
Termination of term rewriting using dependency

pairs

�

Thomas Arts

y

J�urgen Giesl

z

Abstract

We present techniques to prove termination and innermost termina-

tion of term rewriting systems automatically. In contrast to previous

approaches, we do not compare left- and right-hand sides of rewrite rules,

but introduce the notion of dependency pairs to compare left-hand sides

with special subterms of the right-hand sides. This results in a technique

which allows to apply existing methods for automated termination proofs

to term rewriting systems where they failed up to now. In particular, there

are numerous term rewriting systems where a direct termination proof

with simpli�cation orderings is not possible, but in combination with our

technique, well-known simpli�cation orderings (such as the recursive path

ordering, polynomial orderings, or the Knuth-Bendix ordering) can now

be used to prove termination automatically.

Unlike previous methods, our technique for proving innermost termi-

nation automatically can also be applied to prove innermost termination

of term rewriting systems that are not terminating. Moreover, as inner-

most termination implies termination for certain classes of term rewriting

systems, this technique can also be used for termination proofs of such

systems.

1 Introduction

Termination is one of the most fundamental properties of a term rewriting sys-

tem (TRS), cf. e.g. [21]. While in general this problem is undecidable [37],

several methods for proving termination have been developed (e.g. path or-

derings [17, 20, 40, 51, 55], Knuth-Bendix orderings [22, 42], forward closures
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[20, 47], semantic interpretations [12, 13, 31, 46, 53, 59], transformation order-

ings [8, 11, 54], distribution elimination [59], dummy elimination [26], semantic

labelling [60] etc. | for surveys see e.g. [18, 55]).

We present a new approach for the automation of termination proofs. Most

well-known techniques for proving termination automatically try to �nd a well-

founded ordering such that for all rules of the TRS the left-hand sides are

greater than the corresponding right-hand sides. In most practical applications

the synthesized orderings are total on ground terms [25] and therefore virtually

all orderings used are simpli�cation orderings [17, 18, 50, 55]. However, numer-

ous TRSs are not simply terminating, i.e. not compatible with a simpli�cation

ordering. Hence, standard techniques like the recursive path ordering, polyno-

mial interpretations, and the Knuth-Bendix ordering fail in proving termination

of these TRSs.

In Sect. 2 we introduce a new criterion for termination based on the notion

of dependency pairs. The main advantage of our termination criterion is that it

is especially well suited for automation. To check the criterion automatically, we

have developed a procedure which generates a set of constraints for every TRS. If

there exists a well-founded ordering satisfying these constraints, then the TRS is

terminating. For the synthesis of suitable orderings existing techniques, such as

the recursive path ordering or polynomial interpretations, may be used. It turns

out that for many TRSs where a direct application of simpli�cation orderings

fails, the constraints generated by our technique are nevertheless satis�ed by

an automatically generated simpli�cation ordering. Moreover, all TRSs that

can be proved terminating directly by synthesizing a simpli�cation ordering

automatically, can automatically be proved terminating by this new technique,

too.

Rewriting under strategies is often used for modelling certain programming

paradigms. For example, innermost rewriting, i.e. rewriting where only inner-

most redeces are contracted, can be used to model call-by-value computation

semantics. For that reason, there has been an increasing interest in research on

properties of rewriting under strategies. In particular, the study of termination

is important when regarding such restricted versions of rewriting [35, 36, 45]. To

prove innermost termination (also called (strong) innermost normalisation), one

has to show that the length of every innermost reduction is �nite. Techniques

for proving innermost termination can for example be utilized for termination

proofs of functional programs (modelled by TRSs) with eager reduction strat-

egy or of logic programs. (When transforming well-moded logic programs into

TRSs, innermost termination of the TRS is su�cient for left-termination of the

logic program [7].) Up to now, the only way to prove innermost termination

automatically was by showing termination of the TRS. Therefore, none of the

existing techniques could prove innermost termination of non-terminating sys-

tems. However, in Sect. 3 we show that after some modi�cation, the dependency

pair technique can be used as the �rst speci�c method for innermost termina-

tion. In Sect. 4 we conclude and give some comments on related work. Sect. 5
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contains a collection of examples to illustrate the power of our method.

2 Proving termination

In this section we present a new approach for automated termination proofs.

In Sect. 2.1, we state our termination criterion and prove that it is a necessary

and su�cient criterion for termination. Sect. 2.2 shows how this criterion can

be checked automatically by generating a set of constraints that are satis�ed by

a well-founded ordering if and only if the criterion is ful�lled. The generation of

suitable well-founded orderings is described in Sect. 2.3. To increase the power

of our method we introduce a re�ned approach for its automation in Sect. 2.4

and an additional re�nement in Sect. 2.5. In this way we obtain a very powerful

technique which performs automated termination proofs for many TRSs where

termination could not be proved automatically before. An overview of this

technique is given in Sect. 2.6.

2.1 Termination criterion

For constructor systems it is common to split the signature into two disjoint

sets, the de�ned symbols and the constructors. The following de�nition extends

these notions to arbitrary term rewriting systems R(F ; R) (with the rules R

over a signature F). For an introduction to term rewriting and its notations,

we refer to Dershowitz and Jouannaud [21] and Klop [41]. Here, the root of a

term f(: : :) is the leading function symbol f .

De�nition 1 (De�ned symbols and constructors) LetR(F ; R) be a TRS.

The set D

R

of de�ned symbols of R is de�ned as froot(l) j l! r 2 Rg and the

set C

R

of constructors of R is de�ned as F nD

R

.

To refer to the de�ned symbols and constructors explicitly, a rewrite system

is written as R(D

R

; C

R

; R) and the subscripts are omitted if R is clear from

the context.

Example 2 The following TRS has two de�ned symbols, viz. minus and quot,

and two constructors, viz. 0 and s.

minus(x; 0) ! x

minus(s(x); s(y)) ! minus(x; y)

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(minus(x; y); s(y)))

Most techniques for automated termination proofs are restricted to simpli�ca-

tion orderings. However, the TRS above is not compatible with a simpli�cation

ordering, because the left-hand side of the last quot-rule is embedded in its
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right-hand side if y is instantiated with s(x). Therefore these techniques cannot

prove termination of this TRS.

In contrast to previous methods which compare left- and right-hand sides

of rules, the central idea of our approach is to compare left-hand sides of rules

only with those subterms of the right-hand sides that may possibly start a new

reduction.

The motivation for this approach is to regard TRSs as `programs'. Intu-

itively, such a program is terminating if the arguments are decreasing in each

recursive call. For example, to prove termination of quot, instead of comparing

both sides of the rules, one only has to compare the input arguments s(x); s(y)

with the arguments minus(x; y); s(y) of the corresponding recursive call. This

way of looking at termination of TRSs motivates that only those subterms of

the right-hand sides that have a de�ned root symbol are considered for the

examination of the termination behaviour.

More precisely, if a term f(s

1

; : : : ; s

n

) rewrites to a term C[g(t

1

; : : : ; t

m

)]

(where g is a de�ned symbol and C denotes some context), then to prove ter-

mination the argument tuples s

1

; : : : ; s

n

and t

1

; : : : ; t

m

are compared. In order

to avoid the handling of tuples, a special tuple symbol F , not occurring in the

signature of the TRS, is introduced for every de�ned symbol f in D. Instead

of comparing tuples, now the terms F (s

1

; : : : ; s

n

) and G(t

1

; : : : ; t

m

) are com-

pared. To ease readability, in this paper we assume that the original signature

F consists of lower case function symbols only, whereas the tuple symbols are

denoted by the corresponding upper case symbols.

De�nition 3 (Dependency pair) Let R(D;C;R) be a TRS. If

f(s

1

; : : : ; s

n

)!C[g(t

1

; : : : ; t

m

)]

is a rewrite rule of R with g 2 D, then hF (s

1

; : : : ; s

n

); G(t

1

; : : : ; t

m

)i is called a

dependency pair of R.

The dependency pairs of a TRS are easily determined and if the TRS is

�nite, then only �nitely many dependency pairs exist.

Example 4 The dependency pairs of the TRS in Ex. 2 are

hM(s(x); s(y));M(x; y)i (1)

hQ(s(x); s(y));M(x; y)i (2)

hQ(s(x); s(y));Q(minus(x; y); s(y))i (3)

where M and Q denote the tuple symbols for minus and quot respectively.

The notion of dependency pairs is the basis for our termination criterion.

Since every left-hand side has a de�ned root symbol, no rule matches a term

without de�ned symbols, hence such a term is a normal form. Thus, in�nite
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reductions originate from the fact that de�ned symbols are introduced by the

right-hand sides of rewrite rules. By tracing the introduction of these de�ned

symbols, information is obtained about the termination behaviour of the TRS.

For that purpose we consider special sequences of dependency pairs, so-called

chains, such that the right-hand side of every dependency pair in a chain cor-

responds to the newly introduced redex that should be traced.

De�nition 5 (Chain) Let R(D;C;R) be a TRS. A sequence of dependency

pairs hs

1

; t

1

i hs

2

; t

2

i : : : is an R-chain if there exists a substitution � such that

t

j

�!

�

R

s

j+1

� holds for every two consecutive pairs hs

j

; t

j

i and hs

j+1

; t

j+1

i in

the sequence.

If R is clear from the context we often write `chain' instead of `R-chain'. We

always assume that di�erent (occurrences of) dependency pairs have disjoint sets

of variables and we always regard substitutions whose domain may be in�nite.

Hence, in our example we have the chain

hQ(s(x

1

); s(y

1

));Q(minus(x

1

; y

1

); s(y

1

))i hQ(s(x

2

); s(y

2

));Q(minus(x

2

; y

2

); s(y

2

))i;

because Q(minus(x

1

; y

1

); s(y

1

))�!

�

R

Q(s(x

2

); s(y

2

))� holds for the substitution

� that replaces x

1

by s(0), x

2

by 0, and both y

1

and y

2

by 0. In fact any

�nite sequence of the dependency pair (3) in Ex. 4 is a chain. However, in the

next section we show that the above TRS has no in�nite chain. The following

theorem proves that the absence of in�nite chains is a su�cient and necessary

criterion for termination.

Theorem 6 (Termination criterion) A TRS R(D;C;R) is terminating if

and only if no in�nite R-chain exists.

Proof. We �rst prove that the above criterion is su�cient for termination, i.e.

we show that for any in�nite reduction we can construct an in�nite R-chain.

Let t be a term that starts an in�nite reduction. By a minimality argument,

the term t contains a subterm

1

f

1

(~u

1

) that starts an in�nite reduction, but none

of the terms ~u

1

starts an in�nite reduction, i.e. the terms ~u

1

are terminating.

Let us consider an in�nite reduction starting with f

1

(~u

1

). First, the argu-

ments ~u

1

are reduced in zero or more steps to arguments ~v

1

and then a rewrite

rule f

1

(~w

1

)! r

1

is applied to f

1

(~v

1

), i.e. a substitution �

1

exists such that

f

1

(~v

1

) = f

1

(~w

1

)�

1

!

R

r

1

�

1

. Now the in�nite reduction continues with r

1

�

1

,

i.e. the term r

1

�

1

starts an in�nite reduction, too.

By assumption there exists no in�nite reduction beginning with one of the

terms ~v

1

= ~w

1

�

1

. Hence, for all variables x occurring in f

1

(~w

1

) the terms �

1

(x)

are terminating. Thus, since r

1

�

1

starts an in�nite reduction, there occurs a

subterm f

2

(~u

2

) in r

1

, i.e. r

1

= C[f

2

(~u

2

)] for some context C, such that

1

Tuples of terms t

1

; : : : ; t

n

are denoted by

~

t.
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� f

2

(~u

2

)�

1

starts an in�nite reduction and

� ~u

2

�

1

are terminating terms.

The �rst dependency pair of the in�nite R-chain that we construct is hF

1

(~w

1

);

F

2

(~u

2

)i corresponding to the rewrite rule f

1

(~w

1

)!C[f

2

(~u

2

)]. The other de-

pendency pairs of the in�nite R-chain are determined in the same way: Let

hF

j�1

(~w

j�1

); F

j

(~u

j

)i be a dependency pair such that f

j

(~u

j

)�

j�1

starts an in-

�nite reduction and the terms ~u

j

�

j�1

are terminating. Again, in zero or more

steps f

j

(~u

j

)�

j�1

reduces to f

j

(~v

j

) to which a rewrite rule f

j

(~w

j

)! r

j

can be

applied such that r

j

�

j

starts an in�nite reduction for some substitution �

j

with

~v

j

= ~w

j

�

j

.

Similar to the observations above, since r

j

�

j

starts an in�nite reduction,

there must be a subterm f

j+1

(~u

j+1

) in r

j

such that

� f

j+1

(~u

j+1

)�

j

starts an in�nite reduction and

� ~u

j+1

�

j

are terminating terms.

This results in the j-th dependency pair of the chain, viz. hF

j

(~w

j

); F

j+1

(~u

j+1

)i.

In this way, one obtains the in�nite sequence

hF

1

(~w

1

); F

2

(~u

2

)i hF

2

(~w

2

); F

3

(~u

3

)i hF

3

(~w

3

); F

4

(~u

4

)i : : :

It remains to prove that this sequence is really an R-chain.

Note that F

j

(~u

j

�

j�1

)!

�

R

F

j

(~v

j

) and ~v

j

= ~w

j

�

j

. Since we assume, without

loss of generality, that the variables of di�erent occurrences of dependency pairs

are disjoint, we obtain one substitution � = �

1

� �

2

� : : : (which is the disjoint

union of �

1

; �

2

; : : :) such that F

j

(~u

j

)�!

�

R

F

j

(~w

j

)� for all j. Thus, we have in

fact constructed an in�nite R-chain.

Now we show that our criterion is even necessary for termination, i.e. we

prove that any in�nite R-chain corresponds to an in�nite reduction. Assume

there exists an in�nite R-chain.

hF

1

(~s

1

); F

2

(

~

t

2

)i hF

2

(~s

2

); F

3

(

~

t

3

)i hF

3

(~s

3

); F

4

(

~

t

4

)i : : :

Hence, there is a substitution � such that

F

2

(

~

t

2

)�!

�

R

F

2

(~s

2

)�; F

3

(

~

t

3

)�!

�

R

F

3

(~s

3

)�; : : :

thus also

f

2

(

~

t

2

)�!

�

R

f

2

(~s

2

)�; f

3

(

~

t

3

)�!

�

R

f

3

(~s

3

)�; : : :

as the tuple symbols F

2

; F

3

; : : : are no de�ned symbols.

6



Note that every dependency pair hF (~s); G(

~

t)i corresponds to a rewrite rule

f(~s)!C[g(

~

t)] for some context C. Therefore, this results in the reduction

f

1

(~s

1

)� ! C

1

[f

2

(

~

t

2

)]�

#

�

C

1

[f

2

(~s

2

)]� ! C

1

[C

2

[f

3

(

~

t

3

)]]�

#

�

C

1

[C

2

[f

3

(~s

3

)]]� ! : : :

which is in�nite. ut

2.2 Checking the termination criterion automatically

The advantage of our termination criterion is that it is particularly well suited

for automation. In this section we present a method for proving the absence

of in�nite chains automatically. For that purpose, we introduce a procedure

which, given a TRS, generates a set of inequalities such that the existence of a

well-founded ordering satisfying these inequalities is su�cient for termination of

the TRS. A well-founded ordering satisfying the generated inequalities can often

be synthesized by standard techniques, even if a direct termination proof is not

possible with these techniques (i.e. even if a well-founded ordering orienting the

rules of the TRS cannot be synthesized). For the automation of our method we

assume the TRSs to be �nite, such that only �nitely many dependency pairs

have to be considered.

Note that if all chains correspond to a decreasing sequence w.r.t. some well-

founded ordering, then all chains must be �nite. Hence, to prove the absence

of in�nite chains, we try to synthesize a well-founded ordering > such that all

dependency pairs are decreasing w.r.t. this ordering. More precisely, if for any

sequence of dependency pairs hs

1

; t

1

ihs

2

; t

2

ihs

3

; t

3

i : : : and for any substitution

� with t

j

�!

�

R

s

j+1

� we have

s

1

� > t

1

� > s

2

� > t

2

� > s

3

� > t

3

� > : : : ;

then no in�nite chain exists.

However, for most TRSs, the above inequalities are not satis�ed by any well-

founded ordering>, because the terms t

j

� and s

j+1

� of consecutive dependency

pairs in chains are often identical and therefore t

j

� > s

j+1

� does not hold.

But obviously not all of the inequalities s

j

� > t

j

� and t

j

� > s

j+1

� have to

be strict. For instance, to guarantee the absence of in�nite chains it is su�cient

if there exists a well-founded quasi-ordering

2

� such that terms in dependency

pairs are strictly decreasing (i.e. s

j

� > t

j

�) and terms in between dependency

2

A quasi-ordering � is a re
exive and transitive relation and � is called well-founded if its

strict part > is well founded.
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pairs are only weakly decreasing (i.e. t

j

� � s

j+1

�). So for each sequence of

dependency pairs as above we only demand

s

1

� > t

1

� � s

2

� > t

2

� � s

3

� > t

3

� � : : : (4)

Note that we cannot determine automatically for which substitutions � we

have t

j

�!

�

R

s

j+1

� and moreover, it is practically impossible to examine in�nite

sequences of dependency pairs. Therefore, in the following we restrict ourselves

to weakly monotonic quasi-orderings � where both � and its strict part > are

closed under substitution. (A quasi-ordering � is weakly monotonic if s � t

implies f(: : : s : : :) � f(: : : t : : :).) Then, to guarantee t

j

� � s

j+1

� whenever

t

j

�!

�

R

s

j+1

� holds, it is su�cient to demand l � r for all rewrite rules l! r of

the TRS. To ensure s

j

� > t

j

� for those dependency pairs occurring in possibly

in�nite chains, we demand s > t for all dependency pairs hs; ti. In fact the ex-

istence of such a well-founded ordering is not only su�cient, but even necessary

to ensure the absence of in�nite chains.

Theorem 7 (Proving termination) A TRS R(D;C;R) is terminating i�

there exists a well-founded weakly monotonic quasi-ordering �, where both �

and > are closed under substitution, such that

� l � r for all rules l! r in R and

� s > t for all dependency pairs hs; ti.

Proof. We �rst prove that the above conditions are su�cient, i.e. that the

existence of such a quasi-ordering implies termination of R. Note that as l � r

holds for all rules l! r in R and as � is weakly monotonic and closed under

substitution, we have !

�

R

��, i.e. if t!

�

R

s then t � s.

Suppose there is an in�nite R-chain hs

1

; t

1

i hs

2

; t

2

i : : : Then there exists a

substitution � such that t

j

�!

�

R

s

j+1

� holds for all j. As !

�

R

��, this implies

t

j

� � s

j+1

�.

Since we have s

j

> t

j

for all dependency pairs, we obtain the in�nite de-

scending sequence

s

1

� > t

1

� � s

2

� > t

2

� � s

3

� > : : :

which is a contradiction to the well-foundedness of >. Therefore, no in�nite

R-chain exists and hence by Thm. 6, R is terminating.

Now we prove that the above conditions are even necessary for termination.

In fact, we prove a stronger result, i.e. that termination of R implies termination

of the system R

0

with the rules

R

0

= R [ fs! t j hs; ti is a dependency pair of Rg:

Hence, the rewrite ordering of R

0

is (even) a well-founded strongly monotonic

ordering> (closed under substitution) satisfying s > t and the strict inequalities

l > r for all rules of R.
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Assume that R

0

is not terminating. Hence, there exists a term q

1

starting

an in�nite R

0

-reduction.

q

1

!

R

0

q

2

!

R

0

: : : !

R

0

q

k

!

R

0

: : :

Clearly, q

1

must contain tuple symbols, because R is terminating. Without loss

of generality we may assume that q

1

is `minimal', i.e. that none of the proper

subterms of q

1

starts an in�nite reduction. We show that this implies that the

root of q

1

is a tuple symbol.

For any term q, let q denote the result of replacing all subterms with

a root tuple symbol by one and the same new variable y. Note that tuple

symbols do not occur in rewrite rules of R. Therefore, q

j

!

R

0

q

j+1

implies

q

j

!

R

q

j+1

, if the contracted redex in q

j

is on a position above all tuple

symbols. If the contracted redex is below a tuple symbol, then q

j

!

R

0

q

j+1

implies q

j

= q

j+1

. If the contracted redex has a tuple root symbol, then

q

j

!

R

0

q

j+1

also implies q

j

= q

j+1

. The reason is that in this case the

reduct also has a tuple root symbol, since all rewrite rules of R

0

that have a

tuple symbol as root of the left-hand side also have a tuple symbol as root of the

right-hand side. Hence, as R is terminating, after a �nite number of steps (say

k) all contracted redeces in the in�nite reduction are below a tuple symbol or

have a tuple root symbol (otherwise q

1

would start an in�nite R-reduction).

Let q

k

have the form C

k

[t

k;1

; : : : ; t

k;n

k

], where C

k

is a context without tu-

ple symbols and t

k;j

are terms with tuple root symbols. Then one of the t

k;j

starts an in�nite reduction. Now assume that the root symbol of q

1

is not a

tuple symbol, i.e. q

1

has the form C

1

[t

1;1

; : : : ; t

1;n

1

], where C

1

is a (non-empty)

context without tuple symbols and t

1;1

; : : : ; t

1;n

1

have tuple symbols on their

root positions. By induction on the length k of the reduction, one shows that

for each t

k;j

there exists a t

1;i

such that t

1;i

!

�

R

0

t

k;j

. Thus, q

1

has a proper

subterm t

1;i

which starts an in�nite reduction. This is a contradiction to the

minimality of q

1

.

Hence, q

1

has the form F

1

(~u

1

) where ~u

1

are terminating terms. So in the

in�nite reduction, �rst the arguments ~u

1

are reduced in zero or more steps to

~v

1

, and then F

1

(~v

1

) is reduced to F

2

(~u

2

), i.e. hF

1

(~v

1

); F

2

(~u

2

)i is an instantiation

of a dependency pair. Note that ~u

2

are again terminating terms (this is due

to the above observations, because all subterms of ~u

2

with tuple root symbols

already occur in ~v

1

). So the in�nite reduction has the form

F

1

(~u

1

)!

�

R

0

F

1

(~v

1

)!

R

0

F

2

(~u

2

)!

�

R

0

F

2

(~v

2

)!

R

0

F

3

(~u

3

)!

�

R

0

: : : ;

where ~u

j

!

�

R

0

~v

j

holds for all j and hF

j

(~v

j

); F

j+1

(~u

j+1

)i is an instantiation of a

dependency pair of R. Let

hF

1

(~s

1

); F

2

(

~

t

2

)i hF

2

(~s

2

); F

3

(

~

t

3

)i : : :

be the sequence of these dependency pairs and let ~s

j

� = ~v

j

and

~

t

j

� = ~u

j

.

If �

0

(x) is de�ned to be �(x) , then F

j

(

~

t

j

)�

0

!

�

R

F

j

(~s

j

)�

0

holds for all j.

9



The reason is that in dependency pairs, tuple symbols occur on root positions

only (i.e. ~s

j

and

~

t

j

do not contain tuple symbols). Therefore, ~s

j

�

0

= ~v

j

,

~

t

j

�

0

= ~u

j

and again ~u

j

!

�

R

0

~v

j

implies ~u

j

!

�

R

~v

j

. So the above sequence

of dependency pairs is an in�nite R-chain. By Thm. 6, this is a contradiction

to the termination of R. Hence, R

0

must also be terminating. ut

By the above theorem, termination proofs are now reduced to the search for

quasi-orderings satisfying certain constraints. Therefore, the technique of Thm.

7 is very useful to apply standard methods like the recursive path ordering or

polynomial interpretations to TRSs where they are not directly applicable.

Example 8 For instance, in our example we have to �nd a quasi-ordering sat-

isfying the following inequalities.

minus(x; 0) � x

minus(s(x); s(y)) � minus(x; y)

quot(0; s(y)) � 0

quot(s(x); s(y)) � s(quot(minus(x; y); s(y)))

M(s(x); s(y)) > M(x; y)

Q(s(x); s(y)) > M(x; y)

Q(s(x); s(y)) > Q(minus(x; y); s(y))

In the next section we show how quasi-orderings satisfying such sets of in-

equalities can be synthesized automatically using standard techniques.

2.3 Generating suitable quasi-orderings

A well-founded ordering satisfying the constraints in Ex. 8 can for instance

be generated by the well-known techniques of polynomial interpretations [46].

However, when using polynomial interpretations for direct termination proofs of

TRSs, the polynomials have to be (strongly) monotonic in all their arguments,

i.e. s > t implies f(: : : s : : :) > f(: : : t : : :). But for the approach of this paper, we

only need a weakly monotonic quasi-ordering satisfying the inequalities. Thus,

s > t only implies f(: : : s : : :) � f(: : : t : : :). Hence, when using our method it

su�ces to �nd a polynomial interpretation with weakly monotonic polynomials,

which do not necessarily depend on all their arguments. For example, we may

map minus(x; y) to the polynomial x which does not depend on the second

argument y.

Then the inequalities in Ex. 8 are satis�ed by a polynomial ordering where 0

is mapped to 0, s(x) is mapped to x+1, and minus(x; y), quot(x; y), M(x; y) and

Q(x; y) are all mapped to x. Methods for the automated synthesis of polynomial

orderings have for instance been developed in [31, 53]. In this way, termination

10



of this TRS can be proved fully automatically, although a direct termination

proof with simpli�cation orderings was not possible.

Instead of polynomial orderings one can also use path orderings, which can

easily be generated automatically. However, these path orderings are always

strongly monotonic, whereas in our method we only need a weakly monotonic

ordering. For that reason, before synthesizing a suitable path ordering some

of the arguments of function symbols may be eliminated. For instance, one

may eliminate the second argument of the function symbol minus. Then every

term minus(s; t) in the inequalities is replaced by m(s) (where m is a new unary

function symbol). By comparing the terms resulting from this replacement

(instead of the original terms) we can take advantage of the fact that minus

does not have to be strongly monotonic in its second argument.

Example 9 In this way, the inequalities of Ex. 8 are transformed into

m(x) � x

m(s(x)) � m(x)

quot(0; s(y)) � 0

quot(s(x); s(y)) � s(quot(m(x); s(y)))

M(s(x); s(y)) > M(x; y)

Q(s(x); s(y)) > M(x; y)

Q(s(x); s(y)) > Q(m(x); s(y)):

These inequalities are satis�ed by the recursive path ordering using the prece-

dence quot . s .m and Q .M.

Apart from eliminating arguments of function symbols, another possibility

is to replace functions by one of their arguments. So instead of deleting the

second argument of minus one could replace all terms minus(s; t) by minus' �rst

argument s. Then the resulting inequalities are again satis�ed by the recur-

sive path ordering. To perform this elimination of arguments resp. of function

symbols we introduce the following concept.

De�nition 10 (Argument �ltering TRS) An argument �ltering TRS

3

for

the signature F (AFS for short) is a TRS whose rewrite rules are of the form

f(x

1

; : : : ; x

n

)! g(y

1

; : : : y

k

) or

f(x

1

; : : : ; x

n

)!x

i

where x

1

; : : : ; x

n

are pairwise di�erent variables, y

1

; : : : ; y

k

are pairwise di�erent

variables out of x

1

; : : : ; x

n

, g 62 F , and for every function symbol f 2 F there

is at most one f-rule in the AFS.

3

Argument �ltering TRSs are a special form of recursive program schemes [15, 41].

11



From a rewriting point of view AFSs are quite simple, because every AFS

is complete. Hence, for any term t the normal form t #

A

w.r.t. an AFS A is

unique.

The following theorem states that in order to �nd a quasi-ordering satis-

fying a particular set of inequalities, one may �rst normalize the terms in the

inequalities with respect to an AFS. Subsequently, one only has to �nd a quasi-

ordering that satis�es these modi�ed inequalities. Note that for a �nite signature

there are only �nitely many AFSs (up to renaming of the symbols). Hence, by

combining the synthesis of a suitable AFS with well-known techniques for the

generation of (strongly monotonic) simpli�cation orderings, now the search for

a weakly monotonic ordering satisfying the constraints can be automated.

Theorem 11 (Preservation under argument �ltering) Let A be an AFS

and let IN be a set of inequalities. If the inequalities

fs#

A

> t#

A

j s > t 2 INg [ fs#

A

� t#

A

j s � t 2 INg

are satis�ed by a well-founded weakly monotonic quasi-ordering (where both the

quasi-ordering and its strict part are closed under substitution), then there also

exists such a quasi-ordering satisfying the inequalities IN .

Proof. Assuming that the normalized inequalities are satis�ed by a quasi-

ordering�, a relation�

0

on terms is de�ned where the terms are �rst normalized

w.r.t. A and then compared w.r.t. the quasi-ordering � (i.e. s �

0

t i� s #

A

�

t #

A

). It is straightforward to see that �

0

is a well-founded quasi-ordering

satisfying the inequalities IN.

For any substitution �, let � #

A

denote the substitution which results from

� by normalizing all terms in the range of � w.r.t. A. Then, for all terms t

and all substitutions � we have (t�) #

A

= (t #

A

)(� #

A

). Hence, both �

0

and its

strict part >

0

are closed under substitution. Moreover, �

0

is weakly monotonic,

because s #

A

� t #

A

implies f(: : : x : : :) #

A

[x=s #

A

] � f(: : : x : : :) #

A

[x=t #

A

]

resp. f(: : : s : : :)#

A

� f(: : : t : : :)#

A

( here, x is a variable occurring just once in

f(: : : x : : :) ). ut

By the above theorem in combination with Thm. 7 it is now possible to

prove termination of the TRS in Ex. 2 automatically using the recursive path

ordering. After normalizing all inequalities in Ex. 8 w.r.t. the one-rule AFS

minus(x; y)!m(x);

one obtains the inequalities in Ex. 9 which are satis�ed by the recursive path

ordering.

2.4 Re�nement using dependency graphs

While the method of Thm. 7 can be successfully used for automated termina-

tion proofs, in this section we introduce a re�nement of this approach, i.e. we

12



show how the constraints obtained can be weakened. By this weakening, the

(automatic) search for a suitable quasi-ordering satisfying these constraints can

be eased signi�cantly.

In order to ensure that every possible in�nite chain results in an in�nite

decreasing sequence of terms, in Thm. 7 we demanded s > t for all dependency

pairs hs; ti. However, in many examples several dependency pairs can occur at

most once in any chain and therefore they do not have to be considered at all.

Moreover, for the other dependency pairs it is often su�cient if just some of

them are strictly decreasing, whereas others may be weakly decreasing.

Example 12 The dependency pair hQ(s(x); s(y));M(x; y)i occurs at most once

in any chain: Recall that a dependency pair hv; wi may only follow a pair hs; ti

in a chain, if there exists a substitution � such that t�!

�

R

v�. As the tuple

symbol M is not a de�ned symbol, M(x; y)� can only be reduced to terms with

the same root symbol M. Hence, the dependency pair (2) can only be succeeded

by the dependency pair (1) which in turn can only be succeeded by itself, i.e. (2)

can never occur twice in a chain. Therefore, any possibly in�nite chain has an

in�nite tail in which the dependency pair hQ(s(x); s(y));M(x; y)i does not occur.

Therefore it su�ces to show that no in�nite chain exists consisting of the other

dependency pairs.

For the TRS of Ex. 2 it is not necessary to reduce the number of constraints

in order to prove termination automatically. However, for the following TRS

we have to get rid of a constraint in order to use a simpli�cation ordering for

satisfying the inequalities.

Example 13 Let us extend the TRS of Ex. 2 by three additional rules. We now

write in�x operators for the de�ned symbols minus and plus to ease readability.

x� 0 ! x

s(x)� s(y) ! x� y

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(x � y; s(y)))

0+ y ! y

s(x) + y ! s(x+ y)

(x� y)� z ! x� (y + z)

The dependency pairs of this TRS are the dependency pairs as given in Ex.

4 together with the dependency pairs

hP(s(x); y);P(x; y)i (5)

hM(x � y; z);P(y; z)i (6)

hM(x � y; z);M(x; y + z)i (7)

where P is the tuple symbol for the de�ned symbol `+'. To prove termination

according to Thm. 7 we now obtain the following inequalities.
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x� 0 � x

s(x) � s(y) � x� y

quot(0; s(y)) � 0

quot(s(x); s(y)) � s(quot(x� y; s(y)))

0+ y � y

s(x) + y � s(x + y)

(x� y)� z � x� (y + z)

M(s(x); s(y)) > M(x; y)

Q(s(x); s(y)) > M(x; y)

Q(s(x); s(y)) > Q(x� y; s(y))

P(s(x); y) > P(x; y)

M(x� y; z) > P(y; z)

M(x� y; z) > M(x; y + z)

Since the inequality Q(s(x); s(y)) > Q(x � y; s(y)) has an instantiation that is

self-embedding, no simpli�cation ordering satis�es these inequalities directly. In

order to apply techniques for the automated generation of simpli�cation order-

ings, therefore Thm. 11 has to be used �rst. We have to normalize the inequal-

ities w.r.t. an AFS A that rewrites x � y to m(x) or to x (this is forced by the

inequalities). But thereafter, the inequality

M(x� y; z)#

A

> P(y; z)#

A

in combination with the other remaining inequalities cannot be satis�ed by any

well-founded monotonic ordering closed under substitution. (The reason is that

y does not occur in M(x � y; z) #

A

any more, whereas P(y; z) #

A

still depends

on y, as A must not eliminate the �rst argument of P.) Hence, an automatic

termination proof fails at this point.

Recall that one may delete all dependency pairs which occur at most once in

any chain. In the example above, this elimination of constraints results in a set of

inequalities for which a suitable quasi-ordering can be generated automatically,

whereas this was not possible for the original set of constraints.

Example 14 For the TRS of Ex. 13, the constraint M(: : :) > P(: : :) is unnec-

essary to ensure the absence of in�nite chains. The reason is that in any chain

the dependency pair (6) can occur at most once, since the only dependency pair

following (6) can be (5) and (5) can only be followed by itself.

To determine those dependency pairs which may occur in�nitely often in a

chain we de�ne a graph of dependency pairs where those dependency pairs that

possibly occur consecutive in a chain are connected. In this way, any in�nite

chain corresponds to a cycle in the graph (as we restricted ourselves to �nite

TRSs).

De�nition 15 (Dependency graph) The dependency graph of a TRS R is

the directed graph whose nodes are the dependency pairs and there is an arc from

hs; ti to hv; wi if hs; tihv; wi is an R-chain.
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Thus, the dependency graph connects dependency pairs that form a chain,

i.e. for some instantiation the right-hand side of one pair reduces to the left-hand

side of the other pair. Every chain corresponds to a path in the dependency

graph. Note however that the converse does not hold, i.e. a path in this graph

does not necessarily correspond to a chain, since instead of using one `global'

substitution for all dependency pairs in a chain, here one may use di�erent

`local' substitutions for consecutive dependency pairs.

hQ(s(x); s(y));M(x; y)i

hM(x� y; z);P(y; z)i

hP(s(x); y);P(x; y)i

hM(s(x); s(y));M(x; y)i

hQ(s(x); s(y));Q(x� y; s(y))i

hM(x� y; z);M(x; y + z)i

Figure 1: The dependency graph for the TRS of Ex. 13.

Now to prove termination of a TRS it is su�cient if s > t holds for at least

one dependency pair hs; ti on each cycle of the dependency graph and if s � t

holds for all other dependency pairs on cycles. Dependency pairs that do not

occur on a cycle can be ignored.

Example 16 For the TRS of Ex. 13 we obtain the dependency graph in Fig. 1.

Hence, this results in the following set of inequalities.
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x� 0 � x

s(x) � s(y) � x� y

quot(0; s(y)) � 0

quot(s(x); s(y)) � s(quot(x� y; s(y)))

0+ y � y

s(x) + y � s(x + y)

(x� y)� z � x� (y + z)

M(s(x); s(y)) > M(x; y)

Q(s(x); s(y)) > Q(x� y; s(y))

P(s(x); y) > P(x; y)

M(x� y; z) > M(x; y + z)

The inequalities obtained are satis�ed by the polynomial ordering where 0

is mapped to 0, s(x) is mapped to x + 2, x � y is mapped to x + 1, quot(x; y)

is mapped to 2x, M(x; y) and Q(x; y) are mapped to x, and both + and P are

mapped to addition. By normalizing the inequalities with respect to the argument

�ltering TRS

x� y ! m(x)

M(x; y) ! x

the resulting inequalities are also satis�ed by the recursive path ordering. Thus,

by the following theorem, termination of the TRS is proved.

Theorem 17 (Dependency graph re�nement) A TRS R(D;C;R) is ter-

minating i� there exists a well-founded weakly monotonic quasi-ordering �,

where both � and > are closed under substitution, such that

� l � r for all rules l! r in R,

� s � t for all dependency pairs hs; ti on a cycle of the dependency graph,

and

� s > t for at least one dependency pair hs; ti on each cycle of the dependency

graph.

Proof. The proof is similar to the proof of Thm. 7 with the additional observa-

tion that any in�nite R-chain corresponds to an in�nite path in the dependency

graph. This in�nite path traverses at least one cycle in�nitely many times, since

there are only �nitely many dependency pairs. Since at least one dependency

pair in this cycle corresponds to a strict inequality, the chain corresponds to a

descending sequence of terms containing in�nitely many strict inequalities.

Thm. 7 directly implies that the above conditions are also necessary for the

termination of R. ut

However, to perform termination proofs according to Thm. 17, we have to

construct the dependency graph automatically. Unfortunately, in general this
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is not possible, since for two dependency pairs hs; ti; hv; wi it is undecidable

whether they form a chain (i.e. whether there exists a substitution � such that

t�!

�

R

v�).

Therefore, we introduce a technique to approximate the dependency graph,

i.e. the technique computes a superset of those terms t; v where t�!

�

R

v� holds

for some substitution �. We call terms t; v suggested by our technique con-

nectable terms. In this way, (at least) all cycles that occur in the dependency

graph and hence all possibly in�nite chains can be determined. So by computing

a graph containing the dependency graph we can indeed apply the method of

Thm. 17 for automated termination proofs.

For the computation of connectable terms we use syntactic uni�cation. This

uni�cation is not performed on the terms of the dependency pairs directly, but

one of the terms is modi�ed �rst. If t is a term with a constructor root symbol

c, then t� can only be reduced to terms which have the same root symbol c. If

the root symbol of t is de�ned, then this does not give us any direct information

about those terms t� can be reduced to. For that reason, to determine whether

the term t is connectable to v, we replace all subterms in t that have a de�ned

root symbol by a new variable and check whether this modi�cation of t uni�es

with v.

For example, P(: : :) is not connectable to M(: : :). On the other hand, the

term Q(x � y; s(y)) is connectable to Q(s(x); s(y)), because before uni�cation,

the subterm x� y is replaced by a new variable.

In order to ensure that t is connectable to v whenever there exists a substi-

tution � such that t�!

�

R

v�, before uni�cation we also have to rename multiple

occurrences of the same variable x in t. (The reason is that di�erent occurrences

of x� can reduce to di�erent terms.) As an example consider the following TRS

from Toyama [56].

f(0; 1; x) ! f(x; x; x)

g(x; y) ! x

g(x; y) ! y

The only dependency pair, viz. hF(0; 1; x);F(x; x; x)i, is on a cycle of the

dependency graph, because F(x; x; x)� reduces to F(0; 1; x

0

)�, if � replaces x

and x

0

by g(0; 1). Note however that F(x; x; x) does not unify with F(0; 1; x

0

),

i.e. if we would not rename F(x; x; x) to F(x

1

; x

2

; x

3

) before the uni�cation, then

we could not determine this cycle of the dependency graph and we would falsely

conclude termination of this (non-terminating) TRS.

To perform the required modi�cation on the term t, two functions cap and

ren are introduced. For any term t, cap(t) results from replacing all subterms

of t that have a de�ned root symbol by di�erent new variables and ren(t)

results from replacing all variables in t by di�erent fresh variables. In particular,

di�erent occurrences of the same variable are also replaced by di�erent new

variables.
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De�nition 18 (Connectable terms) Let D be the set of de�ned symbols.

Then the functions cap and ren from terms to terms are inductively de�ned as

cap(x) = x; for variables x

cap(f(t

1

; : : : ; t

n

)) =

�

y;

f(cap(t

1

); : : : ;cap(t

n

));

if f 2 D

if f 62 D

ren(x) = y; for variables x

ren(f(t

1

; : : : ; t

n

)) = f(ren(t

1

); : : : ;ren(t

n

))

where y is the next variable in an in�nite list of fresh variables y

1

; y

2

; : : :

For any terms t and v, the term t is connectable to v if ren(cap(t)) and v

are uni�able.

Strictly speaking, neither cap nor ren are proper functions, because one

time we have ren(x) = y

1

and the next time we obtain ren(x) = y

2

. Of course,

cap and ren can easily be transformed into proper functions by giving cap and

ren a second argument which contains the next fresh variable that has not yet

been used. However, we omitted this second argument to ease readability. For

example, we have

ren(cap(Q(x� y; s(y)))) = ren(Q(y

1

; s(y))) = Q(y

2

; s(y

3

))

and

ren(cap(Q(x; x))) = ren(Q(x; x)) = Q(y

4

; y

5

):

As ren(t) is always a linear term, to check whether two terms are connectable

we can even use a uni�cation algorithm without occur check.

To approximate the dependency graph, we draw an arc from a dependency

pair hs; ti to hv; wi whenever t is connectable to v. In this way, for our example

the dependency graph of Fig. 1 is constructed automatically. So termination of

the TRS in Ex. 13 can be proved automatically.

The following theorem proves the soundness of this approach: by computing

connectable terms we in fact obtain a supergraph of the dependency graph.

Using this supergraph, we can now prove termination according to Thm. 17.

Theorem 19 (Computing dependency graphs) Let R be a TRS and let

hs; ti; hv; wi be dependency pairs. If there is an arc from hs; ti to hv; wi in the

dependency graph, then t is connectable to v.

Proof. By induction on the structure of t we prove that if there exists a

substitution � with t�!

�

R

u for some term u, then ren(cap(t)) matches u. So

in particular, if t�!

�

R

v�, then ren(cap(t)) matches v�. As ren(cap(t)) only

contains new variables, this implies that ren(cap(t)) and v are uni�able.

Assume that t�!

�

R

u for some term u. If t is a variable or if t = f(t

1

; : : : ; t

k

)

for a de�ned symbol f , then ren(cap(t)) is a variable, hence it matches u.
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If t = c(t

1

; : : : ; t

k

) for some constructor c, then

ren(cap(t)) = c(ren(cap(t

1

)); : : : ;ren(cap(t

k

))):

In this case, u has to be of the form c(u

1

; : : : ; u

k

) and t

j

�!

�

R

u

j

holds for all

j. By the induction hypothesis we obtain that ren(cap(t

j

)) matches u

j

. Since

the variables in ren(cap(t

j

)) are disjoint from the variables in ren(cap(t

i

))

for all i 6= j, ren(cap(t)) also matches u. ut

2.5 Re�ned termination proofs by narrowing dependency

pairs

By the re�nement of dependency graphs, Thm. 17 provides us with a power-

ful technique to prove that there exists no in�nite chain of dependency pairs.

However, there are still examples where the automation of our method fails.

Example 20 For instance, let us replace the last rule of the TRS in Ex. 13 by

a `commutativity' rule (here, s0 abbreviates s(0) etc.).

x� 0 ! x

s(x) � s(y) ! x� y

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(x� y; s(y)))

0+ y ! y

s(x) + y ! s(x + y)

(x� s0) + (y � ssz) ! (y � ssz) + (x� s0)

One of the new dependency pairs, viz.

hP(x � s0; y � ssz);P(y � ssz; x� s0)i; (8)

forms a cycle of the dependency graph. Hence, due to Thm. 17 we have to �nd

an ordering such that the dependency pair (8) is strictly decreasing, i.e.

P(x � s0; y � ssz) > P(y � ssz; x� s0):

In order to apply techniques for the synthesis of simpli�cation orderings, we

have to normalize the inequalities w.r.t. an AFS again which rewrites x � y to

m(x) (or to x). However, the resulting constraint

P(m(x);m(y)) > P(m(y);m(x))

is not satis�ed by any well-founded ordering closed under substitution. Hence,

in this way termination of the TRS cannot be proved automatically.
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Up to now we demanded constraints which ensure that in any sequence of de-

pendency pairs hs

1

; t

1

i hs

2

; t

2

i : : : and for all substitutions � with t

j

�!

�

R

s

j+1

�

we have

4

s

1

� > t

1

� � s

2

� > t

2

� � : : : (4)

So we demanded s > t for the dependency pairs hs; ti. But instead of the

requirement that there should be a strict decrease in dependency pairs, it would

also be su�cient if the ordering is strict between two dependency pairs. Thus,

if hs; ti and hv; wi are consecutive in a chain, then instead of s� > t� � v� one

could demand s� � t� and t� > v� for all substitutions � with t�!

�

R

v�.

To achieve this e�ect we replace the original dependency pairs by new pairs

of terms. Subsequently, we demand that these new pairs of terms are strictly

decreasing. Note that if the reduction from t� to v� is always of the form

t�!

R

t

0

�!

�

R

v�;

then instead of s� > t� � v� we may also require s� > t

0

� � v�. To compute

the terms t

0

we use narrowing (cf. e.g. [39]).

De�nition 21 (Narrowing) Let R be a TRS. A term t narrows to a term t

0

via the substitution � (denoted by t 

R

t

0

), if there exists a non-variable position

p in t, � is the most general uni�er of tj

p

and l for some rewrite rule l! r of

R, and t

0

= t�[r�]

p

. (Here, the variables of l! r must have been renamed to

fresh variables.)

If a dependency pair hs; ti is followed by another dependency pair hv; wi in

a chain, and if t is not already uni�able with v (i.e. at least one rule of R is

needed to reduce t� to v�), then we may perform all possible narrowing steps

on t (resulting in new terms t

1

; : : : ; t

n

) in order to examine the reduction from

t� to v�.

However, instead of only narrowing right-hand sides of dependency pairs

hs; ti, the substitutions derived from narrowing the term t should also be applied

on the left-hand side s of the pair hs; ti. Thus, if t  

R

t

1

; : : : ; t  

R

t

n

are all

possible narrowings of t (via the substitutions �

1

; : : : ; �

n

), then instead of

s� > t� � v� for all � with t� !

�

R

v�

it is su�cient to demand

s�

1

�> t

1

� � v� for all � with t

1

� !

�

R

v�,

.

.

.

s�

n

�> t

n

�� v� for all � with t

n

�!

�

R

v�.

4

By taking the dependency graph into account, this requirement has been weakened, i.e. it

is su�cient if just an in�nite subset of dependency pairs is strictly decreasing in any possibly

in�nite chain.
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Hence, we may replace the dependency pair hs; ti by the n new pairs hs�

1

; t

1

i;

: : : ; hs�

n

; t

n

i. For that purpose instead of narrowing terms we introduce the

concept of narrowing pairs of terms.

De�nition 22 (Narrowing pairs) Let R be a TRS. If a term t narrows to a

term t

0

via the substitution �, then we say that the pair of terms hs; ti narrows

to the pair hs�; t

0

i.

Example 23 For Ex. 20, the instantiated right-hand side

P(y � ssz; x� s0)�

of dependency pair (8) can only reduce to an instantiation of a left-hand side of

a dependency pair if one of the minus-rules is applied to (y� ssz)� or (x� s0)�.

So instead of the dependency pair (8) we may regard its two narrowings

hP(x � s0; sy � ssz);P(y � sz; x� s0)i (9)

hP(sx� s0; y � ssz);P(y � ssz; x� 0)i: (10)

Now the constraints that the left-hand sides of the new pairs (9) and (10)

should be greater than their right-hand sides (together with the remaining con-

straints for this system) are again satis�ed by the orderings mentioned in Ex.

16. Hence, in this way termination of the TRS can be proved automatically.

If P is the set of all dependency pairs of R, then instead of checking whether

there exists an in�nite R-chain of pairs from P now it su�ces to show that there

is no in�nite R-chain of pairs from P nfhs; tig[fhs�

1

; t

1

i; : : : ; hs�

n

; t

n

ig, where

hs�

1

; t

1

i; : : : ; hs�

n

; t

n

i are all narrowings of hs; ti. (So with this re�nement we

have to regard chains of pairs of terms which are no dependency pairs any more.)

Note that any pair hs; ti can only be narrowed (in one step) to �nitely many pairs

hs

0

; t

0

i (up to variable renaming) and these pairs hs

0

; t

0

i can easily be computed

automatically. In particular, if a dependency pair hs; ti has no narrowings, then

it does not have to be considered any more for the termination proof.

However, the following two examples demonstrate that a pair hs; ti in P may

only be replaced by its narrowings, if t does not unify with any left-hand side

of a pair in P and if t is a linear term.

Example 24 The following non-terminating TRS

f(0) ! f(0)

0 ! 1

has one cycle in the dependency graph formed by an arc from the dependency pair

hF(0);F(0)i to itself. Narrowing this pair, although its right-hand side uni�es

with its left-hand side, results in hF(0);F(1)i. Now the new right-hand side
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F(1) is not connectable to F(0) any more. Hence, by ignoring the uni�cation

condition, the only cycle in the dependency graph would be erroneously removed

and therefore termination of this TRS could falsely be concluded.

Similarly, the linearity of the right-hand side plays a crucial role, as can be

seen from the non-terminating TRS

f(s(x)) ! f(g(x; x))

g(0; 1) ! s(0)

0 ! 1

where hF(s(x));F(g(x; x))i forms the only cycle of the dependency graph. How-

ever, by ignoring the linearity condition, this dependency pair could be deleted, as

the term F(g(x; x)) cannot be narrowed. Hence, no cycle exists in the new depen-

dency graph and therefore termination of the TRS would falsely be concluded

5

.

The following theorem proves that under the above conditions the replace-

ment of dependency pairs by their narrowings maintains the su�ciency and

necessity of our termination criterion.

Theorem 25 (Narrowing re�nement for termination) Let R be a TRS

and let P be a set of pairs of terms. Let hs; ti 2 P such that t is linear and for

all hv; wi 2 P the terms t and v are not uni�able (after renaming the variables).

Let

P

0

= P n fhs; tig [ fhs

0

; t

0

i j hs

0

; t

0

i is a narrowing of hs; tig:

There exists an in�nite R-chain of pairs from P i� there exists an in�nite R-

chain of pairs from P

0

.

Proof. It su�ces to prove that for every hs; ti 2 P the sequence

: : : hv

1

; w

1

i hs; ti hv

2

; w

2

i : : :

(of pairs from P or P

0

) is an R-chain i� there exists a narrowing hs

0

; t

0

i of hs; ti

such that : : : hv

1

; w

1

i hs

0

; t

0

i hv

2

; w

2

i : : : is an R-chain. Here, hs; ti resp. hs

0

; t

0

i

may also be the �rst pair in the chain (i.e. hv

1

; w

1

i may be missing).

If this has been proved then all occurrences of hs; ti in an in�nite chain may

be replaced by pairs from P

0

. In an analogous way, every in�nite chain of pairs

from P

0

can also be transformed into an in�nite chain of pairs from P .

For the �rst direction, let : : : hv

1

; w

1

i hs; ti hv

2

; w

2

i : : : be an R-chain.

Hence, there must be a substitution such that for all pairs, the instantiated

5

The problem is that the �rst reduction step from F(g(x; x))� to F(s(x

0

))� takes place

`in �' and therefore it cannot be captured by narrowing. For linear terms, this e�ect could

be simulated by choosing another suitable �

0

, but in the above example this is not possible,

because here two di�erent occurrences of x� are reduced to di�erent terms.
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right-hand side reduces to the instantiated left-hand side of the next pair in the

chain. Let � be such a substitution where the length of the reduction

t�!

�

R

v

2

�

is minimal. Note that the length of this reduction cannot be zero, as t and v

2

do not unify. Hence, we have t�!

R

q!

�

R

v

2

� for some term q.

There are two possibilities for the reduction t�!

R

q. Let us �rst assume

that this reduction takes place `in �'. Hence, there is a variable x in t (i.e.

tj

p

= x for some position p) such that �(x)!

R

r and q = t[r]

p

. The variable

x only occurs once in t (as t is linear) and therefore, we have q = t�

0

, where

�

0

is the substitution with �

0

(x) = r and �

0

(y) = �(y) for all y 6= x. As all

(occurrences of) dependency pairs are variable disjoint, �

0

behaves like � for all

pairs except hs; ti. For this pair, we have

w

1

�

0

= w

1

�!

�

R

s�!

�

R

s�

0

and

t�

0

= q!

�

R

v

2

� = v

2

�

0

:

Hence, �

0

is also a substitution where each instantiated right-hand side re-

duces to the instantiation of the left-hand side of the following pair in the chain.

But as the reduction from t�

0

to v

2

�

0

is shorter than the reduction from t� to

v

2

�, this is a contradiction to the minimality of �.

So the reduction t�!

R

q cannot take place `in �'. Hence, t contains some

subterm f(~u) such that a rule l! r has been applied to f(~u)�. In other words,

l matches f(~u)� (i.e. l� = f(~u)�). Hence, the reduction has the following form:

t� = t�[f(~u)�]

p

= t�[l�]

p

!

R

t�[r�]

p

= q:

Similar to Def. 21 we assume that the variables of l! r have been renamed

to fresh ones. Therefore we can extend � to `behave' like � on the variables

of l and r (but it still remains the same on the variables of all pairs in the

chain). Now � is a uni�er of l and f(~u) and hence, there also exists a most

general uni�er �. By the de�nition of most general uni�ers, then there must be

a substitution � such that � = �� .

Let t

0

be the term t�[r�]

p

and let s

0

be s�. Then hs; ti narrows to hs

0

; t

0

i.

As we may assume s

0

and t

0

to be variable disjoint from all other pairs, we may

extend � to behave like � on the variables of s

0

and t

0

. Then we have

w

1

�!

�

R

s� = s�� = s

0

� = s

0

� and

t

0

� = t

0

� = t�� [r�� ]

p

= t�[r�]

p

= t�[r�]

p

= q!

�

R

v

2

�:

Hence, : : : hv

1

; w

1

i hs

0

; t

0

i hv

2

; w

2

i : : : is also an R-chain.

For the other direction of the theorem, let : : : hv

1

; w

1

i hs

0

; t

0

i hv

2

; w

2

i : : :

be an R-chain. Hence, there is a substitution � such that for all pairs the
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instantiated right-hand side reduces to the instantiated left-hand side of the

next pair in the chain. So in particular we have

w

1

�!

�

R

s

0

� and t

0

�!

�

R

v

2

�:

We know that hs; ti narrows to hs

0

; t

0

i via some substitution �. As the

variables in hs; ti are disjoint from all other occurring variables, we may extend

� to `behave' like �� on the variables of s and t. Then we have s� = s�� = s

0

�

and hence,

w

1

�!

�

R

s�:

Moreover, by the de�nition of narrowing, t�!

R

t

0

. This implies t��!

R

t

0

�

and as t� = t��, we have

t�!

�

R

v

2

�:

Hence, : : : hv

1

; w

1

i hs; ti hv

2

; w

2

i : : : is also an R-chain. ut

Note that while dependency pairs may indeed be replaced by their narrow-

ings, in general a similar replacement of rules by their narrowings is unsound,

i.e. it does not preserve the termination behaviour. For example, in the TRS

with the rules f(1)! f(0) and 0! 1, the right-hand side 1 of the second rule

cannot be narrowed. However, deleting this second rule transforms the non-

terminating TRS into a terminating one. So narrowing of dependency pairs

is di�erent from narrowing of rules, because even if some dependency pairs are

eliminated, still all rules can be used for the reductions between two dependency

pairs.

Example 26 Narrowing pairs can be repeated several times if appropriate. So

instead of replacing the dependency pair (8) by (9) and (10) we could also apply

narrowing again and replace (9) and (10) by those pairs they narrow to. For

example, the pair (9) has a linear right-hand side which does not unify with the

left-hand side of any pair. Thus it may be replaced by its narrowings

hP(x � s0; ssy � ssz);P(y � z; x� s0)i

hP(sx� s0; sy � ssz);P(y � sz; x� 0)i:

In general, before application of Thm. 17 one can apply an arbitrary number

of narrowing steps to the dependency pairs. Subsequently, the resulting set of

pairs is considered to be the `set of dependency pairs' and the techniques pre-

sented to approximate the dependency graph and to synthesize the inequalities

are applied. Finally, standard techniques are used to �nd an ordering satisfying

the generated inequalities.

By the use of narrowing the automation of our method can be improved

signi�cantly. For instance, if in our example we perform at least one narrowing

step, then termination can again be veri�ed automatically.
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Note that if an ordering can be found that satis�es the set of inequalities

obtained without narrowing any of the pairs, then the inequalities obtained after

narrowing are also satis�ed by the same ordering. (If the ordering satis�es s > t

and l � r, then it also satis�es s� > t� � t

0

, provided that t  

R

t

0

via the

substitution �. Hence, s > t resp. s � t implies s

0

> t

0

resp. s

0

� t

0

for any

narrowing hs

0

; t

0

i of hs; ti. Moreover, if hs

0

; t

0

i and hv

0

; w

0

i are narrowings of hs; ti

and hv; wi respectively, then there can only be an arc from hs

0

; t

0

i to hv

0

; w

0

i in

the new dependency graph if there already was an arc from hs; ti to hv; wi in

the original dependency graph. The corresponding statement also holds for our

approximation of dependency graphs, i.e. if t

0

is connectable to v

0

, then t is also

connectable to v.) Thus, replacing pairs by their narrowings can only extend

the set of TRSs for which termination can be proved automatically.

2.6 Summary

Combining all re�nements, we obtain the following technique to prove termina-

tion automatically using the dependency pair approach:

� Determine the dependency pairs (this can be automated in a straightfor-

ward way).

� Replace some (dependency) pairs by all their narrowings. This step may

be repeated several times.

� Approximate the dependency graph by estimating for all (dependency)

pairs whether an arc exists between them. For this purpose, the func-

tions cap and ren are introduced. The pairs that occur on a cycle in the

approximated dependency graph are computed by standard graph algo-

rithms. Pairs which are not on a cycle in the approximated dependency

graph can be ignored.

� Transform the rules and the (dependency) pairs on cycles into inequalities.

� Find a well-founded weakly monotonic quasi-ordering satisfying the in-

equalities after normalizing them with respect to one of the possible AFSs.

For �nding suitable orderings standard techniques like the recursive path order-

ing or polynomial interpretations may be used. In this way, standard techniques

can now be applied to prove termination of TRSs whose termination could not

be proved automatically before. For a collection of examples to demonstrate

the power of our approach see Sect. 5.

3 Proving innermost termination

Similar to our approach for termination we now introduce a method to prove

innermost termination of TRSs. Several ideas and notions can be transferred
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from the termination case to the innermost termination case. Therefore many

theorems in this section look similar to the theorems in the previous section and

in their proofs we only indicate the di�erences to the previous approach.

In Sect. 3.1 we present a criterion for innermost termination corresponding

to the termination criterion of Sect. 2. We show in Sect. 3.2 that this criterion

is also suitable for automation and that similar re�nements for improving the

technique can be developed (Sect. 3.3 and Sect. 3.4). The automated checking

of this criterion enables us to prove innermost termination automatically, even

if the TRS is not terminating. Additionally, for several classes of TRSs inner-

most termination already su�ces for termination [35, 36]. Moreover, numerous

modularity results exist for innermost termination [4, 5, 6, 35, 44, 45], which

do not hold for termination. Therefore, for those classes of TRSs termination

can be proved by splitting the TRS and proving innermost termination of the

subsystems separately. The advantage of this approach is that there are several

interesting TRSs where a direct termination proof is not possible with the exist-

ing automatic techniques (including the technique of Sect. 2). However in many

of these examples, a suitable ordering satisfying the constraints generated by

our technique for proving innermost termination can nevertheless be synthesized

automatically. So for many TRSs proving innermost termination automatically

is essentially easier than proving termination. In this way, innermost termina-

tion (and thereby, termination) of many also non-simply terminating systems

can now be veri�ed automatically. An overview of the technique is given in Sect.

3.5.

3.1 Innermost termination criterion

In contrast to the approach in the previous section, now our aim is to prove that

the length of every innermost reduction is �nite (where innermost redeces have

to be contracted �rst). Of course, termination implies innermost termination,

but in general the converse does not hold.

Example 27 As an example consider the following TRS with the de�ned sym-

bols f and g and the constructors 0 and s.

f(g(x); s(0); y) ! f(y; y; g(x))

g(s(x)) ! s(g(x))

g(0) ! 0

In this example, we have the following in�nite (cycling) reduction.

f(gs0; s0; gs0)! f(gs0; gs0; gs0)! f(gs0; sg0; gs0)! f(gs0; s0; gs0)! : : :

However, this reduction is not an innermost reduction, because in the �rst re-

duction step the subterm gs0 is a redex and would have to be reduced �rst.

Although this TRS is not terminating, it nevertheless turns out to be innermost

terminating.
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The aim of this section is to develop a criterion for innermost termination

similar to our termination criterion of Sect. 2. In the above example we obtain

the following dependency pairs.

hF(g(x); s(0); y);G(x)i (11)

hF(g(x); s(0); y);F(y; y; g(x))i (12)

hG(s(x));G(x)i (13)

Recall that a sequence of dependency pairs hs

1

; t

1

i hs

2

; t

2

i : : : is a chain, if

there exists a substitution � such that t

j

� reduces to s

j+1

� for all j. Here,

the right-hand side of each dependency pair corresponds to a newly introduced

redex and the reductions t

j

�!

�

R

s

j+1

� are used to contract the arguments of

the redex that is traced. However, chains correspond to arbitrary reductions,

whereas now we are only interested in innermost reductions. Therefore, we have

to restrict the de�nition of chains in order to obtain a notion which corresponds

to the innermost reduction strategy.

The �rst restriction is motivated by the fact that when regarding innermost

reductions, arguments of a redex should be in normal form before the redex is

contracted. Therefore we demand that all s

j

� should be normal forms. Ad-

ditionally, when concentrating on innermost reductions, the reductions of the

arguments to normal form should also be innermost reductions. This results

in the following restricted notion of a chain (where innermost reductions are

denoted by `

i

!').

De�nition 28 (Innermost chain) Let R(D;C;R) be a TRS. A sequence of

dependency pairs hs

1

; t

1

i hs

2

; t

2

i : : : is an innermost R-chain if there exists a

substitution � such that all s

j

� are normal forms and such that t

j

�

i

!

�

R

s

j+1

�

holds for every two consecutive pairs hs

j

; t

j

i and hs

j+1

; t

j+1

i in the sequence.

In our example we have the innermost chain

hG(s(x

1

));G(x

1

)i hG(s(x

2

));G(x

2

)i hG(s(x

3

));G(x

3

)i

because G(x

1

)�

i

!

�

R

G(s(x

2

))� and G(x

2

)�

i

!

�

R

G(s(x

3

))� holds for the substi-

tution � that replaces x

1

by s(s(x

3

)) and x

2

by s(x

3

).

Of course, every innermost chain is also a chain, but not vice versa. For

instance, the in�nite sequence consisting of the second dependency pair (12)

only is an in�nite chain, because

F(y

1

; y

1

; g(x

1

))�!

�

R

F(g(x

2

); s(0); y

2

)� (14)

holds if �(x

j

) = s(0) and �(y

j

) = g(s(0)). However, this in�nite chain is not

an innermost chain, because for every substitution � satisfying (14), the term

F(g(x

2

); s(0); y

2

)� is not a normal form. The following theorem proves that the
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absence of in�nite innermost chains is a su�cient and necessary criterion for

innermost termination. (Hence, the restriction of chains to innermost chains

in fact corresponds to the restriction of reductions to innermost reductions.)

Theorem 29 (Innermost termination criterion) A TRSR(D;C;R) is in-

nermost terminating if and only if no in�nite innermost R-chain exists.

Proof. The proof of this theorem is very similar to the proof of Thm. 6. In the

same way as in the latter proof, an in�nite sequence of dependency pairs can

be constructed, whenever an in�nite innermost reduction exists. The di�erence,

however, is that now the arguments of the terms are innermost reduced to

normal form before building the next dependency pair, whereas in the proof of

Thm. 6 the arguments were reduced an arbitrary number of steps. The sequence

constructed in this way is in fact an innermost chain.

For the other direction, similar to the corresponding proof of Thm. 6 one

can show that any in�nite innermost chain corresponds to an in�nite innermost

reduction. ut

3.2 Checking the innermost termination criterion auto-

matically

In this section we present an automatic approach for innermost termination

proofs using the criterion of Thm. 29, i.e. we develop a method to prove the

absence of in�nite innermost chains automatically.

Assume that there is a sequence hs

1

; t

1

ihs

2

; t

2

ihs

3

; t

3

i : : : of dependency pairs

and a substitution � such that all terms s

j

� are in normal form and such that

t

j

� reduces innermost to s

j+1

� for all j. Then to prove that this sequence is

�nite, it su�ces again to �nd a well-founded quasi-ordering � such that the

following inequalities are satis�ed.

s

1

� > t

1

� � s

2

� > t

2

� � s

3

� > t

3

� � : : : (4)

To ensure that all dependency pairs are decreasing, we again demand s > t

for all dependency pairs hs; ti. In our example this results in the following

constraints, cf. (11), (12), (13):

F(g(x); s(0); y) > G(x) (15)

F(g(x); s(0); y) > F(y; y; g(x)) (16)

G(s(x)) > G(x): (17)

Moreover, we have to ensure t

j

� � s

j+1

� whenever t

j

�

i

!

�

R

s

j+1

� holds.

Recall that to prove termination we demanded that all rules were weakly de-

creasing. This was necessary, because in chains, � may be an arbitrary substi-
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tution and hence, every rule can be used in the reduction from t

j

� to s

j+1

�

6

.

However, in contrast to the situation for chains, in an innermost chain only

a subset of the rewrite rules of the TRS can be applied in the reduction in

between the dependency pairs. Therefore, to prove innermost termination we

only demand the constraints l � r for those rules l! r that can be used in an

innermost reduction of t

j

�. Note that as all terms s

j

� are normal, � is a nor-

mal substitution (i.e. it instantiates all variables with normal forms). Hence, for

the dependency pairs (11) and (13) we directly obtain that no rule can ever be

used to reduce a normal instantiation of G(x) (because G is no de�ned symbol).

The only dependency pair whose right-hand side can be reduced if its variables

are instantiated with normal forms is (12), because this is a dependency pair

with de�ned symbols in the right-hand side. As the only de�ned symbol in

F(y; y; g(x)) is g, the only rules that may be applied on normal instantiations of

this term are the two g-rules of the TRS. Since these g-rules can never introduce

a new redex with root symbol f, the two g-rules are the only rules that can be

used to reduce any normal instantiation of F(y; y; g(x)). Hence, in this example

we only have to demand that these rules should be weakly decreasing.

g(s(x)) � s(g(x)); g(0) � 0 (18)

In general, to determine the usable rules, i.e. (a superset of) those rules that

may possibly be used in an innermost reduction of a normal instantiation of a

term t, we proceed as follows. If t contains a de�ned symbol f , then all f -rules

are usable and furthermore, all rules that are usable for right-hand sides of f -

rules are also usable for t. However, if one of these rules contains a redex as a

proper subterm of the left-hand side, then we do not have to include it in the

usable rules, since this rule can never be applied in any innermost reduction.

De�nition 30 (Usable rules) Let R(D;C;R) be a TRS. For any symbol f

let Rules(R; f) = fl! r in R j root(l) = f; l has no redex as proper subtermg:

For any term t, the set of usable rules U(R; t) is inductively de�ned as

U(R; x) = ;

U(R; f(t

1

; : : : ; t

n

)) = Rules(R; f) [

S

n

j=1

U(R

0

; t

j

) [

S

l! r2Rules(R;f)

U(R

0

; r);

where

7

R

0

= R nRules(R; f).

Hence, in our example we have

6

Provided that a variable occurs in t

j

, but termination is decidable for TRSs with ground

right-hand sides [16].

7

U(R; t) is well-de�ned, because its �rst argument R is decreasing.
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U(R;F(y; y; g(x))) = Rules(R;F) [U(R; y) [U(R; g(x)) [ ;

= U(R; g(x))

= Rules(R; g) [

U(ff(: : :)! f(: : :)g; x) [

U(ff(: : :)! f(: : :)g; s(g(x))) [

U(ff(: : :)! f(: : :)g; 0)

= fg(s(x))! s(g(x)); g(0)! 0g:

Observe that by the above de�nition Rules(R; f) = ; for any constructor f .

When proving termination we had to search for a weakly monotonic quasi-

ordering satisfying the constraints obtained. The reason for demanding weak

monotonicity was that l � r for all rules had to ensure t

j

� � s

j+1

� whenever

t

j

� could be reduced to s

j+1

�. However, now for the tuple symbols we do not

need weak monotonicity on all positions any more. For example, for the tuple

symbol F we only have to ensure that all reductions starting from F(y; y; g(x))�

are weakly decreasing (where � is a normal substitution). Obviously, such re-

ductions can never take place in the �rst two arguments of F and hence, F does

not have to be weakly monotonic in these arguments.

The constraints (18) already ensure that during reductions of F(y; y; g(x))�

the value of the subterm g(x)� can only be decreased. Of course, we have to

guarantee that the value of the whole term F(y; y; g(x)) is weakly decreasing

if an instantiation of g(x) is replaced by a smaller term. For that purpose,

we demand that F(y; y; g(x)) must be weakly monotonic on the position of its

subterm g(x), i.e. for the tuple symbol F we only have to demand the following

monotonicity constraint:

x

1

� x

2

) F(y; y; x

1

) � F(y; y; x

2

): (19)

We only compute such monotonicity constraints for the tuple symbols and

for all other (lower case) symbols we demand weak monotonicity in all of their

arguments. In general, we obtain the following procedure for the generation of

constraints.

Theorem 31 (Proving innermost termination) Let R(D;C;R) be a TRS

and let � be a well-founded quasi-ordering where both � and > are closed under

substitution. If � is weakly monotonic on all symbols apart from the tuple

symbols and if � satis�es the following constraints for all dependency pairs

hs; ti

� l � r for all usable rules l! r in U(R; t),

� s > t,
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� x

1

� y

1

^ : : : ^ x

n

� y

n

) C[x

1

; : : : ; x

n

] � C[y

1

; : : : ; y

n

],

if t = C[f

1

(~u

1

); : : : ; f

n

(~u

n

)], where C is a context without de�ned symbols

and f

1

; : : : ; f

n

are de�ned symbols,

then R is innermost terminating.

Proof. The proof of this theorem corresponds to the proof of Thm. 7. Suppose

that hs

1

; t

1

i hs

2

; t

2

i : : : is an in�nite innermost R-chain. Then there exists a

substitution � such that s

j

� is in normal form and t

j

� reduces innermost to

s

j+1

� for all j. Hence, � replaces all variables by normal forms and therefore,

the only rules that can be applied in this reduction are the usable rulesU(R; t

j

).

All usable rules are weakly decreasing and the terms t

j

are weakly monotonic

on all positions where reductions are applied. (The reason is that lower case

symbols are weakly monotonic and without loss of generality we can assume

that � does not introduce any tuple symbols, i.e. the only tuple symbol in t

j

�

is on the root position.) Hence, we have t

j

� � s

j+1

�. This results in an in�nite

decreasing sequence s

1

� > t

1

� � s

2

� > t

2

� � : : : which is a contradiction to

the well-foundedness of �. Thus, no in�nite innermost R-chain exists and by

Thm. 29, the TRS is innermost terminating. ut

So there are two main di�erences between the termination approach and the

approach for innermost termination. The �rst di�erence is in the set of inequal-

ities that is generated. As we restrict ourselves to innermost reductions and to

terms s

j

� that are normal forms, several inequalities that have to be demanded

when proving termination are unnecessary when proving innermost termination

(i.e. we do not have to demand l � r for all rules any more, but it su�ces if just

the usable rules are weakly decreasing). After generating the inequalities, the

second di�erence is that the quasi-ordering satisfying the inequalities does not

have to be weakly monotonic for all function symbols (i.e. tuple symbols only

have to satisfy the monotonicity constraints that are stated explicitly).

Hence, in Ex. 27 to prove innermost termination it is su�cient to �nd a well-

founded quasi-ordering satisfying the constraints in (15) { (19). For the synthe-

sis of suitable quasi-orderings we proceed in the same way as it has been done

for termination (Sect. 2.3) where for polynomial interpretations the di�erence

is that the polynomials do not have to be weakly monotonic in all arguments.

For example, these constraints are ful�lled by the polynomial ordering where

the constant 0 is mapped to the number 0, s(x) is mapped to x + 1, g(x) is

mapped to x + 2, F(x; y; z) is mapped to (x � y)

2

+ 1, and G(x) is mapped to

x. Note that this quasi-ordering is not weakly monotonic on the tuple symbol

F. The only monotonicity constraint in our example is (19), which is obviously

satis�ed as F(x; y; z) is mapped to a polynomial which is weakly monotonic

8

in

8

When using polynomial interpretations, monotonicity constraints like (19) can also be

represented as inequalities. For instance, if F is mapped to some polynomial [F], then instead

of (19) one could demand that the partial derivative of [F](y; y; x) with respect to x should
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its third argument z. However, this polynomial is not weakly monotonic in x

or y.

Unlike Thm. 7 for termination proofs, the existence of a quasi-ordering sat-

isfying the conditions of Thm. 31 is su�cient, but not necessary for innermost

termination. The reason is that demanding the constraints of Thm. 31 for all

instantiations may be too strong, since for innermost chains sometimes it would

be su�cient to regard certain instantiations only.

Example 32 For example, consider the innermost terminating TRS

f(s(x)) ! f(g(h(x)))

g(h(x)) ! g(x)

g(s(x)) ! s(x)

g(0) ! s(0)

h(0) ! a:

In this example there are no in�nite innermost chains. However, the constraints

according to Thm. 31 include the inequalities

F(s(x)) > F(g(h(x)))

g(h(x)) � g(x)

g(0) � s(0)

x

1

� x

2

) F(x

1

) � F(x

2

):

These constraints imply F(s(0)) > F(g(h(0))) � F(g(0)) � F(s(0)). Therefore

they cannot be satis�ed by any well-founded quasi-ordering closed under substi-

tution.

However, the approach of Thm. 31 su�ces to prove innermost termination

of numerous important examples and challenge problems (including the TRS

in Ex. 27) automatically, i.e. this technique allows the application of standard

techniques for innermost termination proofs, even if the TRS is not terminating.

Moreover, using the results of Gramlich [35, 36], Thm. 31 can also be applied

to prove termination of TRSs that are non-overlapping (or for locally con
uent

overlay systems).

Example 33 As an example regard the following TRS by Kolbe [43] where

quot(x; y; z) is used to compute 1+

�

x�y

z

�

, if x � y and z 6= 0 (i.e. quot(x; y; y)

computes

j

x

y

k

).

be non-negative, i.e.

@[F](y;y;x)

@x

� 0, cf. [31].

If one uses other techniques (e.g. path orderings) which can only generate monotonic orderings,

then of course one may drop monotonicity constraints like (19).
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quot(0; s(y); s(z)) ! 0

quot(s(x); s(y); z) ! quot(x; y; z)

quot(x; 0; s(z)) ! s(quot(x; s(z); s(z)))

The above system is not simply terminating (the left-hand side of the last rule is

embedded in the right-hand side if z is instantiated with 0) and therefore most

automatic approaches for termination proofs (which are restricted to simpli�ca-

tion orderings) fail.

Nevertheless, with our technique we can prove innermost termination and

therefore termination of this system automatically. As quot is the only de�ned

symbol of this system, we obtain the following dependency pairs.

hQ(s(x); s(y); z);Q(x; y; z)i (20)

hQ(x; 0; s(z));Q(x; s(z); s(z))i (21)

In this example there are no usable rules, as in the right-hand sides of the de-

pendency pairs no de�ned symbols occur. Hence, due to Thm. 31 we only have

to �nd a well-founded quasi-ordering such that both dependency pairs are de-

creasing. These constraints are for instance satis�ed by the polynomial ordering

where 0 is mapped to the number 0, s(x) is mapped to x + 1, and Q(x; y; z) is

mapped to x + (x � y + z)

2

. Hence, innermost termination and thereby also

termination of this TRS is proved (as it is non-overlapping).

Note that again we bene�t from the fact that the tuple symbol Q need not be

weakly monotonic in its arguments. Therefore, an interpretation like the poly-

nomial x+(x�y+z)

2

may be used, which is not weakly monotonic in any of its

arguments. In fact, if the set of usable rules is empty, then the quasi-ordering

need not even be weakly monotonic for any symbol. The termination approach

of Sect. 2 cannot be used to prove termination of this TRS automatically, since

the generated inequalities are not satis�ed by any well-founded weakly mono-

tonic total quasi-ordering or any quasi-simpli�cation ordering (not even after

normalisation by a suitable AFS).

3.3 Re�nement using innermost dependency graphs

To prove innermost termination of a TRS according to Thm. 31 we have to

�nd an ordering such that s > t holds for all dependency pairs hs; ti. However,

similar to the re�nement for termination proofs in Sect. 2.4, for certain rewrite

systems this requirement can be weakened, i.e. it is su�cient to demand s > t

for some dependency pairs only.

For instance, in the quot example (Ex. 33) up to now we demanded that

both dependency pairs (20) and (21) had to be decreasing. However, two oc-

currences of the dependency pair (21) can never follow each other in an inner-

most chain, because Q(x

1

; s(z

1

); s(z

1

))� can never reduce to any instantiation of
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Q(x

2

; 0; s(z

2

)). The reason is that the second arguments s(z

1

) resp. 0 of these

two terms have di�erent constructor root symbols. Hence, any possible in�nite

innermost chain would contain in�nitely many occurrences of the other depen-

dency pair (20). Therefore it is su�cient if (20) is decreasing and if (21) is just

weakly decreasing. In this way, we obtain the following (weakened) constraints.

Q(s(x); s(y); z) > Q(x; y; z) (22)

Q(x; 0; s(z)) � Q(x; s(z); s(z)) (23)

In general, to determine those dependency pairs which may possibly follow

each other in innermost chains, we de�ne the following graph.

De�nition 34 (Innermost dependency graph) The innermost dependen-

cy graph of a TRS R is the directed graph whose nodes are the dependency

pairs and there is an arc from hs; ti to hv; wi if hs; tihv; wi is an innermost

R-chain.

For instance, in the innermost dependency graph for the quot example there

are arcs from (20) to itself and to (21), and there is an arc from (21) to (20)

(but not to itself).

hQ(s(x); s(y); z);Q(x; y; z)i

hQ(x; 0; s(z));Q(x; s(z); s(z))i

Figure 2: The innermost dependency graph for the quot TRS (Ex. 33).

Of course, the fact that innermost chains are restricted chains cause in-

nermost dependency graphs to be subgraphs of dependency graphs. Now any

in�nite innermost chain corresponds to a cycle in the innermost dependency

graph. Hence, it is su�cient if s > t holds for at least one dependency pair hs; ti

on every cycle and if s � t holds for the other dependency pairs on cycles. So,

similar to Thm. 17 (for termination) we obtain the following re�ned theorem

for automated innermost termination proofs.

Theorem 35 (Innermost dependency graph re�nement) LetR(D;C;R)

be a TRS and let � be a well-founded quasi-ordering where both � and > are

closed under substitution. If � is weakly monotonic on all symbols apart from

the tuple symbols and if � satis�es the following constraints for all dependency

pairs hs; ti on a cycle of the innermost dependency graph
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� l � r for all usable rules l! r in U(R; t),

� s � t,

� x

1

� y

1

^ : : : ^ x

n

� y

n

) C[x

1

; : : : ; x

n

] � C[y

1

; : : : ; y

n

],

if t = C[f

1

(~u

1

); : : : ; f

n

(~u

n

)], where C is a context without de�ned symbols

and f

1

; : : : ; f

n

are de�ned symbols,

and if s > t holds for at least one dependency pair hs; ti on each cycle of the

innermost dependency graph, then R is innermost terminating.

Proof. The proof that Thm. 35 is a consequence of Thm. 31 is completely

analogous to the proof that Thm. 17 is a consequence of Thm. 7. ut

Hence, in the quot example the constraints (22) and (23) are in fact su�cient

for innermost termination. A suitable quasi-ordering satisfying these weakened

constraints can easily be synthesized using the technique of Sect. 2.3. (For in-

stance, one could use the polynomial interpretation where 0 and s are interpreted

as usual and where Q(x; y; z) is mapped to x. If the constraints (22) and (23)

are normalized w.r.t. an AFS which drops the second argument of Q, then they

are also satis�ed by the recursive path ordering.) This example demonstrates

that the weakening of the constraints by using innermost dependency graphs

often enables the application of much simpler orderings (e.g. now we can use

the recursive path ordering or a linear weakly monotonic polynomial ordering

whereas for the original constraints of Sect. 3.2 we needed a non-monotonic

polynomial of degree 2).

However, for an automation of Thm. 35 we have to construct the innermost

dependency graph. Again, this cannot be done automatically, since for two

pairs hs; ti and hv; wi it is undecidable whether there exists a substitution �

such that t� reduces innermost to v� and such that s� and v� are normal

forms. Hence, similar to the dependency graph, we can only approximate this

graph by computing a supergraph containing the innermost dependency graph.

Note that t� may only reduce to v� for some substitution �, if either t has a

de�ned root symbol or if both t and v have the same constructor root symbol.

Recall that cap(t) denotes the result of replacing all subterms in t with a de�ned

root symbol by di�erent fresh variables. Then t� can only reduce to v� if cap(t)

and v are uni�able.

However, this replacement of subterms of tmust only be done for terms which

are not equal to subterms of s. The reason is that such subterms are already in

normal form when instantiated with �. For example, if we modify the �rst rule

of the TRS in Ex. 27 to f(g(x); s(0)) ! f(g(x); g(x)), then to determine whether

there is an arc from the resulting dependency pair

hF(g(x); s(0)); F(g(x); g(x))i

to itself, the subterms g(x) in the right-hand side do not have to be replaced

by new variables. As both sides of this dependency pair do not unify after
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variable renaming, one can immediately see that this pair is not on a cycle of

the innermost dependency graph (whereas cap(F(g(x); g(x)) = F(x

1

; x

2

) would

unify with the left-hand side).

Let cap

s

(t) only replace those subterms of t by di�erent fresh variables which

have a de�ned root symbol and which are not equal to subterms of s. Then to

re�ne the approximation of innermost dependency graphs instead of cap(t) we

check whether cap

s

(t) uni�es with v. Moreover, if � is the most general uni�er

(mgu) of cap

s

(t) and v, then there can only be an arc from hs; ti to hv; wi in

the innermost dependency graph, if both s� and v� are in normal form.

So there are three di�erences between the approximation of the dependency

graph and the approximation of the innermost dependency graph. First, for the

innermost dependency graph we only replace subterms of t which do not occur

in s, i.e. we use cap

s

(t) instead of cap(t). Second, to approximate the depen-

dency graph, multiple occurrences of the same variable in cap(t) are replaced

by fresh variables (using the function ren), whereas the variables in cap

s

(t) are

left unchanged for the approximation of the innermost dependency graph. The

reason is that any substitution used for instantiating the dependency pairs of an

innermost chain is a normal substitution. Thus, variables are always instanti-

ated by normal forms, and hence these instantiations are not reduced. Multiple

occurrences of the same variable in a term result in multiple occurrences of the

same subterm after reduction of the instantiated term. In contrast, for an arbi-

trary substitution, instantiated multiple occurrences of the same variable may

result in di�erent subterms after reduction of the instantiated term.

The third di�erence is that for innermost dependency graphs we only draw

an arc from hs; ti to hv; wi, if the mgu of cap

s

(t) and v instantiates s and v to

normal forms. This condition is due to the restriction to innermost chains.

Similar to the notion of connectable terms in Sect. 2.4, we call two depen-

dency pairs innermost connectable if they should be connected by an arc in our

approximation of the innermost dependency graph.

De�nition 36 (Innermost connectable pairs) For any dependency pairs

hs; ti and hv; wi, the pair hs; ti is innermost connectable to hv; wi if cap

s

(t)

and v are uni�able by some mgu � such that s� and v� are in normal form.

The following theorem proves the soundness of our approximation.

Theorem 37 (Computing innermost dependency graphs) Let R be a

TRS and let hs; ti and hv; wi be dependency pairs. If there is an arc from hs; ti

to hv; wi in the innermost dependency graph, then hs; ti is innermost connectable

to hv; wi.

Proof. Due to the additional conditions in the de�nition of innermost chains

and the de�nition of innermost connectable pairs, the proof is slightly di�erent

from the proof of Thm. 19.
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By induction on the structure of t we show that if there exists a substitution

� such that s� is a normal form and t�!

�

R

u for some term u, then there exists

a substitution � (whose domain only includes variables that are introduced in

the construction of cap

s

(t)) with cap

s

(t)�� = u. Thus, in particular, if there

exists a substitution � such that s� and v� are normal forms and t�!

�

R

v�,

then cap

s

(t)�� = v� (= v�� , since the variables of v� do not occur in the

domain of �). Hence, cap

s

(t) and v unify and the most general uni�er � is such

that s� and v� are normal forms. (There exist instantiations of these two terms

that are normal forms (viz. s�� = s� and v�� = v�), hence the terms s� and

v� are normal forms themselves.)

If t equals a subterm of s, then t� is in normal form, hence t� equals u.

Moreover, we have cap

s

(t) = t. So cap

s

(t)� = u, i.e. in this case � is the

empty substitution.

If t is not equal to a subterm of s and root(t) is de�ned, then cap

s

(t) is a fresh

variable. Let � replace cap

s

(t) by u. Then we have cap

s

(t)�� = cap

s

(t)� = u.

Otherwise, t = c(t

1

; : : : ; t

n

) for some constructor c and we have

cap

s

(t) = c(cap

s

(t

1

); : : : ;cap

s

(t

n

)):

In this case u is of the form c(u

1

; : : : ; u

n

) and t

j

�!

�

R

u

j

for all j. By the

induction hypothesis there exist substitutions �

j

such that cap

s

(t

j

)��

j

= u

j

.

Note that the variables newly introduced in cap

s

(t

j

) are disjoint from those

variables newly introduced in cap

s

(t

i

) for i 6= j. Hence, if � = �

1

� : : :� �

n

, then

for all j we have cap

s

(t

j

)�� = u

j

, and thus, cap

s

(t)�� = c(u

1

; : : : ; u

n

). ut

Using the approximation of Thm. 37, we can now compute the innermost

dependency graph for the quot example in Fig. 2 automatically.

Example 38 There are also examples where the innermost dependency graph

does not contain any cycles.

f(x; g(x)) ! f(1; g(x))

g(1) ! g(0)

In this example, the dependency pair hF(x; g(x));F(1; g(x))i is not on a cy-

cle of the innermost dependency graph, although cap

F(x

1

; g(x

1

))

(F(1; g(x

1

))) =

F(1; g(x

1

)) uni�es with F(x

2

; g(x

2

)) using a mgu that replaces x

1

and x

2

by

1. However, the instantiated left-hand side F(1; g(1)) is not a normal form,

since it contains the redex g(1). The other dependency pairs hF(x; g(x));G(x)i

and hG(1);G(0)i cannot occur on cycles either, since G(: : :) does not unify with

F(: : :) and G(0) does not unify with G(1). Hence, using the re�ned techniques of

Thm. 37 and 35 we obtain no constraint at all, i.e. innermost termination can

be proved by only computing the (approximation of) the innermost dependency

graph.
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3.4 Re�ned innermost termination proofs by narrowing

dependency pairs

Similar to the termination technique of Sect. 2, the power of our technique can

be increased if we consider narrowings of the dependency pairs.

Example 39 For an illustration regard the following TRS.

p(0) ! 0

p(s(x)) ! x

le(0; y) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

minus(x; y) ! if(le(x; y); x; y)

if(true; x; y) ! 0

if(false; x; y) ! s(minus(p(x); y))

Here, a `conditional' program for minus has been encoded into an unconditional

TRS. The dependency pairs on cycles of the innermost dependency graph are

hLE(s(x); s(y)); LE(x; y)i (24)

hM(x; y); IF(le(x; y); x; y)i (25)

hIF(false; x; y);M(p(x); y)i: (26)

However, the constraints resulting from application of Thm. 35 would imply

M(s(x); 0) > M(p(s(x)); 0). Therefore an automatic innermost termination

proof using quasi-simpli�cation orderings fails.

The only dependency pair whose right-hand side does not unify with any

left-hand side of a dependency pair is (25). Hence, in any innermost chain at

least one rule of the TRS must be applied in order to reduce an instantiation of

IF(le(x; y); x; y) to an instantiation of a left-hand side. So instead of examining

the dependency pair (25) we may �rst perform all possible narrowing steps and

replace (25) by

hM(0; y); IF(true; 0; y)i (27)

hM(s(x); 0); IF(false; s(x); 0)i (28)

hM(s(x); s(y)); IF(le(x; y); s(x); s(y))i: (29)

Note that while the right-hand side of (26) uni�ed with the left-hand side of the

original dependency pair (25), after this replacement the right-hand side of (26)

does not unify with left-hand sides any more. Hence, the �rst narrowing of (25)

now enables a subsequent narrowing of (26). So (26) is replaced by

hIF(false; 0; y);M(0; y)i (30)

hIF(false; s(x); y);M(x; y)i: (31)
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In this way, the original set of dependency pairs (24) { (26) is transformed

into (24) and (27) { (31). Note that the pairs (27) and (30) are not on cycles

of the innermost dependency graph and can therefore be ignored in the inner-

most termination proof. In this way our method determined that instead of the

original dependency pair (25) one only has to regard instantiations where x is

instantiated with a term of the form s(: : :). But for those terms, p is decreasing

and hence, the call of of M in the right-hand side of (31) is applied to smaller

arguments than the call of M in the left-hand side of (28) or (29).

Now innermost termination (and thereby termination) of the system can be

proved by the technique of Thm. 35. This results in the following constraints.

le(0; y) � true

le(s(x); 0) � false

le(s(x); s(y)) � le(x; y)

LE(s(x); s(y)) > LE(x; y)

M(s(x); 0) � IF(false; s(x); 0)

M(s(x); s(y)) � IF(le(x; y); s(x); s(y))

IF(false; s(x); y) > M(x; y)

x

1

� x

2

) IF(x

1

; s(x); s(y)) � IF(x

2

; s(x); s(y))

These constraints are satis�ed by a polynomial interpretation where 0, true

and false are mapped to 0, s(x) is mapped to x+1, le(x; y), LE(x; y), and M(x; y)

are mapped to x, and IF(x; y; z) is mapped to y. They are also satis�ed by the

recursive path ordering if an AFS is used to eliminate the �rst argument of IF.

Narrowing pairs for the innermost termination technique has the side-e�ect

that one may also drop some inequalities l � r corresponding to the rules l! r,

since after narrowing the pairs some rules may not be usable any more. For

example, for the original dependency pairs, the p-rules were usable, since (26)

contains an occurrence of p in its right-hand side. But after narrowing this

dependency pair, the occurrence of p is deleted and hence we do not have to

demand that the p-rules are weakly decreasing.

So similar to the approach in Sect. 2.5 we may replace a dependency pair

hs; ti by all its narrowings provided that the right-hand side t does not unify

with any left-hand side of a dependency pair. In fact, due to the restriction to

innermost chains we may even perform such a replacement if t uni�es with the

left-hand side v of a dependency pair, as long as their mgu does not instantiate

both s and v to normal forms. Note that in contrast to the termination case,

for innermost termination proofs we do not have to demand that t must be a

linear term. Hence, we can indeed narrow the dependency pair (25) in the above

example, although its right-hand side is not linear. However, this step would

not have been possible with the method of Sect. 2. Therefore, for the TRS in

Ex. 39 the constraints generated by the approach of Sect. 2 are not satis�ed by

any quasi-simpli�cation ordering.

39



Theorem 40 (Narrowing re�nement for innermost termination) Let

R be a TRS and let P be a set of pairs of terms. Let hs; ti 2 P such that all

variables of t also occur in s and such that for all hv; wi 2 P where t and v are

uni�able by some mgu � (after renaming the variables), one of the terms s� or

v� is no normal form. Let

P

0

= P n fhs; tig [ fhs

0

; t

0

i j hs

0

; t

0

i is a narrowing of hs; tig:

If there exists no in�nite innermost R-chain of pairs from P

0

, then there exists

no in�nite innermost R-chain of pairs from P either.

Proof. The proof is analogous to the proof of Thm. 25. The only di�erence is

that the right-hand side t of the dependency pair does not have to be linear any

more. The reason is that in innermost chains we restrict ourselves to normal

substitutions � and therefore, reductions of t� can never take place `in �'. ut

Note that unlike Thm. 25 for termination, the replacement of dependency

pairs by their narrowings can destroy the necessity of our innermost termination

criterion. The reason is that narrowing does not respect the innermost reduction

strategy.

Example 41 The TRS in Ex. 32 was innermost terminating. Hence, there

does not exist an in�nite innermost chain of dependency pairs. However, if we

replace the dependency pair hF(s(x));F(g(h(x)))i by its narrowings

hF(s(0));F(g(a))i (32)

hF(s(x));F(g(x))i; (33)

then there exists an in�nite innermost chain consisting of the new dependency

pair (33), because F(g(x

1

))�

i

!

R

F(s(x

2

))� holds if � instantiates x

1

and x

2

by

0. (In particular, if (33) is again replaced by its narrowings, then we obtain the

new pair hF(s(0));F(s(0))i which obviously forms an in�nite innermost chain.)

So although g(h(x)) has no redex as a proper subterm, narrowing this term leads

to a failure of the innermost termination proof.

So there are examples where narrowing transforms a set of dependency pairs

without in�nite innermost chains into a new set of pairs which form an in�nite

innermost chain. However, this can only happen for examples, where the au-

tomation of our method would have failed anyway, i.e. where the constraints

generated without using narrowing would already have been unsatis�able (as in

Ex. 32). More precisely, if we use the approach of Thm. 35 and if we approx-

imate innermost dependency graphs by computing the innermost connectable

pairs (Thm. 37), then every ordering satisfying the constraints generated with-

out narrowing also satis�es the constraints generated after narrowing depen-

dency pairs. In fact, every constraint obtained when using narrowing is implied
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by the constraints that one would obtain without narrowing. (The reason is that

if hs

0

; t

0

i and hv

0

; w

0

i are narrowings of hs; ti and hv; wi respectively, then hs; ti

is innermost connectable to hv; wi whenever hs

0

; t

0

i is innermost connectable to

hv

0

; w

0

i.) Hence, the application of narrowing can only extend the number of

systems where innermost termination can be proved automatically.

3.5 Summary

Combining all re�nements, our technique to prove innermost termination auto-

matically using the dependency pair approach works as follows:

� Determine the dependency pairs.

� Replace some (dependency) pairs by all their narrowings. Again, this step

could be repeated several times.

� Approximate the innermost dependency graph by estimating for all (de-

pendency) pairs whether an arc exists between two of them. For that

purpose we introduced the function cap

s

.

� Compute the usable rules U, i.e. (a superset of) those rules that can be

used for the reductions between two (dependency) pairs.

� Transform the usable rules and the (dependency) pairs on cycles into in-

equalities.

� Find a well-founded quasi-ordering satisfying the inequalities after nor-

malizing them with respect to one of the possible AFSs.

As for the termination approach, standard techniques like the recursive path or-

dering or polynomial interpretations can be used to �nd these orderings. How-

ever, since the ordering need not be weakly monotonic for tuple symbols, we may

also search for di�erent kinds of orderings, such as polynomial interpretations

where some polynomials have negative coe�cients.

Our approach is the �rst automatic method which can also prove innermost

termination of TRSs that are not terminating. Moreover, for those classes of

TRSs where innermost termination already implies termination, the technique

described in this section can also be used for termination proofs. In particular,

this holds for non-overlapping or at least locally con
uent overlay systems. The

di�erence to the termination technique is that we only need to prove absence

of in�nite innermost chains. For that reason several steps in the technique are

di�erent to the technique of Sect. 2:

� Right-hand sides of narrowed (dependency) pairs do not have to be linear

and they may unify with left-hand sides as long as their mgu does not

instantiate the left-hand sides to normal forms.
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� For computing the innermost dependency graph instead of the functions

ren and cap we use the function cap

s

.

� We restrict ourselves to the usable rules when transforming the rules into

inequalities.

� The quasi-ordering that has to be found in the end need not be weakly

monotonic on tuple symbols (unless explicitly demanded).

As long as the system is non-overlapping it is always advantageous to prove

innermost termination only (instead of termination). The reason is that every

ordering satisfying the constraints of the termination technique in Sect. 2 also

satis�es the constraints of our innermost termination technique, but not vice

versa. For instance, termination of the systems in Ex. 33 and 39 can easily be

proved with the technique introduced in this section, whereas the constraints

generated by the method of Sect. 2 are not satis�ed by any quasi-simpli�cation

ordering. A collection of examples demonstrating the power of our technique to

prove innermost termination can be found in Sect. 5.

4 Conclusion and related work

We have introduced techniques to prove termination and innermost termination

of term rewriting systems automatically. For that purpose we have developed

su�cient and necessary criteria for both termination and innermost termination.

To automate the checking of these criteria, a set of constraints is synthesized

for each TRS and standard techniques developed for termination proofs can be

used to generate a well-founded ordering satisfying these constraints. If such

an ordering can be found, then termination resp. innermost termination of the

system is proved.

Most other methods for automated termination proofs are restricted to sim-

pli�cation orderings. Compared to proving termination directly, our approach

has the advantage that the constraints generated by our method are often sat-

is�ed by standard (simpli�cation) orderings, even if termination of the original

TRS cannot be proved with these orderings. Moreover, for all those TRSs where

termination can be proved with a simpli�cation ordering directly, this simpli�ca-

tion ordering also satis�es the inequalities resulting from our technique. There-

fore, instead of using simpli�cation orderings for direct termination proofs, it

is always advantageous to combine them with the technique presented in this

paper.

We implemented our technique for the generation of constraints and in this

way termination could be proved automatically for many challenge problems

from literature as well as for practically relevant TRSs from di�erent areas

of computer science. See Sect. 5 for a collection of numerous such examples,

including arithmetical operations (e.g. mod, gcd, logarithm, average), sorting
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algorithms (such as selection sort, minimum sort, and quicksort), algorithms on

graphs and trees, and several other well-known non-simply terminating TRSs

(e.g. from [18, 20, 54]).

Our termination criteria are based on the notion of dependency pairs. The

concept of dependency pairs was introduced in [5] and a �rst method for its

automation was proposed in [1]. For that purpose, we transferred the estima-

tion technique [33, 34], which was originally developed for termination proofs

of functional programs, to rewrite systems. However, this �rst method was re-

stricted to non-overlapping constructor systems without nested recursion. In

this approach, the dependency pair technique was based on a special form of

semantic labelling (cf. [60]), called self-labelling (similar to the notion of self-

labelling in [49]). Self-labelling determines unique labels for the terms and a

dependency pair can be regarded as a combination of the label for the left-hand

side with the labels for the right-hand side of a rule.

In [2] we developed a re�ned framework for dependency pairs which is in-

dependent from semantic labelling. Therefore this framework is better suited

for automation (as one does not have to construct an appropriate semantic in-

terpretation any more) and its soundness can be proved in a much easier and

shorter way. Moreover, in this framework we could show that our technique is

applicable to arbitrary TRSs and we proved that the formulated criterion (Thm.

6) is not only su�cient, but also necessary for termination.

The present paper extends the approach of [2] by the introduction of argu-

ment �ltering TRSs, the addition of narrowing dependency pairs, and by proving

that the whole approach up to the search for suitable quasi-orderings is sound

and complete, i.e. the inequalities for which an ordering should be found by

standard techniques are satis�able if and only if the TRS is terminating. This

result suggests that the transformation described in this paper should always

be applied before using any of the standard techniques for termination proofs.

In [3] we presented a modi�cation of the framework, in which the notion of

chains was restricted to innermost chains and we showed that a TRS is inner-

most terminating if and only if no in�nite innermost chains exist for the TRS.

This approach is the �rst automatic method which can also prove innermost ter-

mination of systems that are not terminating. Moreover, our technique can very

successfully be used for termination proofs of non-overlapping systems, because

for those systems innermost termination is already su�cient for termination.

In the present paper we extended the technique described in [3] by a re-

�ned de�nition of innermost dependency graphs, a method to compute better

approximations of these graphs, and a more powerful approach for narrowing

dependency pairs. In Sect. 5 we give a collection of several examples which

can now be proved terminating resp. innermost terminating automatically, but

where automatic proofs using the techniques in [2, 3] failed.

We have presented a sound and complete termination criterion. In contrast

to most other complete approaches (semantic path ordering [40], general path

ordering [20], semantic labelling [60] etc.) our method is particularly well suited
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for automation as has been demonstrated in this paper. The only other complete

criterion that has been used for automatic termination proofs (by Steinbach

[54]) is the approach of transformation orderings [8, 11]. It turns out that the

termination of several examples where the automation of Steinbach failed can

be proved by our technique automatically, cf. Sect. 5.

At �rst sight there seem to be some similarities between our method and for-

ward closures [20, 47]. The idea of forward closures is to restrict the application

of rules to that part of a term created by previous rewrites. Similar to our no-

tion of chains, this notion also results in a sequence of terms, but the semantics

of these sequences are completely di�erent. For example, forward closures are

reductions whereas in general the terms in a chain do not form a reduction. The

reason is that in the dependency pair approach we do not restrict the application

of rules, but we restrict the examination of terms to those subterms that can

possibly be reduced further. Compared to the forward closure approach, the

dependency pair technique has the advantage that it can be used for arbitrary

TRSs, whereas the absence of in�nite forward closures only implies termina-

tion for right-linear [16] or non-overlapping [30] TRSs. Moreover, in contrast to

the dependency pair method, we do not know of any attempt to automate the

forward closure approach.

The framework of dependency pairs, as introduced in this paper, is very gen-

eral and is therefore well suited to be used for more general rewriting problems,

too. For example, the framework of dependency pairs can easily be extended

for termination modulo associativity and commutativity [48]. Moreover, several

well-known and new modularity results can be derived in this framework [4, 6].

5 Examples

This collection of examples demonstrates the power of the described method.

The majority of them occurred as challenge problems in the literature, whereas

the other examples are added to point out speci�c failures of existing techniques.

Sect. 5.1 contains a collection of TRSs where termination can be proved

by the technique of Sect. 2 automatically. Several of these examples are not

simply terminating. Thus, all methods based on simpli�cation orderings fail

in proving termination of these systems. For those examples which are overlay

systems with joinable critical pairs, termination can also be veri�ed by proving

innermost termination using the technique of Sect. 3.

In Sect. 5.2, we consider TRSs which either are not terminating or cannot

be proved terminating by the technique of Sect. 2. For these systems innermost

termination can be proved automatically by the technique of Sect. 3.

In most of the examples, only the inequalities resulting from dependency

pairs on cycles in the (innermost) dependency graph are mentioned. We refer

to these inequalities as the relevant inequalities. But of course, the inequalities

l � r are also synthesized for each (usable) rewrite rule l! r in the term rewrit-
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ing system (and when proving innermost termination, we also obtain certain

monotonicity constraints).

After generating the inequalities, an argument �ltering TRS may be ap-

plied to normalize the resulting constraints. We give at most one AFS for each

example, such that the normalized inequalities are satis�ed by an appropriate

quasi-ordering. In the following collection of examples three di�erent techniques

are used to �nd this quasi-ordering, viz. the recursive path ordering, the lexico-

graphic path ordering, and polynomial interpretations.

5.1 Examples for proving termination

In this section we give a collection of examples where the technique of Sect. 2

can be used to prove termination automatically. Note that for the examples

5.1.39 { 5.1.46 we use the re�nement of narrowing dependency pairs, i.e. these

proofs were not possible with the method of [2].

5.1.1 Division, version 1

The TRS of Ex. 2

minus(x; 0) ! x

minus(s(x); s(y)) ! minus(x; y)

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(minus(x; y); s(y)))

is not simply terminating. In this example, apart from the four inequalities

corresponding to the rewrite rules, two relevant inequalities are obtained.

M(s(x); s(y)) > M(x; y)

Q(s(x); s(y)) > Q(minus(x; y); s(y))

By the AFS minus(x; y)!x, the recursive path ordering satis�es the demands

on the ordering.

5.1.2 Division, version 2

This TRS for division uses di�erent minus-rules. Again, it is not simply termi-

nating.

pred(s(x)) ! x

minus(x; 0) ! x

minus(x; s(y)) ! pred(minus(x; y))

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(minus(x; y); s(y)))
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The inequalities obtained from the dependency pairs on cycles in the dependency

graph are given by:

M(x; s(y)) > M(x; y)

Q(s(x); s(y)) > Q(minus(x; y); s(y)):

Finding a suitable ordering is as easy as it was for the previous example, by

choosing the AFS minus(x; y)!x, pred(x)! x. The demands on the ordering

are then satis�ed by the recursive path ordering.

5.1.3 Division, version 3

This TRS for division uses again di�erent minus-rules. Similar to the preceding

examples it is not simply terminating. In the examples of this collection, we

often use functions like if

minus

to encode conditions. This ensures that conditions

are evaluated �rst (to true or to false) and that the corresponding result is

evaluated afterwards. Hence, the �rst argument of if

minus

is the condition that

has to be tested and the other arguments are the original arguments of minus.

Further evaluation is only possible after the condition has been reduced to true

or to false.

le(0; y) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

minus(0; y) ! 0

minus(s(x); y) ! if

minus

(le(s(x); y); s(x); y)

if

minus

(true; s(x); y) ! 0

if

minus

(false; s(x); y) ! s(minus(x; y))

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(minus(x; y); s(y)))

The relevant inequalities are given by

LE(s(x); s(y)) > LE(x; y)

M(s(x); y) � IF

minus

(le(s(x); y); s(x); y)

IF

minus

(false; s(x); y) > M(x; y)

Q(s(x); s(y)) > Q(minus(x; y); s(y)):

Note that only one of the dependency pairs on a cycle in the dependency graph

should result in a strict inequality, therefore the inequality

M(s(x); y) � IF

minus

(le(s(x); y); s(x); y)
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need not be strict. By normalizing the inequalities with respect to the following

AFS,

minus(x; y) ! x

if

minus

(b; x; y) ! x

IF

minus

(b; x; y) ! x

M(x; y) ! x;

the inequalities are satis�ed by the recursive path ordering.

5.1.4 Plus and minus

The following example demonstrates the use of the dependency graph. For that

purpose we extend the TRS of Ex. 5.1.1 by three additional rules (Ex. 13) and

write in�x operators for the de�ned symbols minus and plus to ease readability.

x� 0 ! x

s(x)� s(y) ! x� y

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(x � y; s(y)))

0+ y ! y

s(x) + y ! s(x+ y)

(x� y)� z ! x� (y + z)

In this example, termination cannot be proved with our method using a

simpli�cation ordering, unless we use the dependency graph to determine that

the dependency pair hM(: : :);P(: : :)i does not occur on any cycle. Then, the

only relevant inequalities are

M(s(x); s(y)) > M(x; y)

Q(s(x); s(y)) > Q(x� y; s(y))

P(s(x); y) > P(x; y)

M(x� y; z) > M(x; y + z):

After normalizing the resulting constraints w.r.t. the AFS x�y!m(x), M(x; y)

!x, they are satis�ed by the recursive path ordering.

5.1.5 Remainder, version 1 { 3

Similar to the TRSs for division, three versions of the following TRS are ob-

tained, which again are not simply terminating. Only one of them is presented.

47



le(0; y) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

minus(x; 0) ! x

minus(s(x); s(y)) ! minus(x; y)

mod(0; y) ! 0

mod(s(x); 0) ! 0

mod(s(x); s(y)) ! if

mod

(le(y; x); s(x); s(y))

if

mod

(true; s(x); s(y)) ! mod(minus(x; y); s(y))

if

mod

(false; s(x); s(y)) ! s(x)

The relevant inequalities of this TRS are given by

LE(s(x); s(y)) > LE(x; y)

M(s(x); s(y)) > M(x; y)

MOD(s(x); s(y)) � IF

mod

(le(y; x); s(x); s(y))

IF

mod

(true; s(x); s(y)) > MOD(minus(x; y); s(y)):

By normalizing the inequalities with respect to the following AFS,

minus(x; y) ! x

mod(x; y) ! x

if

mod

(b; x; y) ! x

MOD(x; y) ! x

IF

mod

(b; x; y) ! x;

the interpreted inequalities are satis�ed by the recursive path ordering.

5.1.6 Greatest common divisor, version 1 { 3

There are also three versions of the following TRS for the computation of the

greatest common divisor, which are not simply terminating. Again, only one of

them is presented.

le(0; y) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

pred(s(x)) ! x

minus(x; 0) ! x
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minus(x; s(y)) ! pred(minus(x; y))

gcd(0; y) ! y

gcd(s(x); 0) ! s(x)

gcd(s(x); s(y)) ! if

gcd

(le(y; x); s(x); s(y))

if

gcd

(true; s(x); s(y)) ! gcd(minus(x; y); s(y))

if

gcd

(false; s(x); s(y)) ! gcd(minus(y; x); s(x))

(Of course the ordering of the arguments in the right-hand side of the last

rule could have been switched. But this version here is even more di�cult:

Termination of the corresponding algorithm cannot be proved by the method of

Walther [58], because this method cannot deal with permutations of arguments.)

The relevant inequalities of this TRS are

LE(s(x); s(y)) > LE(x; y)

M(x; s(y)) > M(x; y)

GCD(s(x); s(y)) � IF

gcd

(le(y; x); s(x); s(y))

IF

gcd

(true; s(x); s(y)) > GCD(minus(x; y); s(y))

IF

gcd

(false; s(x); s(y)) > GCD(minus(y; x); s(x)):

A suitable AFS is given by

pred(x) ! x

minus(x; y) ! x

if

gcd

(b; x; y) ! i

gcd

(x; y)

IF

gcd

(b; x; y) ! I

gcd

(x; y):

The normalized inequalities are satis�ed by the recursive path ordering.

This example was taken from Boyer and Moore [14] and Walther [57]. A

variant of this example could be proved terminating using Steinbach's method

for the automated generation of transformation orderings [54], but there the

rules for le and minus were missing.

5.1.7 Logarithm, version 1

The following TRS computes the dual logarithm.

half(0) ! 0

half(s(s(x))) ! s(half(x))

log(s(0)) ! 0

log(s(s(x))) ! s(log(s(half(x))))
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The relevant inequalities of this TRS are

HALF(s(s(x))) > HALF(x)

LOG(s(s(x))) > LOG(s(half(x))):

No AFS is needed since the inequalities are satis�ed by the recursive path order-

ing. (Termination of the original system can also be proved using the recursive

path ordering with precedence log . s . half.)

5.1.8 Logarithm, version 2 { 4

The following TRS again computes the dual logarithm, but instead of half now

the function quot is used. Depending on which version of quot is used, three dif-

ferent versions of the TRS are obtained (all of which are not simply terminating,

since the quot TRS already was not simply terminating).

minus(x; 0) ! x

minus(s(x); s(y)) ! minus(x; y)

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(minus(x; y); s(y)))

log(s(0)) ! 0

log(s(s(x))) ! s(log(s(quot(x; s(s(0))))))

There are three inequalities obtained from the dependency pairs on cycles in

the dependency graph:

M(s(x); s(y)) > M(x; y)

Q(s(x); s(y)) > Q(minus(x; y); s(y))

LOG(s(s(x))) > LOG(s(quot(x; s(s(0))))):

The inequalities normalized by the AFS quot(x; y)! x, minus(x; y)!x are sat-

is�ed by the recursive path ordering.

5.1.9 Eliminating duplicates

The following TRS eliminates duplicates from a list. To represent lists the con-

structors nil and add are used, where nil represents the empty list and add(n; x)

represents the insertion of n into the list x.

eq(0; 0) ! true

eq(0; s(x)) ! false

eq(s(x); 0) ! false

eq(s(x); s(y)) ! eq(x; y)
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rm(n; nil) ! nil

rm(n; add(m;x)) ! if

rm

(eq(n;m); n; add(m;x))

if

rm

(true; n; add(m;x)) ! rm(n; x)

if

rm

(false; n; add(m;x)) ! add(m; rm(n; x))

purge(nil) ! nil

purge(add(n; x)) ! add(n; purge(rm(n; x)))

The relevant inequalities are

EQ(s(x); s(y)) > EQ(x; y)

RM(n; add(m;x)) � IF

rm

(eq(n;m); n; add(m;x))

IF

rm

(true; n; add(m;x)) > RM(n; x)

IF

rm

(false; n; add(m;x)) > RM(n; x)

PURGE(add(n; x)) > PURGE(rm(n; x)):

By normalizing the inequalities with respect to the AFS

rm(n; x) ! x

if

rm

(b; x; y) ! y

RM(n; x) ! x

IF

rm

(b; x; y) ! y;

the inequalities are satis�ed by the recursive path ordering.

This example comes from Walther [57] and a similar example was mentioned

by Steinbach [54], but in Steinbach's version the rules for eq and if

rm

were

missing.

If in the right-hand side of the last rule, add(n; purge(rm(n; x))), the n is

replaced by a term containing add(n; x) then a non-simply terminating TRS is

obtained, but termination can still be proved in the same way.

5.1.10 Minimum sort

This TRS can be used to sort a list x by repeatedly removing its minimum. For

that purpose elements of x are shifted into the second argument of minsort, until

the minimum of the list is reached. Then the function rm is used to eliminate

all occurrences of the minimum and �nally minsort is called recursively on the

remaining list. Hence, minsort does not only sort a list but it also eliminates

duplicates. (The corresponding version of minsort where duplicates are not

eliminated could also be proved terminating with our technique.)

eq(0; 0) ! true

eq(0; s(x)) ! false
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eq(s(x); 0) ! false

eq(s(x); s(y)) ! eq(x; y)

le(0; y) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

app(nil; y) ! y

app(add(n; x); y) ! add(n; app(x; y))

min(add(n; nil)) ! n

min(add(n; add(m;x))) ! if

min

(le(n;m); add(n; add(m;x)))

if

min

(true; add(n; add(m;x))) ! min(add(n; x))

if

min

(false; add(n; add(m;x))) ! min(add(m;x))

rm(n; nil) ! nil

rm(n; add(m;x)) ! if

rm

(eq(n;m); n; add(m;x))

if

rm

(true; n; add(m;x)) ! rm(n; x)

if

rm

(false; n; add(m;x)) ! add(m; rm(n; x))

minsort(nil; nil) ! nil

minsort(add(n; x); y) ! if

minsort

(eq(n;min(add(n; x))); add(n; x); y)

if

minsort

(true; add(n; x); y) ! add(n;minsort(app(rm(n; x); y); nil))

if

minsort

(false; add(n; x); y) ! minsort(x; add(n; y))

The relevant inequalities of this TRS are given by

EQ(s(x); s(y)) > EQ(x; y)

LE(s(x); s(y)) > LE(x; y)

APP(add(n; x); y) > APP(x; y)

MIN(add(n; add(m;x))) � IF

min

(le(n;m); add(n; add(m;x)))

IF

min

(true; add(n; add(m;x))) > MIN(add(n; x))

IF

min

(false; add(n; add(m;x))) > MIN(add(m;x))

RM(n; add(m;x)) � IF

rm

(eq(n;m); n; add(m;x))

IF

rm

(true; n; add(m;x)) > RM(n; x)

IF

rm

(false; n; add(m;x)) > RM(n; x)

MINSORT(add(n; x); y) > IF

minsort

(eq(n;min(add(n; x))); add(n; x); y)

IF

minsort

(true; add(n; x); y) � MINSORT(app(rm(n; x); y); nil)

IF

minsort

(false; add(n; x); y) � MINSORT(x; add(n; y)):

These constraints are satis�ed by a polynomial ordering where false, true, 0,

nil, eq and le are mapped to 0, s(x) is mapped to x + 1, min(x), if

min

(b; x),
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EQ(x; y), LE(x; y), MIN(x), and IF

min

(b; x) are mapped to x, add(n; x) is mapped

to n+x+1, app(x; y) and APP(x; y) are mapped to x+y, rm(n; x), if

rm

(b; n; x),

RM(n; x), and IF

rm

(b; n; x) are mapped to x, minsort(x; y) and if

minsort

(b; x; y)

are mapped to x+ y, MINSORT(x; y) is mapped to (x + y)

2

+ 2x+ y + 1, and

IF

minsort

(b; x; y) is mapped to (x+ y)

2

+ 2x+ y.

This example is inspired by an algorithm from Boyer and Moore [14] and

Walther [58]. In the corresponding example from Steinbach [54] the rules for

eq, le, if

rm

, and if

min

were missing.

5.1.11 Quicksort

The following TRS is used to sort a list by the well-known quicksort algorithm.

It uses the functions low(n; x) (resp. high(n; x)) which return the sublist of x

containing only the elements smaller than or equal to (resp. greater than) n.

le(0; y) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

app(nil; y) ! y

app(add(n; x); y) ! add(n; app(x; y))

low(n; nil) ! nil

low(n; add(m;x)) ! if

low

(le(m;n); n; add(m;x))

if

low

(true; n; add(m;x)) ! add(m; low(n; x))

if

low

(false; n; add(m;x)) ! low(n; x)

high(n; nil) ! nil

high(n; add(m;x)) ! if

high

(le(m;n); n; add(m;x))

if

high

(true; n; add(m;x)) ! high(n; x)

if

high

(false; n; add(m;x)) ! add(m; high(n; x))

quicksort(nil) ! nil

quicksort(add(n; x)) ! app(quicksort(low(n; x));

add(n; quicksort(high(n; x))))

The relevant inequalities are

LE(s(x); s(y)) > LE(x; y)

APP(add(n; x); y) > APP(x; y)

LOW(n; add(m;x)) � IF

low

(le(m;n); n; add(m;x))

IF

low

(true; n; add(m;x)) > LOW(n; x)

IF

low

(false; n; add(m;x)) > LOW(n; x)

HIGH(n; add(m;x)) � IF

high

(le(m;n); n; add(m;x))
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IF

high

(true; n; add(m;x)) > HIGH(n; x)

IF

high

(false; n; add(m;x)) > HIGH(n; x)

QUICKSORT(add(n; x)) > QUICKSORT(low(n; x))

QUICKSORT(add(n; x)) > QUICKSORT(high(n; x)):

By normalizing the inequalities by the AFS

low(n; x) ! x

high(n; x) ! x

if

low

(b; n; x) ! x

if

high

(b; n; x) ! x

IF

low

(b; n; x) ! I

low

(n; x)

IF

high

(b; n; x) ! I

high

(n; x);

the recursive path ordering satis�es the demands on the ordering.

Steinbach could prove termination of a corresponding example with trans-

formation orderings [54], but in his example the rules for le, if

low

, if

high

, and app

were omitted.

If in the right-hand side of the last rule,

app(quicksort(low(n; x)); add(n; quicksort(high(n; x))));

one of the n's is replaced by a term containing add(n; x) then a non-simply

terminating TRS is obtained. With our technique, termination can still be

proved in the same way.

5.1.12 Permutation of lists

This example is a TRS from Walther [58] to compute a permutation of a list.

For instance, shu�e([1; 2; 3; 4; 5]) reduces to [1; 5; 2; 4; 3].

app(nil; y) ! y

app(add(n; x); y) ! add(n; app(x; y))

reverse(nil) ! nil

reverse(add(n; x)) ! app(reverse(x); add(n; nil))

shu�e(nil) ! nil

shu�e(add(n; x)) ! add(n; shu�e(reverse(x)))

The inequalities obtained from the dependency pairs on cycles in the dependency

graph are

APP(add(n; x); y) > APP(x; y)

REVERSE(add(n; x)) > REVERSE(x)

SHUFFLE(add(n; x)) > SHUFFLE(reverse(x)):
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A suitable polynomial interpretation of the function symbols is: nil is mapped

to 0, add(n; x) is mapped to x + 1, shu�e(x), SHUFFLE(x), reverse(x), and

REVERSE(x) are mapped to x, and app(x; y) and APP(x; y) are mapped to

x+ y.

5.1.13 Reachability on directed graphs

To check whether there is a path from the node x to the node y in a directed

graph g, the term reach(x; y; g; �) must be reducible to true with the rules of the

following TRS from Giesl [32]. The fourth argument of reach is used to store

edges that have already been examined but that are not included in the actual

solution path. If an edge from u to v (with x 6= u) is found, then it is rejected

at �rst. If an edge from x to v (with v 6= y) is found then one either searches

for further edges beginning in x (then one will never need the edge from x to

v again) or one tries to �nd a path from v to y and now all edges that were

rejected before have to be considered again.

The function union is used to unite two graphs. The constructor � denotes

the empty graph and edge(x; y; g) represents the graph g extended by an edge

from x to y. Nodes are labelled with natural numbers.

eq(0; 0) ! true

eq(0; s(x)) ! false

eq(s(x); 0) ! false

eq(s(x); s(y)) ! eq(x; y)

or(true; y) ! true

or(false; y) ! y

union(�; h) ! h

union(edge(x; y; i); h) ! edge(x; y; union(i; h))

reach(x; y; �; h) ! false

reach(x; y; edge(u; v; i); h) ! if

reach 1

(eq(x; u); x; y; edge(u; v; i); h)

if

reach 1

(true; x; y; edge(u; v; i); h) ! if

reach 2

(eq(y; v); x; y; edge(u; v; i); h)

if

reach 2

(true; x; y; edge(u; v; i); h) ! true

if

reach 2

(false; x; y; edge(u; v; i); h) ! or(reach(x; y; i; h);

reach(v; y; union(i; h); �))

if

reach 1

(false; x; y; edge(u; v; i); h) ! reach(x; y; i; edge(u; v; h))

The inequalities obtained from dependency pairs on cycles in the dependency

graph are given by

EQ(s(x); s(y)) > EQ(x; y)

UNION(edge(x; y; i); h) > UNION(i; h)
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REACH(x; y; edge(u; v; i); h) � IF

reach 1

(eq(x; u); x; y; edge(u; v; i); h)

IF

reach 1

(true; x; y; edge(u; v; i); h) � IF

reach 2

(eq(y; v); x; y; edge(u; v; i); h)

IF

reach 2

(false; x; y; edge(u; v; i); h) > REACH(x; y; i; h)

IF

reach 2

(false; x; y; edge(u; v; i); h) > REACH(v; y; union(i; h); �)

IF

reach 1

(false; x; y; edge(u; v; i); h) > REACH(x; y; i; edge(u; v; h)):

A mapping to polynomials results in a suitable ordering. The interpretation

is: eq(x; y), true, false, �, and 0 are mapped to 0, or(x; y) is mapped to x + y,

s(x) is mapped to x + 1, EQ(x; y) is mapped to x, edge(x; y; g) is mapped

to g + 2, union(g; h) and UNION(g; h) are mapped to g + h, reach(x; y; g; h),

if

reach 1

(b; x; y; g; h), and if

reach 2

(b; x; y; g; h) are mapped to 0, REACH(x; y; g; h)

is mapped to (g+h)

2

+2g+h+2, IF

reach 1

(b; x; y; g; h) is mapped to (g+h)

2

+

2g + h+ 1, and IF

reach 2

(b; x; y; g; h) is mapped to (g + h)

2

+ 2g + h.

5.1.14 Comparison of binary trees

This TRS is used to �nd out if one binary tree has less leaves than another one.

It uses a function concat(x; y) to replace the rightmost leaf of x by y. Here,

cons(u; v) is used to built a tree with the two direct subtrees u and v.

concat(leaf; y) ! y

concat(cons(u; v); y) ! cons(u; concat(v; y))

less leaves(x; leaf) ! false

less leaves(leaf; cons(w; z)) ! true

less leaves(cons(u; v); cons(w; z)) ! less leaves(concat(u; v); concat(w; z))

The inequalities corresponding to the dependency pairs on cycles in the depen-

dency graph are:

CONCAT(cons(u; v); y) > CONCAT(v; y)

LESS LEAVES(cons(u; v); cons(w; z)) > LESS LEAVES(concat(u; v); concat(w; z)):

A suitable (polynomial) interpretation is: leaf, false, and true are mapped to 0,

cons(u; v) is mapped to 1 + u+ v, concat(u; v) and CONCAT(u; v) are mapped

to u+ v, and less leaves(x; y) and LESS LEAVES(x; y) are mapped to x.

If concat(w; z) in the second argument of less leaves (in the right-hand side of

the last rule) would be replaced by an appropriate argument, we would obtain

a non-simply terminating TRS whose termination could be proved in the same

way.
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5.1.15 Average of naturals

The following locally con
uent overlay system computes the average of two

numbers [20].

average(s(x); y) ! average(x; s(y))

average(x; s(s(s(y)))) ! s(average(s(x); y))

average(0; 0) ! 0

average(0; s(0)) ! 0

average(0; s(s(0))) ! s(0)

The relevant inequalities are

AVERAGE(s(x); y) > AVERAGE(x; s(y))

AVERAGE(x; s(s(s(y)))) > AVERAGE(s(x); y)):

By the following polynomial interpretation, termination of this TRS is easily

proved: 0 is mapped to 0, s(x) is mapped to x + 1, average(x; y) is mapped to

x+ y, and AVERAGE(x; y) is mapped to 2x+ y.

5.1.16 Plus and times

The following TRS [20] is again a locally con
uent overlay system. To ease

readability we use an in�x notation for + and �.

x� 0 ! 0

x� s(y) ! (x� y) + x

x+ 0 ! x

0+ x ! x

x+ s(y) ! s(x+ y)

s(x) + y ! s(x+ y)

Applying the technique results in a set of inequalities which is satis�ed by the

polynomial interpretation where 0 is mapped to 0, s(x) is mapped to x + 1,

x + y is mapped to the sum of x and y, x � y is mapped to the product of x

and y, TIMES(x; y) is mapped to y, and P(x; y) is mapped to the sum of x and

y (where P denotes the tuple symbol for `+').

5.1.17 Summing elements of lists

This TRS, which has overlapping rules, can be used to compute the sum of all

elements of a list [2]. Here, x. l represents the insertion of a number x into a list

l (where x. y. l abbreviates (x. (y. l)) ), app computes the concatenation of lists,
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and sum(l) is used to compute the sum of all numbers in l (e.g. sum applied to

the list [1; 2; 3] returns [1 + 2 + 3]).

app(nil; k) ! k

app(l; nil) ! l

app(x. l; k) ! x. app(l; k)

sum(x. nil) ! x. nil

sum(x. y. l) ! sum((x+ y). l)

sum(app(l; x. y. k)) ! sum(app(l; sum(x. y. k)))

0+ y ! y

s(x) + y ! s(x+ y)

While this system is not simply terminating, the inequalities generated by the

technique are satis�ed by the polynomial ordering where nil is mapped to the

constant 0, x. l is mapped to l + 1, x + y is mapped to the sum of x and y,

app(l; k) is mapped to l + k + 1, sum(l) is mapped to the constant 1, APP(l; k)

and SUM(l) are both mapped to l, and P(x; y) is mapped to x.

If the above TRS is extended by the rules

sum(0.x+ y. l) ! pred(sum(s(x). y. l))

pred(s(x). nil) ! x. nil;

then termination can still be proved in the same way (where the polynomial

interpretation should map pred(l) to the constant 1).

5.1.18 Addition and subtraction

The following system is again overlapping and not simply terminating.

minus(x; 0) ! x

minus(s(x); s(y)) ! minus(x; y)

double(0) ! 0

double(s(x)) ! s(s(double(x)))

plus(0; y) ! y

plus(s(x); y) ! s(plus(x; y))

plus(s(x); y) ! plus(x; s(y))

plus(s(x); y) ! s(plus(minus(x; y); double(y)))

The inequalities generated by the technique of Sect. 2 are satis�ed by the lexico-

graphic path ordering, after normalizing the inequalities by the AFS minus(x; y)

!x.

58



5.1.19 Addition with nested recursion, version 1

If the following additional rule is added to the above system, then it is turned

into a TRS that is not an overlay system any more and which furthermore

introduces nested recursion.

plus(s(plus(x; y)); z) ! s(plus(plus(x; y); z))

Still, the resulting inequalities are satis�ed using the same AFS and the

lexicographic path ordering.

5.1.20 Addition with nested recursion, version 2

The following alternative TRS for addition from Steinbach [54] has nested re-

cursion, too.

0+ y ! y

s(x) + 0 ! s(x)

s(x) + s(y) ! s(s(x) + (y + 0))

The `natural' polynomial interpretation (where + is mapped to the addition)

maps left and right-hand sides of the rules to the same numbers. Therefore

this polynomial ordering cannot be used for a direct termination proof, but it

nevertheless satis�es the inequalities generated by the technique of Sect. 2. In

this way, termination can easily be proved.

5.1.21 Multiplication and addition

The following example is taken from Dershowitz [18].

x� (y + 1) ! (x� (y + (1� 0))) + x

x� 1 ! x

x+ 0 ! x

x� 0 ! 0

The only inequality resulting from a dependency pair on a cycle in the depen-

dency graph is TIMES(x; y + 1) > TIMES(x; y + (1� 0)).

This system is not simply terminating (and Dershowitz illustrates the use of

the semantic path ordering with it). However, termination of this example can

be proved automatically. The inequalities obtained are satis�ed by the natural

polynomial ordering, where TIMES(x; y) is mapped to y.
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5.1.22 Extended multiplication and addition

Similarly, termination of the following `extended' version of the above system

can be proved. In this system, the full rules for + and � are added. Again, this

system is not an overlay system.

x� (y + s(z)) ! (x� (y + (s(z)� 0))) + (x� s(z))

x� 0 ! 0

x� s(y) ! (x� y) + x

x+ 0 ! x

x+ s(y) ! s(x + y)

The generated inequalities for this extended example, i.e. the inequalities cor-

responding to the rewrite rules and

TIMES(x; y + s(z)) � TIMES(x; s(z))

TIMES(x; y + s(z)) > TIMES(x; y + (s(z)� 0))

TIMES(x; s(y)) > TIMES(x; y)

P(x; s(y)) > P(x; y)

are satis�ed by the same polynomial ordering that has been used above (where

P(x; y) and TIMES(x; y) are both mapped to y).

5.1.23 Nested recursion, version 1

The following system was introduced by Giesl [34, `nest2'] as an example for a

small TRS with nested recursion where all simpli�cation orderings fail.

f(0; y) ! 0

f(s(x); y) ! f(f(x; y); y)

For this example, a polynomial ordering can be used where 0 and s are inter-

preted as usual and both f(x; y) and F(x; y) are mapped to x.

5.1.24 Nested recursion, version 2

This system by Walther, which is similar to the preceding one, has been exam-

ined in [54].

f(0) ! s(0)

f(s(0)) ! s(0)

f(s(s(x))) ! f(f(s(x)))

The inequalities resulting from our transformation are satis�ed by the polyno-

mial ordering, where f(x) is mapped to the constant 1, F(x) is mapped to x,

and where 0 and s are interpreted as usual.
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5.1.25 Nested recursion, version 3

The following TRS by Ferreira and Zantema [24] is a string rewriting system

with minimal ordinal !

!

associated to it.

f(g(x)) ! g(f(f(x)))

f(h(x)) ! h(g(x))

The relevant inequalities corresponding to this system are

F(g(x)) > F(x)

F(g(x)) > F(f(x)):

After normalizing the inequalities by the AFS

h(x) ! h

0

f(x) ! x;

all inequalities are satis�ed by the recursive path ordering.

5.1.26 Nested recursion, version 4

The following TRS is again an example of a TRS for which all kind of path

orderings cannot show termination directly, but these path orderings can be

used for solving the inequalities resulting from our technique.

f(x) ! s(x)

f(s(s(x))) ! s(f(f(x)))

The inequalities to satisfy are

f(x) � s(x)

f(s(s(x))) � s(f(f(x)))

F(s(s(x))) > F(x)

F(s(s(x))) > F(f(x)):

An appropriate path ordering is found by choosing f and s to be equal in the

precedence.

5.1.27 Nested symbols on left-hand sides

The following example is from Dershowitz [19]. It has been proved terminating

by a lexicographic combination of two orderings.

f(f(x)) ! g(f(x))

g(g(x)) ! f(x)
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The inequalities corresponding to dependency pairs on cycles in the dependency

graph are

F(f(x)) > F(x)

F(f(x)) � G(f(x))

G(g(x)) > F(x):

By choosing f and g as well as F and G equal in the precedence, the inequalities

are satis�ed by the recursive path ordering.

5.1.28 Nested symbols on both sides of rules

Termination of the following TRS cannot be proved by the lexicographic path

ordering and therefore this is one of the systems for which the semantic path

ordering has been used in literature [19]. However, the system can be shown to

terminate using the lexicographic path ordering after applying our technique,

since the demanded ordering may now be a weakly monotonic ordering instead

of a monotonic ordering. Therefore, after mapping some function symbols to

some of their arguments or to a constant the lexicographic path ordering can

nevertheless be used to prove termination of the TRS.

(x� y)� z ! x� (y � z)

(x+ y)� z ! (x � z) + (y � z)

z � (x+ f(y)) ! g(z; y)� (x+ a)

Apart from the three inequalities corresponding to the rewrite rules, four other

inequalities are obtained from the cycles in the dependency graph.

TIMES(x� y; z) > TIMES(y; z)

TIMES(x� y; z) > TIMES(x; y � z)

TIMES(x+ y; z) > TIMES(x; z)

TIMES(x+ y; z) > TIMES(y; z)

The seven inequalities are satis�ed by the lexicographic path ordering if the

inequalities are normalized by the AFS g(z; y)! z.

5.1.29 A TRS that is not left-linear

The following TRS, originally from Geerling [28], cannot be proved terminating

by the recursive path ordering (but one needs a generalization of the recur-

sive path ordering as de�ned by Ferreira [27]). It is also very easily proved

terminating by the automatic technique described in this paper.

f(s(x); y; y) ! f(y; x; s(x))
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The only two generated inequalities are

f(s(x); y; y) � f(y; x; s(x))

F(s(x); y; y) > F(y; x; s(x))

which are satis�ed by mapping f(x; y; z) to 0, mapping s(x) to x+1, and mapping

F(x; y; z) to x+ y.

5.1.30 Advantage of the dependency graph, version 1

The following system is from [54].

f(a; b) ! f(a; c)

f(c; d) ! f(b; d)

With our method, the termination proof for this system is trivial, because its

dependency graph does not contain any cycles. This can easily be determined

automatically, as F(a; c) is not connectable to F(a; b) or F(c; d), neither is F(c; d)

connectable to F(a; b) or F(c; d).

5.1.31 Advantage of the dependency graph, version 2

Another example where the dependency graph plays an important role is a

TRS introduced by Ferreira and Zantema [26] to demonstrate the technique of

`dummy elimination'.

f(g(x)) ! f(a(g(g(f(x))); g(f(x))))

Since F(a(y; z)) does not unify with F(g(x)), the only two inequalities to satisfy

are

f(g(x)) � f(a(g(g(f(x))); g(f(x))))

F(g(x)) > F(x):

The recursive path ordering satis�es the inequalities when normalizing them by

the AFS a(x; y)! a

0

.

5.1.32 A TRS that is not totally terminating, version 1

The most famous example of a TRS that is terminating, but not totally termi-

nating is the following [18].

f(a) ! f(b)

g(b) ! g(a)

With our approach, termination of this system is obvious, because the depen-

dency graph does not contain any cycles.
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5.1.33 A TRS that is not totally terminating, version 2

A TRS introduced by Ferreira [27] as an example of a TRS that is not totally

terminating and in particular for which the recursive path ordering and the

Knuth-Bendix ordering cannot be used to prove termination, is given by:

p(f(f(x))) ! q(f(g(x)))

p(g(g(x))) ! q(g(f(x)))

q(f(f(x))) ! p(f(g(x)))

q(g(g(x))) ! p(g(f(x))):

Termination is trivially concluded from the fact that there are no cycles in the

dependency graph.

5.1.34 Systems with `unde�ned' function symbols

The following well-known system from Dershowitz [18] is one of the smallest

non-simply terminating TRSs.

f(f(x)) ! f(g(f(x)))

As F(g(f(x))) is not connectable to F(f(x)), the only dependency pair on a

cycle of the dependency graph is hF(f(x));F(x)i. The resulting inequalities are

for instance satis�ed by a polynomial ordering where f(x) is mapped to x + 1

and g is mapped to the identity. In a completely analogous way, termination of

the one rule TRS f(g(x)) ! f(h(g(x))) from Bellegarde and Lescanne [10] and

of the one rule system f(g(x; y); y)! f(h(g(x; y)); a) from Steinbach [54] can also

be proved.

5.1.35 Mutual recursion, version 1

The following system is from Steinbach [54] again.

g(s(x)) ! f(x)

f(0) ! s(0)

f(s(x)) ! s(s(g(x)))

g(0) ! 0

The relevant inequalities are

G(s(x)) � F(x)

F(s(x)) > G(x):

After normalizing the resulting inequalities w.r.t. the AFS g(x)!x, the con-

straints are satis�ed by the recursive path ordering.
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5.1.36 Mutual recursion, version 2

The following system was given to us by K�uhler.

minus(x; 0) ! x

minus(s(x); s(y)) ! minus(x; y)

f(0) ! s(0)

f(s(x)) ! minus(s(x); g(f(x)))

g(0) ! 0

g(s(x)) ! minus(s(x); f(g(x)))

The inequalities resulting from dependency pairs on cycles of the innermost

dependency graph are

M(s(x); s(y)) > M(x; y)

F(s(x)) > F(x)

F(s(x)) � G(f(x))

G(s(x)) > G(x)

G(s(x)) > F(g(x)):

After normalizing the resulting constraints with the AFS minus(x; y)!x, the

resulting inequalities are satis�ed by the recursive path ordering (using a prece-

dence where f and s are equal and greater than g.)

5.1.37 Even and Odd

The following (non-simply terminating) TRS can be used to compute whether a

natural number is even resp. odd. More precisely, evenodd(t; 0) reduces to true

if t is even and evenodd(t; s(0)) reduces to true if t is odd. (In other words, the

second argument of evenodd determines whether evenodd computes the `even' or

the `odd' function. Such rewrite systems are often obtained when transforming

mutually recursive functions into one function without mutual recursion, cf.

[34].)

not(true) ! false

not(false) ! true

evenodd(x; 0) ! not(evenodd(x; s(0)))

evenodd(0; s(0)) ! false

evenodd(s(x); s(0)) ! evenodd(x; 0)

We obtain the following relevant inequalities.

EVENODD(x; 0) � EVENODD(x; s(0))

EVENODD(s(x); s(0)) > EVENODD(x; 0)
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After application of the AFS not(x)! n, EVENODD(x; y)!x, the recursive

path ordering satis�es the resulting constraints.

5.1.38 Reversing Lists

The following system is a slight variant of a TRS proposed by Huet and Hullot

[38, `brev']. Given a list x. l, the function rev calls two other functions rev1 and

rev2, where rev1(x; l) returns the last element of x. l and rev2(x; l) returns the

reversed list rev(x. l) without its �rst element. Hence, rev(rev2(y; l)) returns the

list y. l without its last element. Note that this system is mutually recursive

and that mutually recursive functions also occur nested.

rev(nil) ! nil

rev(x. l) ! rev1(x; l). rev2(x; l)

rev1(0; nil) ! 0

rev1(s(x); nil) ! s(x)

rev1(x; y. l) ! rev1(y; l)

rev2(x; nil) ! nil

rev2(x; y. l) ! rev(x. rev(rev2(y; l)))

The relevant inequalities are

REV(x. l) > REV2(x; l)

REV1(x; y. l) > REV1(y; l)

REV2(x; y. l) > REV2(y; l)

REV2(x; y. l) � REV(rev2(y; l))

REV2(x; y. l) � REV(x. rev(rev2(y; l))):

We use the following AFS:

x. y ! f(y)

s(x) ! s

0

rev(x) ! x

rev1(x; y) ! y

rev2(x; y) ! y

REV(x) ! x

REV1(x; y) ! y

REV2(x; y) ! y:

Then the resulting constraints are satis�ed by the recursive path ordering.
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5.1.39 Narrowing of dependency pairs

The following example (Ex. 20) demonstrates the need for narrowing depen-

dency pairs. We replace the last rule of the TRS in Ex. 5.1.4 by a `commuta-

tivity' rule (here, s0 abbreviates s(0) etc.):

x� 0 ! x

s(x)� s(y) ! x� y

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(x � y; s(y)))

0+ y ! y

s(x) + y ! s(x+ y)

(x � s0) + (y � ssz) ! (y � ssz) + (x� s0):

Without the use of narrowing, we would obtain the constraint

P(x � s0; y � ssz) > P(y � ssz; x� s0);

because the dependency pair hP(x� s0; y� ssz);P(y� ssz; x� s0)i forms a cycle

of the dependency graph. In order to use a simpli�cation ordering we have to

normalize the inequalities w.r.t. an AFS which rewrites x � y to m(x) (or to

x). However, then this constraint is not satis�ed by any well-founded ordering

closed under substitution. Therefore we replace this dependency pair by its

narrowings

hP(x � s0; sy � ssz);P(y � sz; x� s0)i

hP(sx� s0; y � ssz);P(y � ssz; x� 0)i:

Now the resulting constraints are again satis�ed by the recursive path ordering

if we use the AFS x� y!x, M(x; y)!x.

5.1.40 Narrowing to approximate the dependency graph

Narrowing of dependency pairs may also be helpful in examples where the failure

of the automation is due to our approximation of dependency graphs. For

example, let us add the following second `commutation' rule to the TRS from

Ex. 5.1.39

(x+ s(0)) + (y + s(s(z)))! (y + s(s(z))) + (x+ s(0)):

Now we obtain three additional dependency pairs.

hP(x+ s0; y + ssz);P(y; ssz)i (34)

hP(x+ s0; y + ssz);P(x; s0)i (35)

hP(x+ s0; y + ssz);P(y + ssz; x+ s0)i (36)
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We have to compute a graph containing the dependency graph. For that

purpose, we draw an arc from a dependency pair hs; ti to hv; wi whenever

ren(cap(t)) and v are uni�able. However, for some examples this approxi-

mation is too rough.

Note that in our approximation of the dependency graph there would be

an arc from (36) to itself, because after replacing y + ssz and x + s0 by new

variables, the right- and the left-hand side of (36) obviously unify. Hence, we

have to demand that the dependency pair (36) is strictly decreasing, i.e.

P(x + s0; y + ssz) > P(y + ssz; x+ s0):

But this constraint is not satis�ed by any polynomial or any path ordering

amenable to automation

9

.

However, in the real dependency graph, there is no arc from (36) to itself,

because there is no substitution � such that y+ ssz� reduces to x+ s0�. Hence,

there is no cycle consisting of (36) only and therefore it is su�cient if (36) is

just weakly decreasing. In this way, the constraints resulting from this example

would again be satis�ed by the recursive path ordering (after normalisation

w.r.t. the AFS mentioned in Ex. 5.1.39).

Note that the narrowing re�nement introduced in Sect. 2.5 also serves to

compute a better approximation of the dependency graph. The right-hand side

of (36) is linear and it does not unify with the left-hand side of any dependency

pair. Hence, we may replace (36) by its narrowings:

hP(x+ s0; 0+ ssz); P(ssz; x+ s0)i (37)

hP(x+ s0; sy + ssz); P(s(y + sz); x+ s0)i (38)

hP(0+ s0; y + ssz); P(y + ssz; s0)i (39)

hP(sx+ s0; y + ssz); P(y + ssz; s(x+ 0))i: (40)

Now the technique of connectable terms presented in Thm. 19 immediately

proves that (37) - (40) are not on a cycle of the dependency graph, because

application of ren and cap to their right-hand sides yields terms of the form

P(s(: : :); : : :) or P(: : : ; s(: : :)) which do not unify with

P(: : :+ : : : ; : : :+ : : :):

9

This inequality is not satis�ed by any path ordering (that can be generated automatically),

because neither a lexicographic comparison nor a comparison as multisets makes (x+ s0; y +

ssz) greater than (y + ssz; x + s0). When using polynomial orderings, P is mapped to some

polynomial p. Then we either have lim

y!1

( p(y; x) � p(x; y) ) = 1 or lim

y!1

( p(y; x) �

p(x; y) ) = �1. In the �rst case, P(y+ ssz; x+ s0) > P(x+ s0; y+ ssz) holds for large enough

y and in the second case P(y + ssz; x+ s0) > P(x+ s0; y + ssz) holds for large enough x.
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5.1.41 Factorial

The following non-simply terminating TRS for computing the factorial of a

natural number (cf. [54, 60])

p(s(x)) ! x

fac(0) ! s(0)

fac(s(x)) ! s(x)� fac(p(s(x)))

cannot be proved terminating automatically by the technique described in [2],

since there narrowing dependency pairs was not considered. By using narrowing,

the dependency pair

hFAC(s(x));FAC(p(s(x)))i

is replaced by the dependency pair

hFAC(s(x));FAC(x)i

resulting in inequalities which can easily be satis�ed.

5.1.42 Binary numbers

The following non-simply terminating example is due to Geser [11, 54].

half(0) ! 0

half(s(0)) ! 0

half(s(s(x))) ! s(half(x))

lastbit(0) ! 0

lastbit(s(0)) ! s(0)

lastbit(s(s(x))) ! lastbit(x)

conv(0) ! nil. 0

conv(s(x)) ! conv(half(s(x))). lastbit(s(x))

Narrowing the dependency pair hCONV(s(x));CONV(half(s(x)))i results in

hCONV(s(0));CONV(0)i and hCONV(s(s(x)));CONV(s(half(x)))i. After this re-

placement, the relevant inequalities are

HALF(s(s(x))) > HALF(x)

LASTBIT(s(s(x))) > LASTBIT(x)

CONV(s(s(x))) > CONV(s(half(x))):

After normalizing the inequalities w.r.t. the AFS half(x)! x, x. y!x, the con-

straints are satis�ed by the recursive path ordering.
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5.1.43 Termination by narrowing, version 1

The following TRS by Plaisted [52, 54]

f(c) ! g(h(c))

h(g(x)) ! g(h(f(x)))

k(x; h(x); c) ! h(x)

k(f(x); y; x) ! f(x)

can automatically be proved terminating by only replacing the dependency pair

hH(g(x));H(f(x))i by its narrowing hH(g(c));H(g(h(c)))i and computing the de-

pendency graph. As there is no cycle consisting of the resulting pairs, the TRS

is terminating.

5.1.44 Termination by narrowing, version 2

To prove termination of the following TRS from Bachmair [9, 54]

f(h(x)) ! f(i(x))

g(i(x)) ! g(h(x))

h(a) ! b

i(a) ! b

the dependency pairs

hF(h(x));F(i(x))i

hG(i(x));G(h(x))i

are replaced by their narrowings

hF(h(a));F(b)i

hG(i(a));G(b)i:

Then termination is automatically proved by the fact that the dependency graph

has no cycles.

5.1.45 Termination by narrowing, version 3

For the following TRS we also need narrowing in order to prove its termination

using a quasi-simpli�cation ordering.

f(s(x)) ! f(x)

g(0. y) ! g(y)

g(s(x). y) ! s(x)

h(x. y) ! h(g(x. y))
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Narrowing the dependency pair hH(x. y);H(g(x. y))i results in

hH(0. y);H(g(y))i

hH(s(x). y);H(s(x))i:

Now the relevant inequalities are

F(s(x)) > F(x)

G(0. y) > G(y)

H(0. y) > H(g(y)):

The resulting constraints are satis�ed by the recursive path ordering, if they are

normalized using the AFS h(x)! h

0

.

5.1.46 A non-totally terminating TRS

The following example is from Steinbach [54].

f(x; x) ! f(a; b)

b ! c

This TRS is not totally terminating and without using narrowing, the inequal-

ities generated by our technique are not satis�ed by any total well-founded

weakly monotonic quasi-ordering. However, after applying one narrowing step

to hF(x; x);F(a; b)i, the pair hF(x; x);F(a; c)i is obtained, whose right-hand side

is not uni�able with F(x; x). Hence, there is no cycle in the dependency graph.

Thus, the TRS is terminating.

5.2 Examples for proving innermost termination

This section contains a collection of examples to demonstrate the use of the

innermost termination technique presented in Sect. 3. The examples 5.2.1 {

5.2.18 are term rewriting systems that are innermost terminating, but not ter-

minating. The remainder of the examples (5.2.19 { 5.2.29) are non-overlapping

term rewriting systems for which innermost termination su�ces to guarantee

termination. Note that for the examples 5.2.14 { 5.2.18 and 5.2.24 { 5.2.29 we

had to use re�nements which were not included in the method of [3].

5.2.1 Toyama example

A famous example of a TRS that is innermost terminating, but not terminating,

is the following system from Toyama [56].

f(0; 1; x) ! f(x; x; x)

g(x; y) ! x

g(x; y) ! y:
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This TRS has only one dependency pair, viz. hF(0; 1; x);F(x; x; x)i. This depen-

dency pair does not occur on a cycle in the innermost dependency graph, since

F(x

1

; x

1

; x

1

) does not unify with F(0; 1; x

2

). Thus, no inequalities are generated

and therefore the TRS is innermost terminating.

5.2.2 Variations on the Toyama example, version 1

The following example (Ex. 27) is a non-terminating TRS

f(g(x); s(0); y) ! f(y; y; g(x))

g(s(x)) ! s(g(x))

g(0) ! 0

with only one dependency pair on a cycle in the innermost dependency graph,

viz. hG(s(x));G(x)i. Since no de�ned symbols occur in G(x), there are no usable

rules. Therefore, the only constraint on the ordering is given by

G(s(x)) > G(x)

which is easily satis�ed by the recursive path ordering. Hence, the TRS is

innermost terminating.

5.2.3 Variations on the Toyama example, version 2

Similar to the preceding example, the following modi�cation of the Toyama

example

f(g(x; y); x; z) ! f(z; z; z)

g(x; y) ! x

g(x; y) ! y

is not a constructor system, since the subterm g(x; y) occurs in the left-hand

side of the �rst rule. Again the innermost dependency graph does not contain

any cycles and hence, this TRS is innermost terminating. This TRS is, however,

not terminating.

5.2.4 Variations on the Toyama example, version 3

The non-terminating TRS

f(g(x); x; y) ! f(y; y; g(y))

g(g(x)) ! g(x)

is no constructor system either. The dependency pair hF(g(x); x; y);F(y; y; g(y))i

cannot occur in an in�nite innermost chain, since cap

F(g(x

1

); x

1

; y

1

)

(F(y

1

; y

1

;
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g(y

1

))) does not unify with F(g(x

2

); x

2

; y

2

). The dependency pair hG(g(x));G(x)i

cannot occur in an in�nite innermost chain either, since by unifying the right

projection of this dependency pair with a renaming of it, the left projection is

instantiated in such a way that it is not a normal form. Hence, there are no

cycles in the innermost dependency graph and therefore the TRS is innermost

terminating.

5.2.5 Redex in left-hand side

The following system (from Ex. 24)

f(0) ! f(0)

0 ! 1

is innermost terminating, because there is no cycle in the innermost dependency

graph. The reason is that the left-hand side F(0) of the (only) dependency pair

is not a normal form.

5.2.6 Narrowing required, version 1

In the following, again non-terminating, variant of the Toyama example

f(0; 1; x) ! f(g(x; x); x; x)

g(x; y) ! x

g(x; y) ! y

one narrowing step is needed to determine that there are no cycles in the

innermost dependency graph (because hF(0; 1; x);F(g(x; x); x; x)i narrows to

hF(0; 1; x);F(x; x; x)i). Thus, this TRS is also innermost terminating.

5.2.7 Narrowing required, version 2

The following example (from Ex. 24) can be solved in a similar way:

f(s(x)) ! f(g(x; x))

g(0; 1) ! s(0)

0 ! 1:

The dependency pair hF(s(x));F(g(x; x))i may be deleted as it cannot be nar-

rowed. Hence, there is no dependency pair left and therefore, innermost termi-

nation is proved.
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5.2.8 Narrowing required, version 3

Consider the following TRS

x+ 0 ! x

x+ s(y) ! s(x+ y)

f(0; s(0); x) ! f(x; x+ x; x)

g(x; y) ! x

g(x; y) ! y

which is not terminating as can be seen by the in�nite reduction

f(0; s(0); g(0; s(0))) ! f(g(0; s(0)); g(0; s(0)) + g(0; s(0)); g(0; s(0)))

! f(0; g(0; s(0)) + g(0; s(0)); g(0; s(0)))

! f(0; s(0) + g(0; s(0)); g(0; s(0)))

! f(0; s(0) + 0; g(0; s(0)))

! f(0; s(0); g(0; s(0)))

! : : :

Innermost termination of this TRS can be proved if the dependency pair hF(0;

s(0); x);F(x; x+ x; x)i is replaced by its narrowings

hF(0; s(0); 0);F(0; 0; 0)i

hF(0; s(0); s(y));F(s(y); s(s(y) + y); s(y)))i:

Now our approximation determines that these dependency pairs are not on

cycles in the innermost dependency graph. Therefore, the only inequality gen-

erated for this TRS is

P(x; s(y)) > P(x; y)

which is satis�ed by the recursive path ordering. Hence, this TRS is proved

innermost terminating.

5.2.9 Narrowing required, version 4

The following modi�cation of the above TRS

x+ 0 ! x

x+ s(y) ! s(x+ y)

double(x) ! x+ x

f(0; s(0); x) ! f(x; double(x); x)

g(x; y) ! x

g(x; y) ! y
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is also non-terminating. Similar to the example above, we now need two nar-

rowing steps to derive that the narrowings of the dependency pair

hF(0; s(0); x);F(x; double(x); x)i

do not occur on cycles in the innermost dependency graph. The generated

inequality is therefore the same as for the above example, which is satis�ed by

the recursive path ordering. Hence, this TRS is proved innermost terminating.

5.2.10 Non-normal most general uni�er

The following TRS (Ex. 38)

f(x; g(x)) ! f(1; g(x))

g(1) ! g(0)

is obviously not terminating as f(1; g(1)) can be reduced to itself. The depen-

dency pair

hF(x; g(x));F(1; g(x))i

does not occur on a cycle in the innermost dependency graph, because

cap

F(x

1

; g(x

1

))

(F(1; g(x

1

))) = F(1; g(x

1

))

and the most general uni�er of F(1; g(x

1

)) and F(x

2

; g(x

2

)) replaces x

1

and

x

2

by 1. Hence, the instantiation of the left projection is not a normal form.

Obviously, the other dependency pairs hF(x; g(x));G(x)i and hG(1);G(0)i cannot

occur on cycles either. Thus, there are no cycles in the innermost dependency

graph. Hence, the TRS is innermost terminating.

5.2.11 Innermost chains of arbitrary �nite length

The following non-terminating TRS has an innermost chain of any �nite length,

but it has no in�nite innermost chain, hence it is innermost terminating.

h(x; z) ! f(x; s(x); z)

f(x; y; g(x; y)) ! h(0; g(x; y))

g(0; y) ! 0

g(x; s(y)) ! g(x; y)

An in�nite reduction is given by

h(0; g(0; s(0))! f(0; s(0); g(0; s(0)))! h(0; g(0; s(0))! : : :

So the TRS is not terminating.
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The inequality resulting from the dependency pair on the only cycle in the

innermost dependency graph is

G(x; s(y)) > G(x; y):

(The reason is that the most general uni�er of cap

H(x

1

; z

1

)

(F(x

1

; s(x

1

); z

1

)) and

F(x

2

; y

2

; g(x

2

; y

2

)) does not instantiate the latter term to a normal form.)

There are no usable rules. Thus, innermost termination is easily proved by

the recursive path ordering.

5.2.12 Negative coe�cients

The following non-terminating TRS has two dependency pairs on a cycle in the

innermost dependency graph, but it has no in�nite innermost chain. Hence, it

is innermost terminating.

h(0; x) ! f(0; x; x)

f(0; 1; x) ! h(x; x)

g(x; y) ! x

g(x; y) ! y

An in�nite reduction is given by

f(0; 1; g(0; 1)) ! h(g(0; 1); g(0; 1))

! h(0; g(0; 1))

! f(0; g(0; 1); g(0; 1))

! f(0; 1; g(0; 1)) ! : : :

The inequalities resulting from the dependency pairs on a cycle in the innermost

dependency graph are

H(0; x) � F(0; x; x)

F(0; 1; x) > H(x; x)

and there are no usable rules. These inequalities are satis�ed by the polynomial

interpretation where 0 and 1 are interpreted as usual and where H(x; y) and

F(x; y; z) are both mapped to (x� y)

2

.

Note that the inequalities obtained in this example are not satis�ed by any

weakly monotonic total well-founded quasi-ordering. For that reason a polyno-

mial ordering with negative coe�cients has been used.

In a similar way one can also prove innermost termination of the system

where the �rst rule has been changed to

h(x; y)! f(x; y; x):
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5.2.13 Drosten example

A con
uent and innermost terminating TRS that is not terminating was given

by Drosten [23].

f(0; 1; x) ! f(x; x; x)

f(x; y; z) ! 2

0 ! 2

1 ! 2

g(x; x; y) ! y

g(x; y; y) ! x

As there exists no cycle in the innermost dependency graph, the TRS is inner-

most terminating.

5.2.14 Better approximations of the innermost dependency graph,

version 1

For the approximation of innermost dependency graphs we use the function

cap

s

(instead of just the function cap). An example where this re�nement is

needed can be obtained from Ex. 5.2.2 by modi�cation of the �rst rule.

f(g(x); s(0)) ! f(g(x); g(x))

g(s(x)) ! s(g(x))

g(0) ! 0

If we would approximate the innermost dependency graph by just using cap

then in our approximation we would draw an arc from the dependency pair

hF(g(x); s(0))F(g(x); g(x))i

to itself, because cap(F(g(x); g(x))) = F(x

1

; x

2

) uni�es with its left-hand side.

But then we would have to demand that this dependency pair is strictly decreas-

ing, i.e. F(g(x); s(0)) > F(g(x); g(x)). However, then the resulting constraints

would imply

F(gs0; s0) > F(gs0; gs0) � F(gs0; sg0) � F(gs0; s0):

Hence, they would not be satis�ed by any well-founded ordering closed under

substitution. Therefore the approach of [3] would fail with this example.

However, by the re�ned approximation of using cap

s

we can immediately de-

termine that this dependency pair is not on a cycle of the innermost dependency

graph. The reason is that cap

F(g(x

1

); s(0))

(F(g(x

1

); g(x

1

)) = F(g(x

1

); g(x

1

)) does

not unify with F(g(x

2

); s(0)). (This example could also be solved by narrowing
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the dependency pair. But there are also examples where the innermost ter-

mination proof using cap

s

succeeds whereas it would not succeed when using

narrowing and cap, cf. the next example, Ex. 5.2.15.) Now the only remaining

constraint is

G(s(x)) > G(x)

from the second rule of the TRS. For example, this constraint is satis�ed by the

recursive path ordering.

In a similar way we can also handle the following modi�cation of Ex. 5.2.4:

f(g(x); x) ! f(g(x); g(x))

g(g(x)) ! g(x):

5.2.15 Better approximations of the innermost dependency graph,

version 2

This is a variation of the Toyama example, where the approximation using

cap

s

is necessary to perform the innermost termination proof. In contrast to

the preceding example, here narrowing the dependency pairs (and just using

cap instead of cap

s

) would not help.

f(0; 1; g(x; y); z) ! f(g(x; y); g(x; y); g(x; y); h(x))

g(0; 1) ! 0

g(0; 1) ! 1

h(g(x; y)) ! h(x)

The dependency pair

hF(0; 1; g(x; y); z);F(g(x; y); g(x; y); g(x; y); h(x))i

is not on a cycle of the innermost dependency graph. This can also be deter-

mined by our approximation, because cap

F(0; 1; g(x;y); z)

(F(g(x; y); g(x; y); g(x; y);

h(x))) = F(g(x; y); g(x; y); g(x; y); h(x)) does not unify with F(0; 1; : : :).

However, if we use just the approximation with cap, then we would have

an arc from this dependency pair to itself. Now the resulting constraints would

imply

F(0; 1; g(0; 1); h(0)) > F(g(0; 1); g(0; 1); g(0; 1); h(0)) � F(0; 1; g(0; 1); h(0)):

Hence, they would not be satis�ed by any well-founded ordering closed under

substitution.

Note that in this example narrowing the dependency pair would not help,

because the narrowings would include the pair

hF(0; 1; g(g(x

0

; y

0

); y); z); F(g(g(x

0

; y

0

); y); g(g(x

0

; y

0

); y); g(g(x

0

; y

0

); y); h(x

0

))i

which would lead to the same problem. (The same statement holds for repeated

applications of narrowing.) Hence, this example demonstrates that we really

need the re�nement of cap

s

to approximate innermost dependency graphs.
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5.2.16 Instantiation with Normal Form

The following TRS

f(s(0); g(x)) ! f(x; g(x))

g(s(x)) ! g(x)

is obviously not terminating as can be seen by the following in�nite reduction

f(s(0); g(s(0)))! f(s(0); g(s(0)))! : : :

The dependency pair

hF(s(0); g(x));F(x; g(x))i

does not occur on a cycle of the innermost dependency graph, because

cap

F(s(0); g(x

1

))

(F(x

1

; g(x

1

))) and F(s(0); g(x

2

)) unify using a most general uni-

�er that instantiates F(s(0); g(x

2

)) in such a way that it is not a normal form.

(However, this would not have been determined by the approximation of inner-

most dependency graphs as presented in [3].) The only dependency pair that

occurs on a cycle in the innermost dependency graph is hG(s(x));G(x)i, resulting

in the inequality

G(s(x)) > G(x)

which is easily satis�ed by the recursive path ordering.

5.2.17 Narrowing of pairs where right-hand sides unify with left-

hand sides

In the following example we have to narrow a pair whose right-hand side uni�es

with a left-hand side of a dependency pair. When proving innermost termi-

nation, we may indeed perform this narrowing as long as the mgu does not

instantiate the left-hand sides of the dependency pairs under consideration to

normal forms.

f(g(x); s(0); y) ! f(g(s(0)); y; g(x))

g(s(x)) ! s(g(x))

g(0) ! 0

The dependency pair

hF(g(x); s(0); y);F(g(s(0)); y; g(x))i

does not form a cycle in the innermost dependency graph, because an instanti-

ation of its right-hand side can only reduce to an instantiation of its left-hand

side where x is instantiated by s(0). But then this instantiated left-hand side

would contain the redex g(s(0)).
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However, in our approximation there would be an arc from this dependency

pair to itself, because cap

F(g(x

1

); s(0); y

1

)

(F(g(s(0)); y

1

; g(x

1

))) = F(z; y

1

; g(x

1

))

uni�es with F(g(x

2

); s(0); y

2

) (and the mgu instantiates the left-hand sides to

normal forms). So one would have to demand that this dependency pair should

be strictly decreasing, i.e. one would obtain the constraint F(g(x); s(0); y) >

F(g(s(0)); y; g(x)). However, together with the remaining constraints, this in-

equality is not satis�ed by any well-founded ordering closed under substitution,

because we would have

F(g(s(0)); s(0); s(0)) > F(g(s(0)); s(0); g(s(0)))

� F(g(s(0)); s(0); s(g(0)))

� F(g(s(0)); s(0); s(0)):

So we have to narrow this dependency pair. Note that the right-hand side

uni�es with the left-hand side of this dependency pair. However, the mgu in-

stantiates the left-hand side to a term containing the redex g(s(0)). Hence, by

Thm. 40 we may indeed replace this dependency pair by its narrowings.

hF(g(x); s(0); y);F(s(g(0)); y; g(x))i

hF(g(s(x)); s(0); y);F(g(s(0)); y; s(g(x)))i

hF(g(0); s(0); y);F(g(s(0)); y; 0)i

None of these new pairs is on a cycle of our approximated innermost dependency

graph. Hence, the only constraint in this example is

G(s(x)) > G(x)

from the second rule of the TRS. A well-founded ordering satisfying this con-

straint can of course be synthesized easily (e.g. the recursive path ordering).

5.2.18 Smallest normalizing non-terminating one-rule string rewrit-

ing system

The following example from Geser [29] is the smallest normalizing non-terminat-

ing one-rule string rewriting system.

a(b(a(b(x))))! b(a(b(a(a(b(x))))))

The dependency pairs in this example are

hA(b(a(b(x))));A(b(x))i

hA(b(a(b(x))));A(a(b(x)))i

hA(b(a(b(x))));A(b(a(a(b(x)))))i:
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The second and the third dependency pair can be narrowed to

hA(b(a(b(a(b(x))))));A(b(a(b(a(a(b(x)))))))i

hA(b(a(b(a(b(x))))));A(b(a(b(a(b(a(a(b(x)))))))))i:

These dependency pairs are not on cycles of the innermost dependency graph,

because their left-hand sides contain redeces. Hence, the only constraint in this

example is

A(b(a(b(x)))) > A(b(x))

which is satis�ed by the recursive path ordering.

5.2.19 Another division example, version 1

The TRS of Ex. 33

quot(0; s(y); s(z)) ! 0

quot(s(x); s(y); z) ! quot(x; y; z)

quot(x; 0; s(z)) ! s(quot(x; s(z); s(z)))

is a non-simply terminating system. As explained in Sect. 3.2 this TRS cannot

be proved terminating automatically by the technique of Sect. 2. The only two

generated inequalities are

Q(s(x); s(y); z) > Q(x; y; z)

Q(x; 0; s(z)) � Q(x; s(z); s(z));

since there are no usable rules. By normalizing the inequalities with respect to

the AFS Q(x; y; z)!x, the obtained inequalities are satis�ed by the recursive

path ordering. Thus, the TRS is innermost terminating. Termination of the

TRS can now be concluded from the fact that it is non-overlapping.

5.2.20 Narrowing to approximate the innermost dependency graph

Similar to Ex. 5.1.40, narrowing of pairs also helps to obtain a better approx-

imation of the innermost dependency graph. To illustrate this, let us replace

the last rule of the TRS in Ex. 5.2.19 by the following three rules.

0+ y ! y

s(x) + y ! s(x+ y)

quot(x; 0; s(z)) ! s(quot(x; z + s(0); s(z)))

Now instead of dependency pair

hQ(x; 0; s(z));Q(x; s(z); s(z))i (41)
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we obtain the dependency pair

hQ(x; 0; s(z));Q(x; z + s(0); s(z))i: (42)

Note that in the approximation of the innermost dependency graph there would

be an arc from (42) to itself, because after replacing z+ s(0) by a new variable,

the right- and the left-hand side of (42) obviously unify (and an instantiation

with the mgu is a normal form). Hence, due to Thm. 35 we would have to �nd

an ordering such that (42) is strictly decreasing. But then no linear or weakly

monotonic polynomial ordering satis�es all resulting inequalities in this example

(and the recursive path ordering does not succeed either).

However, in the real innermost dependency graph, there is no arc from (42)

to itself, because, similar to the original dependency pair (41), there is no sub-

stitution � such that (z+s(0))� reduces to 0. Hence, there is no cycle consisting

of (42) only and therefore it is su�cient if (42) is just weakly decreasing. For

this reason we replace the dependency pair (42) by its narrowings, viz.

hQ(x; 0; s(0));Q(x; s(0); s(0))i (43)

hQ(x; 0; s(s(z)));Q(x; s(z + s(0)); s(0))i; (44)

and compute the innermost dependency graph afterwards. Now neither (43)

nor (44) are innermost connectable to themselves. Hence, if in our example we

perform at least one narrowing step, then we can determine that the dependency

pair (42) does not form a cycle in the innermost dependency graph and then

termination can again be veri�ed using the recursive path ordering.

5.2.21 Selection sort

This TRS from Walther [58] is obviously not simply terminating. The TRS can

be used to sort a list by repeatedly replacing the minimum of the list by the

head of the list. It uses replace(n;m; x) to replace the leftmost occurrence of n

in the list x by m.

eq(0; 0) ! true

eq(0; s(x)) ! false

eq(s(x); 0) ! false

eq(s(x); s(y)) ! eq(x; y)

le(0; y) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

min(add(n; nil)) ! n

min(add(n; add(m;x))) ! if

min

(le(n;m); add(n; add(m;x)))

if

min

(true; add(n; add(m;x))) ! min(add(n; x))
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if

min

(false; add(n; add(m;x))) ! min(add(m;x))

replace(n;m; nil) ! nil

replace(n;m; add(k; x)) ! if

replace

(eq(n; k); n;m; add(k; x))

if

replace

(true; n;m; add(k; x)) ! add(m;x)

if

replace

(false; n;m; add(k; x)) ! add(k; replace(n;m; x))

selsort(nil) ! nil

selsort(add(n; x)) ! if

selsort

(eq(n;min(add(n; x))); add(n; x))

if

selsort

(true; add(n; x)) ! add(n; selsort(x))

if

selsort

(false; add(n; x)) ! add(min(add(n; x));

selsort(replace(min(add(n; x)); n; x)))

The relevant inequalities are

EQ(s(x); s(y)) > EQ(x; y)

LE(s(x); s(y)) > LE(x; y)

MIN(add(n; add(m;x))) � IF

min

(le(n;m); add(n; add(m;x)))

IF

min

(true; add(n; add(m;x))) > MIN(add(n; x))

IF

min

(false; add(n; add(m;x))) > MIN(add(m;x))

REPLACE(n;m; add(k; x)) � IF

replace

(eq(n; k); n;m; add(k; x))

IF

replace

(false; n;m; add(k; x)) > REPLACE(n;m; x)

SELSORT(add(n; x)) � IF

selsort

(eq(n;min(add(n; x))); add(n; x))

IF

selsort

(true; add(n; x)) > SELSORT(x)

IF

selsort

(false; add(n; x)) > SELSORT(replace(min(add(n; x)); n; x)):

Moreover, all rules except the four last ones are usable. The resulting constraints

are satis�ed by the polynomial ordering, where eq(x; y), 0, true, false, le(x; y),

and nil are mapped to 0, s(x) is mapped to x+1, add(n; x) is mapped to n+x+1,

min(x) and if

min

(b; x) are mapped to x, replace(n;m; x) and if

replace

(b; n;m; x)

are mapped to m+x, EQ(x; y), LE(x; y), MIN(x), IF

min

(b; x), SELSORT(x), and

IF

selsort

(b; x) are mapped to x, and REPLACE(n;m; x) and IF

replace

(b; n;m; x)

are mapped to m + x. Hence, as the TRS is non-overlapping, in this way

its termination is also proved. (If the �rst min rule would be replaced by

min(add(n; nil))! element(n), then termination could also be proved by the ter-

mination technique of Sect. 2 using an appropriate AFS and the recursive path

ordering to satisfy the constraints obtained.)

5.2.22 Intervals of Natural Numbers

The following TRS from Steinbach [54]
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intlist(nil) ! nil

intlist(x. y) ! s(x). intlist(y)

int(0; 0) ! 0. nil

int(0; s(y)) ! 0. int(s(0); s(y))

int(s(x); 0) ! nil

int(s(x); s(y)) ! intlist(int(x; y))

is non-overlapping, too. The set of usable rules is empty and the generated

inequalities are

INTLIST(x. y) > INTLIST(y)

INT(0; s(y)) � INT(s(0); s(y))

INT(s(x); s(y)) > INT(x; y):

By using the AFS INT(x; y)! y these inequalities are satis�ed by the recursive

path ordering. Thus, the TRS is terminating. Again, termination of this system

cannot be proved automatically using the method of Sect. 2.

5.2.23 Another non-totally terminating TRS

To prove termination of the system

f(x; x) ! f(g(x); x)

g(x) ! s(x);

we apply narrowing on the dependency pair hF(x; x);F(g(x); x)i. In this way we

can directly determine that the innermost dependency graph does not contain

any cycles.

5.2.24 Narrowing of dependency pairs for innermost termination

In the following example (Ex. 39) we have to apply narrowing of dependency

pairs.

p(0) ! 0

p(s(x)) ! x

le(0; y) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

minus(x; y) ! if(le(x; y); x; y)

if(true; x; y) ! 0

if(false; x; y) ! s(minus(p(x); y))
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Note that without narrowing, the resulting constraints would implyM(s(x); 0) >

M(p(s(x)); 0). Therefore an automatic innermost termination proof using quasi-

simpli�cation orderings fails.

However, if we replace the dependency pair hM(x; y); IF(le(x; y); x; y)i by its

narrowings

hM(0; y); IF(true; 0; y)i;

hM(s(x); 0); IF(false; s(x); 0)i;

hM(s(x); s(y)); IF(le(x; y); s(x); s(y))i

then this also enables a narrowing of the dependency pair hIF(false; x; y);M(p(x);

y)i (whose right-hand side uni�ed with a left-hand side before). Hence, now this

dependency pair can be replaced by

hIF(false; 0; y);M(0; y)i;

hIF(false; s(x); y);M(x; y)i:

Note that the �rst narrowing step would not have been possible with the method

of Sect. 2, because the right-hand side is not linear. The relevant inequalities

are

LE(s(x); s(y)) > LE(x; y)

M(s(x); 0) � IF(false; s(x); 0)

M(s(x); s(y)) � IF(le(x; y); s(x); s(y))

IF(false; s(x); y) > M(x; y):

Using the AFS IF(b; x; y)! I(x; y), the resulting constraints are satis�ed by the

recursive path ordering. As the TRS is non-overlapping, in this way we have

also proved its termination.

5.2.25 Subtraction and predecessor

The following system is an alternative way to de�ne subtraction using the pre-

decessor function. Again this TRS is terminating, but not simply terminating.

p(0) ! 0

p(s(x)) ! x

le(0; y) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

minus(x; 0) ! x

minus(x; s(y)) ! if(le(x; s(y)); 0; p(minus(x; p(s(y)))))

if(true; x; y) ! x

if(false; x; y) ! y
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If we narrow the dependency pair hM(x; s(y));M(x; p(s(y)))i, then we obtain the

new pair hM(x; s(y));M(x; y)i. Now (as there are no usable rules any more) the

only constraints are

LE(s(x); s(y)) > LE(x; y)

M(x; s(y)) > M(x; y);

which are satis�ed by the recursive path ordering. Hence, innermost termination

(and thereby, termination) has been proved, as the TRS is non-overlapping.

A similar example was mentioned by Steinbach [54], but there the rules for

le and if were missing.

5.2.26 Length of bit representation

The following non-simply terminating TRS corresponds to the logarithm exam-

ple (Ex. 5.1.7). Here, bits(x) computes the number of bits that are necessary to

represent all numbers smaller than or equal to x.

half(0) ! 0

half(s(0)) ! 0

half(s(s(x))) ! s(half(x))

bits(0)) ! 0

bits(s(x)) ! s(bits(half(s(x))))

After narrowing the dependency pair hBITS(s(x)); BITS(half(s(x)))i to

hBITS(s(0));BITS(0)i and hBITS(s(s(x)));BITS(s(half(x))i we obtain the rele-

vant inequalities

HALF(s(s(x))) > HALF(x)

BITS(s(s(x))) > BITS(s(half(x)):

The resulting constraints are satis�ed by the recursive path ordering.

5.2.27 Multiplication for even and odd numbers

The following non-simply terminating example is inspired by Walther [57].

even(0) ! true

even(s(0)) ! false

even(s(s(x))) ! even(x)

half(0) ! 0

half(s(s(x))) ! s(half(x))

plus(0; y) ! y

86



plus(s(x); y) ! s(plus(x; y))

times(0; y) ! 0

times(s(x); y) ! if

times

(even(s(x)); s(x); y)

if

times

(true; s(x); y) ! plus(times(half(s(x)); y); times(half(s(x)); y))

if

times

(false; s(x); y) ! plus(y; times(x; y))

To prove termination using a quasi-simpli�cation ordering, we have to narrow

the dependency pair hIF

times

(true; s(x); y);TIMES(half(s(x)); y)i to

hIF

times

(true; s(s(x)); y);TIMES(s(half(x)); y)i:

Now the relevant inequalities are the following.

EVEN(s(s(x))) > EVEN(x)

HALF(s(s(x))) > HALF(x)

P(s(x); y) > P(x; y)

TIMES(s(x); y) � IF

times

(even(s(x)); s(x); y)

IF

times

(true; s(s(x)); y) > TIMES(s(half(x)); y)

IF

times

(false; s(x); y) > TIMES(x; y)

If an AFS IF

times

(b; x; y)! I

times

(x; y) is used, then the resulting constraints are

satis�ed by the recursive path ordering.

5.2.28 Narrowing for division, remainder, and gcd

The TRSs for division (Ex. 5.1.1{5.1.3) can also be transformed into systems

where we need narrowing for the (innermost) termination proof. We only present

one of them.

minus(x; 0) ! x

minus(s(x); s(y)) ! minus(x; y)

le(0; y) ! true

le(s(x); 0) ! false

le(s(x); s(y)) ! le(x; y)

quot(x; s(y)) ! if

quot

(le(s(y); x); x; s(y))

if

quot

(true; x; y) ! s(quot(minus(x; y); y))

if

quot

(false; x; y) ! 0

Again this system is not simply terminating. After narrowing the dependency

pair hQ(x; s(y)); IF

quot

(le(s(y); x); x; s(y))i to

hQ(0; s(y)); IF

quot

(false; 0; s(y)i

hQ(s(x); s(y)); IF

quot

(le(y; x); s(x); s(y))i
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we can narrow hIF

quot

(true; x; y);Q(minus(x; y); y)i to

hIF

quot

(true; x; 0);Q(x; y)i

hIF

quot

(true; s(x); s(y));Q(minus(x; y); s(y))i:

Now the relevant inequalities are

M(s(x); s(y)) > M(x; y)

LE(s(x); s(y)) > LE(x; y)

Q(s(x); s(y)) � IF

quot

(le(y; x); s(x); s(y))

IF

quot

(true; s(x); s(y)) > Q(minus(x; y); s(y)):

Using the AFS minus(x; y)!x; IF(b; x; y)! I(x; y) the constraints are satis�ed

by the recursive path ordering. Hence, in this way (innermost) termination of

this TRS is proved.

A simpler modi�cation of the quotient TRS where one should also use nar-

rowing is obtained if instead of the last three rules the following rules are used.

quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(minus(s(x); s(y)); s(y)))

A similar modi�cation is also possible for the remainder TRSs (Ex. 5.1.5),

i.e. the rule if

mod

(true; s(x); s(y))!mod(minus(x; y); s(y)) may be replaced by

if

mod

(true; x; y)!mod(minus(x; y); y):

In an analogous way, in the greatest common divisor TRSs (Ex. 5.1.6) one

could also replace the last two rules by

if

gcd

(true; x; y) ! gcd(minus(x; y); y)

if

gcd

(false; x; y) ! gcd(minus(y; x); x):

All these modi�ed TRSs could again be proved (innermost) terminating by using

narrowing �rst.

5.2.29 Braid problem

The following string rewriting system (which encodes a braid problem from

topology) was given by Zantema as a challenge during the 3rd International

Termination Workshop. As shown by Geser, it is not simply terminating.

a(d(x)) ! d(c(b(a(x))))

b(c(x)) ! c(d(a(b(x))))

a(c(x)) ! x

b(d(x)) ! x
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The dependency pairs in this example are

hA(d(x));A(x)i (45)

hA(d(x));B(a(x))i (46)

hB(c(x));B(x)i (47)

hB(c(x));A(b(x))i: (48)

Dependency pair (46) can be replaced by its narrowings

hA(d(d(x)));B(d(c(b(a(x)))))i

hA(d(c(x)));B(x)i

and dependency pair (48) can be narrowed to

hB(c(c(x)));A(c(d(a(b(x)))))i

hB(c(d(x)));A(x)i:

As there are no usable rules, the resulting constraints are

A(d(x)) > A(x)

A(d(c(x))) � B(x)

B(c(x)) > B(x)

B(c(d(x))) � A(x);

which are satis�ed by the recursive path ordering. Hence, as the TRS is non-

overlapping, its termination is proved.
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