have to show that there is an AFS

A such that the corresponding TRS S is simply terminating and moreover

conditions (2) and (3) of Def. 17 are satis�ed.

Since R

1

is C-restricted DP-simply terminating and P is a cycle in the

estimated dependency graph of R

1

, there is an AFS A

1

such that the TRS

S

1

= fl #

A

1

! r #

A

1

j l ! r 2 R

1

and l #

A

1

6= r #

A

1

g [

fs #

A

1

! t #

A

1

j hs; ti is a dependency pair in P and s #

A

1

6= t #

A

1

g

is simply terminating and such that s #

A

1

6= t #

A

1

holds for at least one

dependency pair hs; ti from P if P 6= ;. On the other hand, there is an AFS

A

2

such that the TRS

S

2

= fl #

A

2

! r #

A

2

j l ! r 2 R

2

and l #

A

2

6= r #

A

2

g

is simply terminating because R

2

is C-restricted DP-simply terminating.

(Here, A

2

is the AFS corresponding to the empty cycle.)

Let F

0

i

be the set of all function symbols in S

i

for i 2 f1; 2g and let

A = A

1

[A

2

. Since R

1

and R

2

are C-restricted DP-simply terminating, A

does not contain rules for elements of C. Consequently, it follows for every

term u 2 T (F

i

;V) that u #

A

= u #

A

i

. So in particular, s #

A

1

6= t #

A

1

implies

s #

A

6= t #

A

. Moreover, by requirements (2) and (3), the TRSs

S

1

= fl #

A

! r #

A

j l ! r 2 R

1

and l #

A

6= r #

A

g [

fs #

A

! t #

A

j hs; ti is a dependency pair in P and s #

A

6= t #

A

g;

S

2

= fl #

A

! r #

A

j l ! r 2 R

2

and l #

A

6= r #

A

g

are also constructor-sharing. This is because a former constructor can only

be a de�ned symbol in S

1

or S

2

if it is not in C, i.e. if it is not shared.

Thus by

[

Kurihara and Ohuchi, 1992, Thm. 3.10

]

, their combined system

S = S

1

[S

2

is also simply terminating.

Since the AFS A and the TRS S obviously satisfy the conditions (2) and

(3) of Def. 17, R is C-restricted DP-simply terminating. 2

For example, let R

2

be the (simply terminating) TRS

17

x+ 0 ! x

x+ s(y) ! s(x+ y)

x+ (y + z) ! (x+ y) + z:

As the TRS R

1

for subtraction and division from the end of Sect. 5 is DP-

simply terminating, now Thm. 18 allows us to conclude DP-simple termina-

tion of the combined system R

1

[R

2

, since these two TRSs are constructor-

sharing (they both contain the same constructors 0 and s).

There are even TRSs R

1

[R

2

where DP-simple termination of both

R

1

and R

2

can be proved with a standard technique like the lpo, whereas

such standard orderings fail if one wants to prove DP-simple termination of

their union directly. Hence, for such examples our result enables automatic

termination proofs which were not possible before.

Example 19 Let R

1

be the TRS

f(c(s(x); y)) ! f(c(x; s(y)))

f(f(x)) ! f(d(f(x)))

f(x) ! x

and let R

2

consist of the rule g(c(x; s(y))) ! g(c(s(x); y)).

R

1

is DP-simply terminating (using the AFS d(x) ! x and the lpo

comparing left-to-right), but it is not simply terminating. R

2

is even simply

terminating as can be shown with the lpo comparing right-to-left. Thus,

DP-simple termination of both systems can be veri�ed by the lpo.

By Thm. 18 their union is also DP-simply terminating. However, the

constraints for the cycle fhG(c(x; s(y))); G(c(s(x); y))ig are not satis�ed by

any lpo (nor by any rpo nor by any polynomial ordering). Thus, there are

indeed TRSs where termination of the subsystems can be shown with depen-

dency pairs and the lpo, but (without our modularity result) termination of

their union cannot be proved with dependency pairs and the lpo. 2

We stress that Thm. 18 can be extended to composable systems. The

proof is almost identical because simple termination is also modular for

composable systems

[

Ohlebusch, 1995, Thm. 5.16

]

. Only the proof that S

1

and S

2

are indeed composable needs an extra e�ort. Therefore, C-restricted

DP-simple termination is even modular for combinations of TRSs which

have common de�ned symbols provided that both systems contain the same

rules for shared de�ned symbols.

7 Conclusion

We have shown that the existing modularity results for simple termination

of disjoint unions can be extended to DP-quasi simple termination. Under

18

certain restrictions a similar modularity result also holds for constructor-

sharing (and even composable) combinations. Future work will include an

examination of whether such an extension is also possible for hierarchical

combinations. In summary, the progress in automated termination proving

which was made possible by the development of dependency pairs now also

has a counterpart in the area of modularity. Dependency pairs enable au-

tomated termination proofs of non-simply terminating TRSs and now our

results allow to perform them in a modular way.

The present work completes the results in

[

Arts and Giesl, 1998

]

, where

the theory of dependency pairs was re�ned in a modular way (cf. Thm. 6)

and where several new modularity criteria for innermost termination were

presented. However, these criteria are only applicable for termination proofs

of locally conuent overlay systems (and in particular, non-overlapping sys-

tems)

[

Gramlich, 1995

]

. But in practice there are many cases in which

innermost termination is not su�cient for termination. Up to now, due to

missing modularity results, the advantages of dependency pairs could not

be fully exploited for these systems. So compared to previous work on mod-

ularity, the modularity criteria developed in the present paper represent a

signi�cant extension.

Acknowledgements. We thank Aart Middeldorp for many helpful remarks and

hints. This work was partially supported by the DFG under grant Wa 652/7-2 as

part of the focus program \Deduktion".

References

[

Arts and Giesl, 1997a

]

T. Arts and J. Giesl. Automatically Proving Termination

Where Simpli�cation Orderings Fail. In Proc. TAPSOFT '97, pages 261{272.

LNCS 1214, 1997.

[

Arts and Giesl, 1997b

]

T. Arts and J. Giesl. Proving Innermost Normalisation

Automatically. In Proc. RTA '97, pages 157{171. LNCS 1232, 1997.

[

Arts and Giesl, 1997c

]

T. Arts and J. Giesl. Termination of Term Rewriting

Using Dependency Pairs. Technical Report IBN 97/46, TU Darmstadt, 1997.

http://www.inferenzsysteme.informatik.tu-darmstadt.de/~reports/notes/ibn-

97-46.ps. Revised version to appear in Theoretical Computer Science.

[

Arts and Giesl, 1998

]

T. Arts and J. Giesl. Modularity of Termination Using De-

pendency Pairs. In Proc. RTA '98, pages 226{240. LNCS 1379, 1998.

[

Courcelle, 1990

]

B. Courcelle. Recursive Applicative Program Schemes. In J. van

Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, pages

459{492. North-Holland, 1990.

[

Dershowitz and Jouannaud, 1990

]

N. Dershowitz and J.-P. Jouannaud. Rewrite

Systems. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science,

volume B, pages 243{320. North-Holland, 1990.

19

[

Dershowitz, 1987

]

N. Dershowitz. Termination of Rewriting. Journal of Symbolic

Computation, 3:69{115, 1987.

[

Gramlich, 1994

]

B. Gramlich. Generalized Su�cient Conditions for Modular Ter-

mination of Rewriting. Applicable Algebra in Engineering, Commutation and

Computing, 5:131{158, 1994.

[

Gramlich, 1995

]

B. Gramlich. Abstract Relations Between Restricted Termination

and Conuence Properties of Rewrite System. Fund. Informaticae, 24:3{23, 1995.

[

Gramlich, 1996

]

B. Gramlich. Termination and Conuence Properties of Struc-

tured Rewrite Systems. PhD thesis, Universit�at Kaiserslautern, Germany, 1996.

[

Klop, 1992

]

J. W. Klop. Term Rewriting Systems. In S. Abramsky, D. M. Gab-

bay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science,

volume 2, pages 1{116. Oxford University Press, New York, 1992.

[

Krishna Rao, 1994

]

M. R. K. Krishna Rao. Simple Termination of Hierarchical

Combinations of Term Rewriting Systems. In Proc. STACS '94, pages 203{223.

LNCS 789, 1994.

[

Kurihara and Ohuchi, 1992

]

M. Kurihara and A. Ohuchi. Modularity of Simple

Termination of Term Rewriting Systems with Shared Constructors. Theoretical

Computer Science, 103:273{282, 1992.

[

Lankford, 1979

]

D. S. Lankford. On Proving Term Rewriting Systems are Noethe-

rian. Technical Report MTP-3, Louisiana Tech. Univ., Ruston, LA, 1979.

[

Middeldorp and Zantema, 1997

]

A. Middeldorp and H. Zantema. Simple Termi-

nation of Rewrite Systems. Theoretical Computer Science, 175:127{158, 1997.

[

Middeldorp, 1989

]

A. Middeldorp. A Su�cient Condition for the Termination of

the Direct Sum of Term Rewriting Systems. In Proc. LICS '89, p. 396-401, 1989.

[

Middeldorp, 1990

]

A. Middeldorp. Modular Properties of Term Rewriting Systems.

PhD thesis, Vrije Universiteit te Amsterdam, 1990.

[

Ohlebusch, 1994a

]

E. Ohlebusch. Modular Properties of Composable Term Rewrit-

ing Systems. PhD thesis, Universit�at Bielefeld, 1994.

[

Ohlebusch, 1994b

]

E. Ohlebusch. On the Modularity of Termination of Term

Rewriting Systems. Theoretical Computer Science, 136:333{360, 1994.

[

Ohlebusch, 1995

]

E. Ohlebusch. Modular Properties of Composable Term Rewrit-

ing Systems. Journal of Symbolic Computation, 20:1{41, 1995.

[

Rusinowitch, 1987

]

M. Rusinowitch. On Termination of the Direct Sum of Term

Rewriting Systems. Information Processing Letters, 26:65{70, 1987.

[

Steinbach, 1995

]

J. Steinbach. Simpli�cation Orderings: History of Results. Fun-

damenta Informaticae, 24:47{87, 1995.

[

Toyama, 1987a

]

Y. Toyama. Counterexamples to Termination for the Direct Sum

of Term Rewriting Systems. Information Processing Letters, 25:141{143, 1987.

[

Toyama, 1987b

]

Y. Toyama. On the Church-Rosser Property for the Direct Sum

of Term Rewriting Systems. Journal of the ACM, 34:128{143, 1987.

[

Toyama et al., 1995

]

Y. Toyama, J. W. Klop, and H. P. Barendregt. Termination

for the Direct Sum of Left-Linear Term Rewriting Systems. Journal of the ACM,

42:1275{1304, 1995.

20

