
Induction Proofs with Partial Functions

�

J

�

URGEN GIESL

Dept. of Computer Science, Darmstadt University of Technology, Alexanderstr. 10,

64283 Darmstadt, Germany, e-mail: giesl@informatik.tu-darmstadt.de

Abstract. In this paper we present a method for automated induction proofs about

partial functions. We show that most well-known techniques developed for (explicit)

induction theorem proving are unsound when dealing with partial functions. But

surprisingly, by slightly restricting the application of these techniques, it is possible

to develop a calculus for automated induction proofs with partial functions. In par-

ticular, under certain conditions one may even generate induction schemes from the

recursions of non-terminating algorithms. The need for such induction schemes and

the power of our calculus have been demonstrated on a large collection of non-trivial

theorems (including Knuth and Bendix' critical pair lemma). In this way, existing

induction theorem provers can be directly extended to partial functions without

major changes of their logical framework.

Key words: induction, automated theorem proving, partial functions

1. Introduction

Induction is the essential proof method for the veri�cation of func-

tional programs. For that reason, several techniques

1

have been devel-

oped to compute suitable induction relations and to perform induction

proofs automatically, cf. e.g. [6, 17, 42, 75, 79]. However, most of these

approaches are only sound if all occurring functions are total.

In this paper we show that by slightly modifying the prerequisites

of these techniques it is nevertheless possible to use them for partial

functions, too. In particular, the successful heuristic of deriving induc-

tion relations from the recursions of algorithms can also be applied

for partial functions. In fact, under certain conditions one may even

perform inductions w.r.t. non-terminating algorithms. Hence, with our

approach the well-known existing techniques for automated induction

proofs can be directly extended to partial functions.

In Section 2 we present a calculus for induction proofs which con-

sists of the basic rules usually applied in automated induction theorem

proving. But unfortunately, this calculus requires all occurring func-

tions to be total. Therefore, by restricting its rules in an appropriate

way, in Section 3 we develop a new calculus for induction proofs with

�

Technical Report IBN 98/48, TU Darmstadt, Germany. Final version to appear

in the Journal of Automated Reasoning.

1

There are two research paradigms for the automation of induction proofs, viz.

explicit and implicit induction (e.g. [4, 40]), where we only focus on the �rst one.



2 J

�

URGEN GIESL

partial functions. We �rst regard algorithms de�ned by unconditional

equations only, but in Section 4 we show how to extend our calculus to

handle algorithms with conditionals.

While the calculus of Section 3 and 4 is already su�cient for many

conjectures, certain proofs require reasoning about the de�nedness of

partial functions. For that purpose we introduce a re�nement of our

calculus in Section 5. For some proofs it is even necessary to compute

(or at least to approximate) the domains of partial functions. Therefore

a method for automatic domain analysis is presented in Section 6.

In Section 7 we discuss some application areas where reasoning about

partial functions is required and illustrate the power of our approach

with several examples. Finally, we give a detailed comparison with relat-

ed work in Section 8 and end up with a short conclusion.

2. Automated Induction Theorem Proving

Before dealing with the special problems arising with partial func-

tions, in this section we �rst sketch the standard approach typical-

ly used for automated (explicit) induction proofs. We consider a �rst

order functional language with eager (i.e. call-by-value) semantics, non-

parameterized and free algebraic data types, and pattern matching.

As an example consider the algorithms plus and times. They operate

on the data type nat for naturals whose objects are built with the

constructors 0 and s (where we often write \1" instead of \s(0)", etc.).

function plus : nat� nat! nat

plus(0; y) = y

plus(s(x); y) = s(plus(x; y))

function times : nat� nat! nat

times(x; 0) = 0

times(x; s(y)) = plus(x; times(x; y))

In general, an algorithm f is de�ned by a set of orthogonal

2

equa-

tions of the form f(t

1

; : : : ; t

n

) = r where the terms t

i

are built from

constructors and variables only and where all variables of r also occur

in t

1

; : : : ; t

n

. We do not impose any restrictions on the form of f 's

recursions, i.e., algorithms may also have nested or mutual recursion.

We always restrict ourselves to well-sorted terms and substitutions,

i.e., variables of the data type � are only replaced by terms of the

same data type � . Now the operational semantics of our programming

language can be de�ned by regarding each de�ning equation as a rewrite

rule, where however the variables in these rewrite rules may only be

2

A set of equations is called orthogonal, if it is non-overlapping (i.e., there are no

critical pairs) and left-linear (i.e., left-hand sides may not contain multiple occur-

rences of the same variable).

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.2



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 3

instantiated with data objects, i.e., with constructor ground terms. This

restriction is due to the eager nature of our programming language.

So for example, the �rst de�ning equation of times cannot be applied

directly to evaluate the term times(plus(0; 1); 0), because one argument

of times is not a constructor ground term. Therefore, the argument

plus(0; 1) has to be evaluated to 1 �rst. Afterwards a de�ning equation

of times can be used to evaluate the resulting term times(1; 0) to 0.

For a formal de�nition, let R

op

be the (in�nite) term rewriting sys-

tem with the rules �(s

1

) ! �(s

2

) for every de�ning equation s

1

= s

2

and for every substitution � which instantiates all variables of s

1

with

constructor ground terms. Then we say that a ground term t evalu-

ates to t

0

i� t !

�

R

op

t

0

holds. Note that R

op

is orthogonal and hence,

conuent [34] (where in fact, R

op

's conuence already follows from

innermost conuence, and thus, from the fact that the rules are non-

overlapping). Thus, every ground term can evaluate to at most one

constructor ground term (i.e., all our algorithms are deterministic).

In this section we restrict ourselves to algorithms that are terminat-

ing and completely de�ned (i.e., the patterns have to be exhaustive). In

other words, the corresponding term rewriting system R

op

terminates

and every non-constructor ground term is R

op

-reducible. Due to the

special form of R

op

, this is equivalent to su�cient completeness [33]

(i.e., to the requirement that for every ground term t there exists a

constructor ground term q with t$

�

R

op

q). As every ground term eval-

uates to a (unique) constructor ground term, all algorithms compute

total functions. Now our goal is to verify statements concerning a given

collection of algorithms and data types. For instance, we may try to

verify the associativity of plus (where we wrote \+" instead of plus).

8u; v; w : nat u+ (v + w) = (u+ v) + w (1)

In this paper we only consider universally closed formulas of the form

8...' where ' is quanti�er-free and we often omit the quanti�ers to ease

readability. So for example, \'

1

) '

2

" always is an abbreviation for

\8... ('

1

) '

2

)", where '

1

and '

2

are quanti�er-free. We sometimes

write '(x

�

) to indicate that ' contains at least the variables x

�

(where

x

�

is a tuple of pairwise di�erent variables x

1

; : : : ; x

n

) and '(t

�

) denotes

the result of replacing the variables x

�

in ' by the terms t

�

.

Intuitively, a formula 8x

�

'(x

�

) is inductively true, if ' holds for

all instantiations of x

�

with data objects q

�

. For example, formula (1)

is true, because for all natural numbers u, v, and w, plus(plus(u; v); w)

and plus(u; plus(v; w)) evaluate to the same number. In the following

we will often speak of \truth" instead of \inductive truth".

More precisely, 8x

�

'(x

�

) is true, if for all data objects q

�

we have

Eq [ Ax

data

j= '(q

�

). Here, \j=" denotes �rst order consequence and

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.3



4 J

�

URGEN GIESL

Eq is the set of all de�ning equations of the algorithms. So for plus, Eq

contains the equations plus(0; y) = y and plus(s(x); y) = s(plus(x; y)).

In order to prove non-atomic formulas ', we need additional axioms

Ax

data

which guarantee that di�erent constructor ground terms repre-

sent di�erent objects. For that purpose Ax

data

states that constructors

are injective and that terms built with di�erent constructors are not

equal, cf. [75]. Hence, for each constructor c, Ax

data

contains the axiom

c(x

1

; : : : ; x

n

) = c(y

1

; : : : ; y

n

) ) x

1

= y

1

^ : : : ^ x

n

= y

n

:

Moreover, if c

1

and c

2

are di�erent constructors of the same data type,

then Ax

data

also contains the axiom

:c

1

(x

1

; : : : ; x

n

) = c

2

(y

1

; : : : ; y

m

):

So for nat, we obtain the axioms s(x) = s(y)) x = y and :0 = s(x).

Our de�nition of \truth" is equivalent to validity in the initial model

of the de�ning equations Eq, i.e., it corresponds to the notion of induc-

tive truth generally used in the literature, cf. e.g. [4, 30, 75, 77, 79].

So for the truth of a formula '(x

�

) we have to verify in�nitely many

instantiations '(q

�

). But as data types are constructed inductively, this

can often be reduced to a �nite proof by using induction.

Several techniques have been developed to perform induction proofs

automatically. In the following we present a calculus for induction

proofs to give a precise and compact formalization of the basic tech-

niques usually applied in induction theorem proving. As will be shown

in Section 3, this formalization is especially suitable for an extension of

induction theorem proving to partial functions. Of course, the calculus

can also be re�ned by additional rules (e.g., rules for the use of more

sophisticated induction relations), cf. Section 5.

As (1) contains calls of the function plus, these calls suggest plausible

inductions. For instance, we can apply an induction w.r.t. the recur-

sions of the algorithm plus and use the variables u and v as induction

variables. For that purpose we perform a case analysis according to

the de�ning equations of plus (i.e., u and v are instantiated by 0 and y

and by s(x) and y, respectively). In the recursive case of plus we assume

that (1) already holds for the arguments x; y of plus' recursive call. So

instead of (1) it is su�cient to prove the following formulas where we

underlined instantiations of the induction variables.

0+ (y + w) = (0+ y) + w (2)

x+ (y + w) = (x+ y) + w ) s(x) + (y + w) = (s(x) + y) + w (3)

In general, the following rule is used for inductions w.r.t. algorithms

(where rules of the calculus have to be applied in backwards direction).

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.4



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 5

1. Induction w.r.t. Algorithms

f'(s

�

i;1

) ^ : : : ^ '(s

�

i;n

i

) ) '(t

�

i

) j i = 1; : : : ; kg

'(x

�

)

if x

�

are variables of the appropriate data types (the induction vari-

ables) and if f is an algorithm with the de�ning equations f(t

�

i

) = r

i

(i = 1; : : : ; k), where r

i

contains the f -terms f(s

�

i;1

); : : : ; f(s

�

i;n

i

).

In this rule, we always assume that apart from x

�

, the patterns t

�

i

con-

tain no variables from ' (otherwise the variables have to be renamed).

The technique of performing inductions w.r.t. the recursions of algo-

rithms (like plus) is commonly applied in induction theorem proving,

cf. e.g. [6, 15, 75, 79]. However, induction proofs are only sound if the

induction relation used is well founded (i.e., if there exists no in�nite

descending chain t

�

1

� t

�

2

� : : : w.r.t. the induction relation �). Here,

the well-foundedness of the induction relation corresponds to the termi-

nation of the algorithm plus, because when proving a statement for the

inputs of a recursive de�ning equation, we assume as induction hypoth-

esis that the statement already holds for the arguments of the recursive

call. Hence, one may already guess that Rule 1 leads to problems when

dealing with partial functions.

Apart from inductions w.r.t. algorithms there is also a rule for

structural inductions according to the de�nitions of data types. So for

8x : nat '(x) it is su�cient to prove '(0) and 8x : nat '(x)) '(s(x)).

2. Structural Induction

f'(x

i;1

) ^ : : : ^ '(x

i;n

i

) ) '(c

i

(x

�

i

)) j i = 1; : : : ; kg

'(x)

if x is a variable of a data type � with the constructors c

1

; : : : ; c

k

, and

if x

i;1

; : : : ; x

i;n

i

are the variables of the data type � occurring in x

�

i

.

For example, if we have a data type list with the constructors empty :

list and add : nat � list ! list, then instead of 8x : list '(x) one may

prove '(empty) and 8x

1

: nat; x

2

: list '(x

2

)) '(add(x

1

; x

2

)).

To continue our proof of the associativity of plus (1), the terms in

formula (2) can be symbolically evaluated, i.e., the �rst de�ning equa-

tion of plus can be used as a rewrite rule which yields y + w = y + w.

In general, the following rule is used for symbolic evaluation.

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.5



6 J

�

URGEN GIESL

3. Symbolic Evaluation

'( �(r) )

'( �( f(t

�

) ) )

if � is a substitution and f(t

�

) = r is a de�ning equation.

The formula y+w = y+w resulting from symbolic evaluation of (2)

is a (trivial) �rst order theorem. Symbolic evaluation of (3) also results

in a �rst order theorem. In this way, the truth of the associativity

law (1) can be veri�ed. For that purpose the following fourth rule is

introduced. It states that it is su�cient to prove lemmata  

1

; : : : ;  

n

instead of the original conjecture ', if  

1

^ : : :^ 

n

) ' can be shown

by a �rst order calculus. If ' is a trivial theorem, then (by choosing

n = 0) one obtains

'

as a special case of this rule, i.e., then the proof

of ' is completed.

4. First Order Consequence

 

1

; : : : ;  

n

'

ifAx

data

`  

1

^: : :^ 

n

) ', where n � 0 and \`" denotes derivability

by a �rst order calculus.

This fourth rule can also be used to \apply" lemmata or induction

hypotheses (e.g., for \cross-fertilization" [6]). For example, consider the

veri�cation of the distributivity law (where \�" abbreviates times)

u � (v + w) = u � v + u � w (4)

by induction w.r.t. plus(v; w). The formula resulting from plus' non-

recursive equation is easily proved. The formula corresponding to plus'

recursive equation has the form (IH) ) (IC), where the induction

hypothesis is

u � (x+ y) = u � x+ u � y (IH)

and the induction conclusion is symbolically evaluated to

u +u � (x+ y) = (u+ u � x) + u � y. (IC)

With the fourth rule we can \apply" the induction hypothesis and

replace u � (x+ y) by u � x+ u � y in the induction conclusion (IC). So

instead of (IH) ) (IC) it su�ces to prove

u+ (u � x+ u � y) = (u+ u � x) + u � y (5)

as Ax

data

` (5) ) [(IH) ) (IC)]. Note that (5) is an instantiation of

the associativity law. The following �fth rule of the calculus allows us to

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.6



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 7

generalize formula (5) by replacing u�x and u�y by new variables and

to prove the generalized conjecture instead. Hence, as the associativity

of plus (1) has already been veri�ed, the distributivity (4) is also proved.

5. Generalization

'

�(')

where � is a substitution.

(Instead of Rule 4 and 5 one could also use a di�erent version of

Rule 4, where instead of \Ax

data

` 8... ( 

1

^ : : : ^  

n

) ') " one only

requires \Ax

data

` 8... ( 

1

^ : : : ^  

n

) ) 8... ' ". But the advantage of

our formulation will become obvious when extending Rule 4 to partial

functions in Section 3.)

Recall that if all occurring algorithms are terminating and complete-

ly de�ned then these algorithms compute total functions. In this case,

the above calculus is sound.

THEOREM 1. Let all algorithms be terminating and completely de-

�ned. If '(x

�

) can be derived with the rules 1 { 5, then 8x

�

'(x

�

)

is inductively true, i.e., '(q

�

) holds for all data objects q

�

.

Proof. For each inference rule

'

1

;:::;'

n

'

of the calculus, the truth of

'

1

; : : : ; '

n

implies the truth of '. The �rst two rules are sound because

they perform a (Noetherian) induction w.r.t. a well-founded relation.

The third rule is sound because the de�ning equations of total algo-

rithms are true. The soundness of Rule 4 and 5 is obvious. 2

3. A Calculus for Induction Proofs with Partial Functions

After illustrating the usual approach for induction proofs with total

functions now we regard algorithms which de�ne partial functions.

function minus : nat� nat! nat

minus(x; 0) = x

minus(s(x); s(y)) = minus(x; y)

function quot : nat� nat! nat

quot(0; s(y)) = 0

quot(s(x); y) = s(quot(minus(s(x); y); y))

Obviously, both algorithms minus and quot compute partial func-

tions. The reason is that the de�ning equations of minus do not cover

all possible inputs, i.e., the algorithm minus is incomplete and hence,

minus(x; y) is only de�ned if the number x is not smaller than the num-

ber y. The algorithm quot is not only incomplete, but there are also

inputs which lead to a non-terminating evaluation (e.g. quot(1; 0)). In

fact, quot(x; y) is only de�ned if the number y is a divisor of the number

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.7



8 J

�

URGEN GIESL

x (and y 6= 0). In general, we say that (evaluation of) a ground term is

de�ned, if it can be evaluated to a constructor ground term using the

operational semantics given in Section 2.

If we want to \verify" programs like minus and quot which compute

partial functions we can at most verify their partial correctness. For

instance, suppose that the speci�cations for minus and quot are

8n;m : nat plus(m;minus(n;m)) = n; (6)

8n;m : nat times(m; quot(n;m)) = n: (7)

Then minus and quot are in fact partially correct w.r.t. these speci�ca-

tions. So for quot we have:

For all naturals n and m: if evaluation of quot(n;m) is de�ned,

then times(m; quot(n;m)) = n.

To formalize the handling of partial correctness, we de�ne a new

notion of \partial inductive truth" for formulas like (6) and (7) which

may contain partial functions. A formula 8x

�

'(x

�

) is partially true, if

Eq[Ax

data

j= '(q

�

) holds for all those data objects q

�

where evaluation

of all terms in '(q

�

) is de�ned. Again, Eq is the set of all de�ning

equations and Ax

data

is de�ned as in Section 2.

Note that as the de�ning equations are orthogonal, Eq [ Ax

data

is still consistent, even if Eq contains the de�ning equations of par-

tial functions.

3

Here the requirement of linear patterns is necessary to

ensure that the de�ning equations are conuent, and thus, they nev-

er contradict the freeness of the constructors. For example, let bool

be the data type with the constructors true and false. Then the (non-

overlapping, but non left-linear) de�ning equations same(x; x) = true;

same(x; s(x)) = false, and f(x) = s(f(x)) would imply true = false [34]

and hence, Eq [Ax

data

would not be consistent any more.

To ensure that evaluation of all terms in '(q

�

) is de�ned, one only

has to check whether the top-level terms of '(q

�

) are de�ned. The

reason is that due to the eager nature of our programming language,

de�nedness of a term implies de�nedness of all its subterms. Here, the

top-level terms of an equality s = t are de�ned to be s and t, the top-

level terms of '

1

^'

2

are the union of '

1

's and '

2

's top-level terms, etc.

For the sake of brevity, in the following we often speak of \evaluation

of '" instead of \evaluation of all (top-level) terms in '". Now we say

that an algorithm is partially correct w.r.t. a speci�cation formula, if

3

For instance, Eq's initial model is also a model of Ax

data

. The reason is that for

all ground terms t

�

and s

�

, validity of c(t

�

) = c(s

�

) in the initial model implies Eq-

joinability of c(t

�

) and c(s

�

) by Birkho�'s Theorem [3] and by the conuence of Eq

(regarded as a term rewrite system). But as Eq is a constructor system, this implies

that for all i, t

i

= s

i

is valid in the initial model, too. Similarly, c

1

(t

�

) = c

2

(t

�

)

cannot be valid in the initial model, since these terms are not Eq-joinable.

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.8



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 9

this formula is partially true. For instance, (6) and (7) are partially true

and hence, minus and quot are partially correct w.r.t. these formulas.

This notion of partial truth resp. of partial correctness is widely

used in program veri�cation, cf. e.g. [52, 54]. If a conjecture only con-

tains terminating and completely de�ned algorithms, then partial truth

coincides with the notion of truth introduced in Section 2. A model

theoretic characterization of partial truth (which requires an explicit

object-level representation of de�nedness) can be found in Section 5

and for a comparison with alternative de�nitions see Section 8.

For partial truth we again have to verify a statement about in�nitely

many data objects and hence, we intend to perform induction again.

As (7) contains a call of quot, for the proof of (7) one would like to

use an induction w.r.t. the algorithm quot (according to Rule 1). To

ease readability, let '(n;m) denote the conjecture (7) (i.e., '(n;m) is

\times(m; quot(n;m)) = n") and let \x � y" abbreviate minus(x; y).

Then instead of (7) one would have to verify

'(0; s(y)); (8)

'(s(x)� y; y) ) '(s(x); y): (9)

But recall that induction proofs are only sound if the induction relation

used is well founded. Hence, inductions w.r.t. non-terminating algo-

rithms like quot must not be used in an unrestricted way. For example,

by induction w.r.t. the non-terminating algorithm f with the de�ning

equation f(x) = f(x) one could prove any formula, e.g., conjectures like

f(x) = x or :x = x. However, while f(x) = x is indeed partially true (as

it holds for every instantiation of x where evaluation of f(x) is de�ned),

the conjecture :x = x is not partially true. Thus, for partial functions

we can no longer use the calculus of Section 2, since this would enable

the proof of false facts.

However, for formula (7) the induction w.r.t. the recursions of quot

is nevertheless sound, i.e., partial truth of (8) and (9) in fact implies

partial truth of (7). The reason is that the only occurrence of a partial

function in (7) is quot(n;m). Hence, for all natural numbers n and m,

evaluation of '(n;m) is de�ned i� evaluation of quot(n;m) is de�ned.

Partial truth of (8) and (9) implies that '(n;m) holds for all numbers

n and m where quot(n;m) is de�ned, provided that it also holds for

the numbers n � m and m, if evaluation of quot(n;m) leads to the

recursive call quot(n�m;m). Hence, the original induction proof w.r.t.

the recursions of quot can be regarded as an induction proof where

the induction relation is restricted to those inputs where evaluation

of quot is de�ned. This restricted induction relation is well founded

although quot is not always terminating. We formalize this result with

the following lemma.

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.9



10 J

�

URGEN GIESL

LEMMA 2 (Induction w.r.t. Partial Functions). Let the term f(x

�

) be

the only occurrence of a possibly partial function in the conjecture

'(x

�

). For each de�ning equation f(t

�

) = r where r contains the f -

terms f(s

�

1

); : : : ; f(s

�

n

), let '(s

�

1

)^ : : :^'(s

�

n

)) '(t

�

) be partially true.

Then '(x

�

) is also partially true.

Proof. Suppose that '(x

�

) is not partially true.

4

Then there exists a

\counterexample", i.e., a tuple of data objects q

�

such that evaluation

of '(q

�

) is de�ned, but Eq [ Ax

data

6j= '(q

�

). As '(x

�

) contains the

term f(x

�

), this implies that f(q

�

) is also de�ned.

Let �

f

be the relation where q

�

1

�

f

q

�

2

holds for two tuples of data

objects i� evaluation of f(q

�

1

) is de�ned and leads to the recursive call

f(q

�

2

). This relation is well founded even if f is partial. Hence, there

also exists a minimal counterexample q

�

w.r.t. �

f

.

As evaluation of f(q

�

) is de�ned, there must be a de�ning equa-

tion f(t

�

) = r such that q

�

is an instantiation of the pattern t

�

, i.e.,

q

�

= �(t

�

) for some substitution �. Let f(s

�

1

); : : : ; f(s

�

n

) be the f -terms

in r. Due to the de�nedness of f(q

�

), each �(s

�

i

) evaluates to some data

objects p

�

i

where we have q

�

�

f

p

�

i

for all 1 � i � n. Moreover, evalu-

ation of each f(p

�

i

) is de�ned and as '(x

�

) does not contain any other

occurrences of partial functions besides the term f(x

�

), evaluation of

'(p

�

i

) is de�ned, too.

So by the partial truth of '(s

�

1

) ^ : : : ^ '(s

�

n

) ) '(t

�

), we have

Eq[Ax

data

j= '(p

�

1

)^ : : :^'(p

�

n

)) '(q

�

). Thus, Eq[Ax

data

6j= '(q

�

)

implies Eq [ Ax

data

6j= '(p

�

i

) for some i. But then p

�

i

is a smaller

counterexample than q

�

, which leads to a contradiction. 2

Therefore by restricting the �rst rule of the calculus in a suitable

way, one may perform inductions w.r.t. partial functions like quot, too.

1

0

. Induction w.r.t. Algorithms

Rule 1, where either f must be total and ' may contain total func-

tions only or f may be partial and the only occurrence of a possibly

partial function in ' must be the term f(x

�

).

Note that for this rule, the reason for partiality is not crucial, i.e.,

incompleteness and non-termination are treated in the same way.

So inductions w.r.t. partial functions may be used for verifying con-

jectures containing partial functions. Note that actually this is the only

kind of induction which is possible for such conjectures, i.e., for state-

ments about partial functions the rules for well-founded induction are

4

To ease readability, we only prove the lemma for the the case where ' contains

no other variables than x

�

. The extension of the proof to the general case where '

may contain additional variables y

�

is straightforward.

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.10



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 11

no longer sound (and a similar problem appears with conjectures con-

taining several occurrences of partial functions). For instance, if half

has the de�ning equations half(0) = 0 and half(s(s(x))) = s(half(x)),

then by structural induction one could verify the statement

8x : nat half(x) = half(half(x)) (10)

although it is not partially true (e.g. half(4) = 2, but half(half(4)) =

1). Here, structural induction would transform (10) into the formu-

las half(0) = half(half(0)) and half(x) = half(half(x)) ) half(s(x)) =

half(half(s(x))), both of which are partially true. The reason is that

there does not exist a data object q such that evaluation of both

half(q) and half(s(q)) is de�ned. (More precisely, the problem is that

de�nedness of the induction conclusion does not imply de�nedness of

the induction hypothesis.) Similarly, the false conjecture (10) could also

be proved by induction w.r.t. half using x as induction variable.

For that reason, we only allow induction w.r.t. a partial function f if

f(x

�

) is the only term with a partial root function in the conjecture and

well-founded inductions are only permitted for statements containing

total functions only (see Section 5 for an extension of our calculus).

This results in the following rule for structural induction.

2

0

. Structural Induction

Rule 2, where all functions in ' must be total.

To continue the proof of (8) and (9), we now apply symbolic evalu-

ation according to the third rule of the calculus. Symbolic evaluation

may also be done for partial functions because if f(t

�

) = r is a de�n-

ing equation, then replacing �(f(t

�

)) by �(r) does not \decrease the

de�nedness" of the formula. Thus, �(f(t

�

)) and �(r) evaluate to the

same result, whenever evaluation of �(f(t

�

)) is de�ned.

3

0

. Symbolic Evaluation Rule 3

In this way, (8) is transformed into the trivial theorem 0 = 0 and

(9) is transformed into the formula

y � quot(s(x)� y; y) = s(x)� y )

y + y � quot(s(x)� y; y) = s(x): (11)

Now one would like to use the fourth rule to \apply" the induction

hypothesis, i.e., to transfer (11) into

y + (s(x)� y) = s(x): (12)

However, this rule may no longer be used to perform arbitrary �rst

order inferences if we deal with partial functions. As an example, the

fourth rule allows us to conclude

'

1

^'

2

'

1

. This is a sound inference for

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.11



12 J

�

URGEN GIESL

total functions, but it becomes unsound when handling partial func-

tions, i.e., '

1

^ '

2

may be partially true, although '

1

is not partially

true. For instance, '

1

could be :x = x and '

2

could contain an unde-

�ned term like quot(1; 0).

Therefore the fourth rule

 

1

;:::; 

n

'

may only be used in proofs about

partial functions, if de�nedness of ' implies de�nedness of  

1

; : : : ;

 

n

(resp. of their corresponding instantiations). For that reason we

demand that every term with a partial root function in  

1

; : : : ;  

n

must also occur in '.

5

In this way, (11) can indeed be transformed

into (12), because the only term with a partial root symbol in (12)

(viz. minus(s(x); y) ) was already present in (11).

4

0

. First Order Consequence

Rule 4, where all terms f(t

�

) with a possibly partial root function f

in  

1

; : : : ;  

n

must also occur in '.

To conclude the proof of (7), we use the generalization rule and

replace the term s(x) in (12) by a new variable z. Obviously, this rule

can also be used for partial functions, because if ' is partially true then

any instantiation of �(') must hold if its evaluation is de�ned.

5

0

. Generalization Rule 5

Generalization of (12) results in y + (z � y) = z. This is the spec-

i�cation of minus (6) (with a variable renaming), i.e., in this way the

partial correctness proof of quot is reduced to the partial correctness

proof of minus. (Subsequently, partial truth of (6) can also be proved

with our calculus by induction w.r.t. the algorithm minus.)

Summing up, the restricted rules 1

0

{ 5

0

constitute a calculus for

induction proofs which is also sound for partial functions. Thus, by

imposing some slight restrictions, the inference rules implemented in

most induction theorem provers and their heuristics for the application

of these rules can now also be used for partial functions.

THEOREM 3. If '(x

�

) can be derived with the rules 1

0

{ 5

0

, then

8x

�

'(x

�

) is partially true, i.e., '(q

�

) holds for all those data objects

q

�

, where evaluation of all top-level terms in '(q

�

) is de�ned.

Proof. The soundness of Rule 1

0

is proved in Lemma 2 and for the

remaining rules it is obvious. Hence, for each inference rule

'

1

;:::;'

n

'

of

the calculus, partial truth of '

1

; : : : ; '

n

implies partial truth of '. 2

5

This condition is su�cient, because in our formulation of Rule 4 we required

\Ax

data

` 8... ( 

1

^ : : :^ 

n

) ')" instead of \Ax

data

` 8...( 

1

^ : : :^ 

n

)) 8...'".

So for each instantiation �, �(') is a consequence of �( 

1

); : : : ; �( 

n

). Hence, now it

is su�cient if for each �, de�nedness of �(') implies de�nedness of �( 

1

); : : : ; �( 

n

).

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.12



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 13

4. Extensions for Algorithms with Conditionals

While up to now we restricted ourselves to algorithms de�ned by uncon-

ditional equations, in this section we extend our results to algorithms

with conditions. For that purpose, our programming language uses a

pre-de�ned conditional function if : bool���� ! � for each data type

� . These conditionals are the only functions with non-eager semantics,

i.e., when evaluating if(t

1

; t

2

; t

3

), the (boolean) term t

1

is evaluated �rst

and depending on the result of its evaluation either t

2

or t

3

is evaluated

afterwards yielding the result of the whole conditional. As an example

regard the following algorithm div for truncated division (i.e., div(n;m)

computes b

n

m

c). In contrast to quot, div is de�ned whenever its second

argument is not 0. It uses the (total) auxiliary function

function ge : nat� nat! bool

ge(x; 0) = true

ge(0; s(y)) = false

ge(s(x); s(y)) = ge(x; y)

to compute the usual \greater-equal" relation on naturals. Now the

algorithm for div reads as follows.

function div : nat� nat! nat

div(0; s(y)) = 0

div(s(x); y) = if( ge(s(x); y); s(div(minus(s(x); y); y)); 0)

The operational semantics of our extended programming language

is again obtained by regarding all constructor ground instantiations of

the de�ning equations as rewrite rules. However, now in R

op

we have

additional rewrite rules

if(true; x; y)! x and if(false; x; y)! y

for the conditionals. This captures their non-eager semantics, as the

variables x; y in these rewrite rules may be instantiated by arbitrary

terms. For example, \if(false; t; 0)" can be evaluated to 0 (i.e., its evalu-

ation is de�ned), even if t cannot be evaluated to a constructor ground

term. So for terms with conditionals, a term may be de�ned although

it contains unde�ned subterms.

Note that now R

op

is no longer suitable as an interpreter for our

language, because a term like \if(false; t; 0)" has both �nite and in�nite

R

op

-reductions. To avoid unnecessary in�nite reductions, we have to

use a context-sensitive rewriting strategy where reductions may never

take place in the second or third argument of an if [29, 53]. Let \!

R

op

;if

"

denote this restricted rewrite relation. Now we say that a ground term

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.13



14 J

�

URGEN GIESL

t evaluates to another ground term t

0

i� t!

�

R

op

;if

t

0

holds. However, the

following lemma shows that to de�ne the operational semantics (i.e.,

to determine whether t eventually evaluates to a constructor ground

term q), this restriction on the rewrite relation is not necessary.

LEMMA 4 (Operational Semantics). A ground term t evaluates to a

constructor ground term q (i.e., t!

�

R

op

;if

q) i� t!

�

R

op

q.

Proof. The \only if" direction is clear. For the \if" direction, we use

an induction w.r.t. the relation where a ground term t

1

is greater than

another one t

2

i� either the minimalR

op

-reduction of t

2

to a constructor

ground term is shorter than the one of t

1

or else, the minimal R

op

-

reductions of t

1

and t

2

to constructor ground terms have the same

length, but t

2

is a subterm of t

1

. Here, the minimal R

op

-reduction is

used to ensure well-foundedness of the induction relation, since !

R

op

itself is not even well founded for terms t with t!

�

R

op

q.

Let t !

�

R

op

q be a minimal R

op

-reduction of t to a constructor

ground term. If t = f(t

�

) for some algorithm f , then the reduction must

have the form f(t

�

) !

�

R

op

f(q

�

) !

R

op

r !

�

R

op

q, where f(q

�

) = r is a

constructor ground instantiation of a de�ning equation. The induction

hypothesis implies t

�

!

�

R

op

;if

q

�

and r !

�

R

op

;if

q and so we obtain

f(t

�

)!

�

R

op

;if

f(q

�

)!

R

op

;if

r !

�

R

op

;if

q, as desired.

If t = c(t

�

) for some constructor c, then the conjecture immediately

follows from the induction hypothesis. Finally, if t = if(b; t

1

; t

2

), then

if(b; t

1

; t

2

) !

�

R

op

q implies b !

�

R

op

true or b !

�

R

op

false. Without loss

of generality, we assume b!

�

R

op

true. Thus, the reduction of if(b; t

1

; t

2

)

has the form

if(b; t

1

; t

2

)!

�

R

op

if(true; t

0

1

; t

0

2

)!

R

op

t

0

1

!

�

R

op

q

(where in fact we have t

2

= t

0

2

, as the reduction should be minimal). By

the induction hypothesis this implies b !

�

R

op

;if

true and t

1

!

�

R

op

;if

q.

Thus, we obtain if(b; t

1

; t

2

) !

�

R

op

;if

if(true; t

1

; t

2

) !

R

op

;if

t

1

!

�

R

op

;if

q,

which proves the lemma. 2

Similar to the partial correctness statement (7) about quot, we may

now want to verify partial truth of the following conjecture.

8n;m : nat ge(n; times(m; div(n;m))) = true (13)

Recall that 8x

�

'(x

�

) is partially true if Eq [Ax

data

j= '(q

�

) holds

for all those data objects q

�

, where evaluation of all top-level terms in

'(q

�

) is de�ned. Note that with the function symbol if, the restriction to

the de�nedness of top-level terms is important, since an if-term may be

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.14



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 15

de�ned, even if some of its subterms are not. Of course, now we have to

extendEq by the new axioms \if(true; x; y) = x" and \if(false; x; y) = y"

for all conditionals.

To prove the partial truth of (13) automatically, we intend to pro-

ceed in a similar way as in the partial correctness proof of quot. Hence,

(13) should be proved by an induction w.r.t. div. However, to han-

dle functions de�ned with conditionals, we have to change the rule for

inductions w.r.t. algorithms slightly. First of all, recall that the sound-

ness of Rule 1

0

relied on the fact that de�nedness of a formula ensured

de�nedness of all its subterms. Hence, for the partial truth of a formula

' containing f(x

�

), it was su�cient to prove it just for those inputs

where f is de�ned. However, this does not necessarily hold if f occurs

in an argument of a conditional. Therefore, we have to demand that

Rule 1

0

may only be applied to conjectures without if-terms.

Up to now, when proving the conjecture '(x

�

) by induction w.r.t.

f , we obtained an induction formula

'(s

�

) ) '(t

�

) (14)

if f(t

�

) = r is a de�ning equation and r contains a recursive call f(s

�

)

at some position �. For functions without conditionals, this induction

is sound, because then evaluation of f(t

�

) always leads to evaluation

of f(s

�

). Hence, if f(t

�

) is de�ned, then f(s

�

) is also de�ned and its

evaluation takes fewer steps than evaluation of f(t

�

).

However, if the de�ning equation has the form f(t

�

) = if(b; f(s

�

); : : :),

then evaluation of f(t

�

) only leads to evaluation of f(s

�

), if the condi-

tion b is true. Hence, when proving '(t

�

) one may only use the induction

hypothesis '(s

�

) if b evaluates to true.

In general, if � is a position in a term r, then its subterm rj

�

is only

evaluated under the condition con(r; �), where con(r; �) is de�ned as

follows:

con(r; �) =

8

>

>

>

>

<

>

>

>

>

:

true; if � is the top position of r

if(r

1

; con(r

2

; �

0

); false); if r = if(r

1

; r

2

; r

3

) and � = 2�

0

if(r

1

; false; con(r

3

; �

0

)); if r = if(r

1

; r

2

; r

3

) and � = 3�

0

con(r

j

; �

0

); otherwise (where r = g(r

1

: : :r

k

)

and � = j�

0

)

For example, in the result of div's second equation the recursive call is

at position 21 and we obtain con(if(: : :); 21) = if(ge(s(x); y); true; false).

Note that due to the use of the function \if" in the de�nition of con,

de�nedness of r implies de�nedness of con(r; �) for all instantiations

with data objects. Thus, instead of the induction formula (14) we have

to use the following two formulas which allow a use of the induction

hypothesis '(s

�

) only under the condition of its evaluation.

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.15



16 J

�

URGEN GIESL

con(r; �) = true ^ '(s

�

) ) '(t

�

)

con(r; �) = false ) '(t

�

)

Let us abbreviate the conjecture (13) by '(n;m). Then induction

w.r.t. div transforms this conjecture into the following three formulas.

'(0; s(y)) (15)

if(ge(s(x); y); true; false) = true ^ '(s(x)� y; y) ) '(s(x); y) (16)

if(ge(s(x); y); true; false) = false ) '(s(x); y) (17)

Of course, a de�ning equation f(t

�

) = r may contain several recur-

sive calls in r. Hence in general, Rule 1

0

now reads as follows.

1

0

. Induction w.r.t. Algorithms (extended to conditionals)

f con(r

i

; �

i;j

) = true ^ '(s

�

i;j

) ) '(t

�

i

) j i = 1; : : : ; k; j = 1; : : : ; n

i

g

f con(r; �

i;1

) = false ^ : : : ^ con(r; �

i;n

i

) = false ) '(t

�

i

) j i = 1; : : : ; k g

'(x

�

)

if f has the de�ning equations f(t

�

i

) = r

i

for i = 1; : : : ; k, where

r

i

j

�

i;j

= f(s

�

i;j

) for j = 1; : : : n

i

, and either f and all functions in

' are total or else, ' contains no occurrence of \if" and the only

occurrence of a possibly partial function in ' is f(x

�

).

A re�nement of this approach is obtained by combining those induc-

tion formulas which have the same condition con(r; �), cf. e.g. [6, 75,

79]. So if con(r; �

i;j

) = con(r; �

i;j

0

) then instead of two separate induc-

tion formulas for s

�

i;j

and s

�

i;j

0

, it is preferable to use the formula

con(r; �

i;j

) = true ^ '(s

�

i;j

) ^ '(s

�

i;j

0

) ) '(t

�

i

):

In general, this weaker induction formula is easier to prove, as one may

use both induction hypotheses '(s

�

i;j

) and '(s

�

i;j

0

) together in order to

verify the induction conclusion '(t

�

i

).

For the proof of formulas '( if(t

1

; t

2

; t

3

) ) containing conditionals,

we need an additional rule which performs a case analysis w.r.t. the

condition t

1

. In this way, we obtain two new formulas \t

1

= true )

'(t

2

)" and \t

1

= false ) '(t

3

)". Note that such a case analysis may

only be done for top-level conditionals. For example, let t

1

be a term

whose evaluation is unde�ned. Nevertheless, the formula

if(false; if(t

1

; : : :; : : :); false) = true (18)

is not partially true, because if(false; : : : ; false) evaluates to false. How-

ever, if one would perform a case analysis w.r.t. the condition t

1

of the

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.16



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 17

inner conditional, then (18) would be transformed into the formulas

\t

1

= true ) : : :" and \t

1

= false ) : : :". These formulas are both

partially true, since both contain the unde�ned top-level term t

1

.

6

0

. Case Analysis

t

1

= true ) '(t

2

) t

1

= false ) '(t

3

)

'( if(t

1

; t

2

; t

3

) )

if ' contains no if-term at positions above the term if(t

1

; t

2

; t

3

).

By repeated application of this rule, all occurring conditionals can

be eliminated. For example by case analysis, formula (16) from the div

example is transformed into the two formulas

ge(s(x); y) = true ) [ true = true ^ '(s(x)� y; y) ) '(s(x); y) ]

ge(s(x); y) = false) [ false = true ^ '(s(x)� y; y) ) '(s(x); y) ].

Using Rule 4

0

, the second formula can be proved and the �rst one is

transformed into

ge(s(x); y) = true ^ '(s(x)� y; y) ) '(s(x); y):

Similar to Rule 1

0

, in Rule 4

0

we also have to demand that ' contains

no if-terms (i.e., all occurring conditionals have to be eliminated by the

case analysis rule �rst). The reason is that to ensure that de�nedness

of ' implies de�nedness of  , in Rule 4

0

we only check whether each

term with a partial root function in  also occurs in '. But of course,

for terms with conditionals this criterion is no longer su�cient. This

results in the following rule.

4

0

. First Order Consequence (extended to conditionals)

 

1

; : : : ;  

n

'

if Ax

data

`  

1

^ : : : ^  

n

) ', ' contains no occurrence of \if", and

all terms with possibly partial root function in  

1

; : : : ;  

n

also occur

in '.

Now the rules 1

0

{ 6

0

constitute a sound calculus for induction proofs

with partial functions for our extended conditional functional program-

ming language. In this way, partial truth of the conjecture (13) about

div can be proved similar to the partial correctness of quot in Section 3

(i.e., (13) can be reduced to the conjecture ge(u� v; w) = ge(u; v +w)

which is proved by induction w.r.t. minus).

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.17



18 J

�

URGEN GIESL

5. Re�nements by Reasoning about De�nedness

With the calculus of Section 3 and 4 the techniques for automated

induction proofs can be directly extended to partial functions. In this

way it is possible to prove the partial truth of statements like (6),

(7), and (13) automatically. The calculus has the advantage that one

can perform proofs about partial functions (and even inductions w.r.t.

partial functions) without having to deal with de�nedness explicitly.

However, there exist conjectures which cannot be veri�ed with our cal-

culus, because their proofs require reasoning about de�nedness. As an

example, consider the following conjecture.

8x; y; z : nat (x� y)� z = (x� z)� y (19)

For this formula we attempt to perform induction w.r.t. the algo-

rithm minus using x and y as induction variables. Then (19) would be

transformed into the following formulas.

(x�0)� z = (x� z)�0 (20)

(x�y)� z = (x� z)�y ) (s(x)� s(y))� z = (s(x)� z)� s(y) (21)

However, our calculus would only allow this induction if minus(x; y)

were the only term with a partial root function in the conjecture (oth-

erwise induction w.r.t. algorithms can be unsound, cf. Section 3). But

as (19) contains four di�erent minus-terms, it cannot be transformed

into (20) and (21) with Rule 1

0

.

In fact one may only perform induction, if for each induction step

formula of the form \induction hypothesis ) induction conclusion" the

induction hypothesis is always de�ned whenever the induction conclu-

sion is de�ned. Then for every potential counterexample (corresponding

to the induction conclusion) there would be a smaller counterexample

(corresponding to the induction hypothesis), cf. Lemma 2. So in our

example, for (19) one may indeed use induction w.r.t. minus, because

for all values of x and y, de�nedness of the induction conclusion

(s(x)� s(y))� z = (s(x)� z)� s(y) (22)

implies de�nedness of the induction hypothesis

(x� y)� z = (x� z)� y: (23)

But to check whether de�nedness of (22) really implies de�nedness

of (23) we have to reason about de�nedness explicitly. For that purpose

we now introduce a de�nedness function def : � ! bool for each data

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.18



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 19

type � where for any ground term t, def(t) is true i� evaluation of t is

de�ned. Otherwise, def(t) is not de�ned either (i.e., the function def is

recursive and eager). Then instead of proving partial inductive truth of

a conjecture ' with the top-level term t, we will prove inductive truth

of def(t) = true) '. To ease readability, in the following we will often

abbreviate formulas of the form \t = true" by just writing the boolean

term t and formulas of the form \:t = true" are abbreviated by \:t".

In Section 5.1 we de�ne an appropriately extended notion of induc-

tive truth and in Section 5.2 our calculus is re�ned in order to reason

about de�nedness.

5.1. Inductive Truth for Partial Functions

Up to now, inductive truth has only been de�ned if all occurring func-

tions are total (Section 2), whereas for partial functions we only intro-

duced the notion of partial truth. Hence, now we have to extend the

de�nition of inductive truth to conjectures with partial functions. For

that purpose we use a model theoretic approach. Recall that for total

functions, inductive truth is equivalent to validity in the initial model

of the de�ning equations Eq. However, due to the occurrence of par-

tial functions, now the initial model of Eq does not correspond to the

semantics of our programming language any more. The reason is that

the de�ning equations do not represent the eager evaluation strategy

of our programming language. For example, times(quot(1; 0); 0) = 0 is

valid in the initial model of the de�ning equations although (innermost)

evaluation of times(quot(1; 0); 0) is not terminating.

Due to the eager semantics, a de�ning equation f(t) = r may only

be applied to evaluate a term �(f(t)) if evaluation of the argument

�(t) is de�ned, i.e., if def(�(t)) is true. Thus, instead of a de�ning equa-

tion f(t) = r we use the equation f(t) = if(def(t); r; f(t)). To handle

functions with several arguments, in the following def(t

1

; : : : ; t

n

) is an

abbreviation for the term if(def(t

1

); def(t

2

; : : : ; t

n

); false). So intuitively,

def(t

1

; : : : ; t

n

) is true i� def(t

i

) is true for all i. For the empty tuple

(where n = 0), def() is de�ned to be true. This leads to the follow-

ing de�nition of inductive truth for conjectures about partial functions

(which may also contain the function def).

DEFINITION 5 (Inductive Truth). Let I be the initial model of

ff(t

�

) = if(def(t

�

); r; f(t

�

)) j for each de�ning equation f(t

�

) = rg

[ fif(true; x; y) = x; if(false; x; y) = yg

[ fdef(c(x

�

)) = def(x

�

) j for each constructor cg:

Then a formula is inductively true i� it is valid in I.

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.19



20 J

�

URGEN GIESL

To illustrate this de�nition, note that the carrier of the initial model

I is (isomorphic to) the quotient algebra T =

=

E

. Here, T denotes the

set of all ground terms and =

E

is the equivalence relation induced by

the set E of equations in De�nition 5. So for example, the equivalence

class [0]

=

E

also contains terms like plus(0; 0) and times(s(0); 0), etc.

As all our algorithms are deterministic, every equivalence class [t]

=

E

contains at most one constructor ground term. However, there may

also be equivalence classes without any constructor ground term. For

example, [minus(1; 2)]

=

E

contains minus(0; 1), but it does not contain

any constructor ground term. Those equivalence classes which contain

a constructor ground term are the de�ned ones, whereas those with-

out a constructor ground term correspond to the unde�ned ones. Note

that in the initial model I not all unde�ned terms are equal. For exam-

ple, minus(0; 1) and minus(0; 2) are not in the same equivalence class

(although they are both unde�ned). A formal de�nition of initial alge-

bras can for instance be found in [30].

For terminating and completely de�ned algorithms, this notion of

inductive truth is equivalent

6

to validity in the initial model of the

de�ning equations, i.e., to the de�nition of inductive truth used in Sec-

tion 2. However, De�nition 5 extends this notion to partial functions.

In the following, let R be the term rewriting system resulting from E

by orienting the equations from left to right. Note that for any ground

term t and any constructor ground term q

t = q is inductively true

i� I j= t = q

i� E j= t = q (as I is isomorphic to T =

=

E

)

i� t$

�

R

q (by Birkho�'s Theorem [3])

i� t!

�

R

q (as R is a conuent constructor system).

To show the connection between inductive truth and partial induc-

tive truth (i.e., the truth of a conjecture for all instantiations where

its evaluation is de�ned, cf. Section 3), we need some lemmata about

R-reductions. The �rst lemma shows that one may exchange subterms

in arguments of if-terms whose condition con(t; �) is false.

LEMMA 6 (Exchanging Subterms in if-Arguments). Let t and s be

ground terms which only di�er on positions � with I j= con(t; �) =

6

For a formal justi�cation of this claim, note that if all algorithms are total,

then every ground term t is Eq- and E-equal to a constructor ground term q. Thus,

then a formula 8x

�

'(x

�

) without def is valid in the initial model I

Eq

of Eq or in

the initial model I of E, respectively, i� I

Eq

j= '(q

�

) resp. I j= '(q

�

) holds for all

constructor ground terms q

�

. By induction on the structure of '(q

�

) one can show

that I

Eq

j= '(q

�

) i� Eq[Ax

data

j= '(q

�

) i� I j= '(q

�

) for all formulas '(q

�

) without

def, variables, and unde�ned terms (cf. conjecture (28) in the proof of Theorem 9).

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.20



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 21

false. If there exists a number n and a constructor ground term q such

that t!

n

R

q, then there exists an m � n such that s!

m

R

q.

Proof. The lemma is proved by induction on n. For n = 0 it is clear

and otherwise we have t !

R

t

0

!

n�1

R

q. If the reduction t !

R

t

0

was

done on a position � with I j= con(t; �) = false, then the induction

hypothesis implies s !

m

R

q for some m � n � 1. Otherwise, there is a

reduction s !

R

s

0

which is analogous to t !

R

t

0

, such that t

0

and s

0

again only di�er on positions � with I j= con(t

0

; �) = false. Then the

conjecture also follows from the induction hypothesis. 2

Now we prove that if t reduces to a constructor ground term, then

its unde�ned subterms are only on positions � where con(t; �) is false.

LEMMA 7 (Positions of Unde�ned Terms). Let t be a ground term and

t !

�

R

q for some constructor ground term q. If tj

�

does not R-reduce

to a constructor ground term, then we have I j= con(t; �) = false.

Proof. The lemma can be shown by structural induction on t. Note

that for the top position � we always have tj

�

!

�

R

q.

If t = if(r

1

; r

2

; r

3

), � = 2�

0

, and r

1

!

�

R

false, then the lemma is

trivial. Otherwise, we must have r

1

!

�

R

true and thus, t !

�

R

r

2

. By

conuence of R this implies r

2

!

�

R

q. Thus, the lemma is implied by

the induction hypothesis. The case � = 3�

0

is analogous.

Otherwise, if t = g(r

1

: : :r

j

: : :r

k

) and � = j�

0

then we also have r

j

!

�

R

q

j

for some constructor ground term q

j

, and thus, the lemma follows

from the induction hypothesis. For constructors g and for g = if and

j = 1 this is clear. Otherwise, we have t !

R

if(def(r

1

: : :r

j

: : :r

k

); : : :; : : :).

By conuence of R, this if-term must also R-reduce to q and thus,

def(r

1

: : :r

j

: : :r

k

) reduces to a constructor ground term. By induction on

the length of the minimal R-reduction of def(r

1

; : : :; r

k

) one can show

that there must be constructor ground terms q

1

; : : : ; q

k

such that r

i

!

�

R

q

i

for 1 � i � k. 2

Recall that by Lemma 4, a ground term t evaluates to a constructor

ground term q i� t!

�

R

op

q holds. To handle terms with the de�nedness

function def, let R

opd

be the extension of R

op

by the rules fdef(q) !

true j q is a constructor ground termg. The resulting term rewriting

system R

opd

is still orthogonal and hence, conuent. In the following,

we say that t evaluates to a constructor ground term q i� t !

�

R

opd

q,

where obviously this de�nition of the operational semantics coincides

with the old one for all terms t without def. The next lemma proves

that using De�nition 5, def has indeed the intended semantics, i.e.,

the model theoretic semantics of def corresponds to the operational

semantics of \de�nedness".

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.21



22 J

�

URGEN GIESL

LEMMA 8 (Semantics of def). For any ground term t, def(t) = true is

inductively true i� evaluation of t is de�ned.

Proof. The conjecture def(t) = true is inductively true i� t !

�

R

q

holds for some constructor ground term q. Thus, for the lemma it is

su�cient to prove

t!

�

R

opd

q i� t!

�

R

q. (24)

We have !

R

opd

�!

�

R

, i.e., every evaluation can also be done with

the equations in De�nition 5. This implies the \only if" direction.

For the \if" direction, we use an induction on the length of the

minimal R-reduction of t to a constructor ground term. If t is already

a constructor ground term, then the conjecture is trivial. Otherwise,

the minimal reduction of t has the form

t!

R

t

0

!

�

R

q

where tj

�

= �(s

1

), t

0

= t[�(s

2

)]

�

, and s

1

! s

2

is a rule from R. Due to

the minimality of the reduction, by Lemma 6 we have I j= :con(t; �) =

false and thus, I j= :con(t

0

; �) = false, too. Now by Lemma 7, t

0

!

�

R

q

implies that there must also be an R-reduction from t

0

j

�

= �(s

2

) to

some constructor ground term.

So if s

1

= f(t

�

) and s

2

= if(def(t

�

); r; f(t

�

)), then �(t

�

) must be

R-reducible to constructor ground terms. Hence, if x

�

are the variables

occurring in the patterns t

�

, then �(x

�

) are R-reducible to some con-

structor ground terms q

�

, too. Due to the induction hypothesis these

reductions can also be done with R

opd

, i.e. �(x

�

)!

�

R

opd

q

�

. Hence,

t = t[�(f(t

�

))]

�

!

�

R

opd

t[f(t

�

)[x

�

=q

�

]]

�

!

R

opd

t[r[x

�

=q

�

]]

�

: (25)

Moreover, �(def(t

�

))!

�

R

opd

true implies

t

0

= t[�(if(def(t

�

); r; : : :))]

�

!

�

R

opd

t[�(r)]

�

!

�

R

opd

t[r[x

�

=q

�

]]

�

: (26)

On the other hand, by the induction hypothesis we have

t

0

!

�

R

opd

q: (27)

So by conuence of R

opd

, (26) and (27) imply t[r[x

�

=q

�

]]

�

!

�

R

opd

q and

by (25) we obtain t!

�

R

opd

q.

The case s

1

= def(c(x

�

)) and s

2

= def(x

�

) can be proved in a similar

way and the cases s

1

= if(: : :) are trivial, because then the rule s

1

! s

2

is also contained in R

opd

. Thus, conjecture (24) is proved. 2

Now we can show the connection between inductive truth and partial

inductive truth, i.e., we give a model theoretic characterization which

corresponds to our de�nition of partial truth from Section 3.

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.22



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 23

THEOREM 9 (Model Theoretic Characterization of Partial Truth).

Let ' be a quanti�er-free formula without the function symbol def and

let t

�

be the top-level terms of '. Then ' is a partial inductive truth i�

def(t

�

)) ' is inductively true.

Proof. Let I be the initial model from De�nition 5 and letEq contain

all de�ning equations and if(true; x; y) = x, if(false; x; y) = y.

We �rst prove that for any variable-free formula  which does not

contain the function def and where evaluation of all top-level terms is

de�ned, we have

Eq [Ax

data

j=  i� I j=  : (28)

The proof of conjecture (28) is done by induction on the structure

of  . If  is an atomic formula t

1

= t

2

, then by assumption t

1

and t

2

evaluate to constructor ground terms q

1

and q

2

, respectively. Hence,

we have Eq j= t

1

= q

1

and Eq j= t

2

= q

2

. Moreover, (by Lemma 8

resp. conjecture (24)), I j= t

1

= q

1

and I j= t

2

= q

2

holds, too. Thus if

q

1

= q

2

, then we have I j=  and Eq j=  . Otherwise, q

1

6= q

2

implies

I 6j=  and Eq[Ax

data

6j=  . (In fact, we have Ax

data

j= :q

1

= q

2

as can

easily be proved by structural induction. As Eq [Ax

data

is consistent,

this implies Eq [Ax

data

6j= q

1

= q

2

.)

If  is of the form : 

0

, then we have I j=  i� I 6j=  

0

. Due to

the induction hypothesis, this is equivalent to Eq [ Ax

data

6j=  

0

. By

structural induction one can prove that for any variable-free (and hence,

quanti�er-free) formula  

0

with de�ned top-level terms and without the

function def we either have Eq [ Ax

data

j=  

0

or Eq [ Ax

data

j= : 

0

.

Hence, due to the consistency of Eq [ Ax

data

, Eq [ Ax

data

6j=  

0

is

equivalent to Eq [Ax

data

j= : 

0

(i.e., to Eq [Ax

data

j=  ). For other

non-atomic formulas  , conjecture (28) is proved in a similar way.

We also need the following conjecture which states that for the for-

mula def(t

�

) ) ' it su�ces to regard instantiations with constructor

ground terms only. Here, x

�

are the variables occurring in '.

If I j= (def(t

�

) ) ')[x

�

=q

�

] for all constructor ground terms q

�

,

then I j= (def(t

�

) ) ')[x

�

=p

�

] holds for all ground terms p

�

.

(29)

Let p

�

be arbitrary ground terms such that I j= def(t

�

[x

�

=p

�

]) = true.

We examine the positions � of those variables in the terms t from

t

�

which are replaced by \unde�ned" ground terms p, i.e., by ground

terms p where I j= :p = q holds for all constructor ground terms q.

By Lemma 7, for all these � we have I j= con(t[x

�

=p

�

]; �) = false.

So the \unde�ned" ground terms p are not needed for evaluation of

t[x

�

=p

�

]. Hence, by Lemma 6 there exist constructor ground terms q

�

such that I j= t[x

�

=p

�

] = t[x

�

=q

�

]. As the variables of ' only occur

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.23



24 J

�

URGEN GIESL

within these top-level terms t, I j= (def(t

�

)) ')[x

�

=q

�

] indeed implies

I j= (def(t

�

)) ')[x

�

=p

�

]. Now we can prove Theorem 9:

8x

�

'(x

�

) is a partial inductive truth

i� Eq [Ax

data

j= '(q

�

) for all constructor ground terms q

�

where

evaluation of t

�

[x

�

=q

�

] is de�ned

i� I j= '(q

�

) for all constructor ground terms q

�

where evaluation of

t

�

[x

�

=q

�

] is de�ned (by (28))

i� I j= '(q

�

) for all constructor ground terms q

�

with

I j= def(t

�

[x

�

=q

�

]) = true (by Lemma 8)

i� I j= (def(t

�

) ) ')[x

�

=p

�

] for all ground terms p

�

(by (29))

i� I j= (def(t

�

) ) '); as I is isomorphic to T =

=

E

i� def(t

�

) ) ' is inductively true.

2

Hence, partial truth of (19) is equivalent to inductive truth of

def((x� y)� z; (x� z)� y) ) (x� y)� z = (x� z)� y: (30)

5.2. A Refined Induction Calculus for Partial Functions

Now we introduce a re�nement of our calculus for induction proofs

about partial functions. In contrast to the calculus from Section 3 and

4, this re�ned calculus proves inductive truth (instead of partial induc-

tive truth). For that purpose, it allows an explicit reasoning about

de�nedness. So in particular, it can also be used for total correctness

proofs.

In classical Noetherian induction, in order to verify 8n 2 N '(n)

for some set N , it is su�cient to prove the induction formula

8n 2 N [8k 2 N n > k ) '(k)]) '(n); (31)

provided that the relation >� N �N is well founded. Essentially, our

induction principle for partial functions now allows us to use arbitrary

(possibly not well-founded) relations >� N � N for such induction

proofs. The important observation is that (31) implies

8m 2M '(m)

for every subset M � N provided that > is well founded on the subset

M and that for all m 2M and all n 2 N , m > n implies n 2M .

In our calculus, we choose N to be the set of all (tuples of) ground

terms (resp. of equivalence classes from T =

=

E

), for the relation > we

use the ordering induced by the recursion structure of some algorithm

f , and we de�neM to be the domain of f . With this choice, > is always

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.24



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 25

well founded on M and m > n indeed implies n 2 M for all m 2 M .

Thus, these conditions on M do not have to be checked any more.

Now the advantage of our induction principle is that we can perform

induction proofs without having to determine the actual form of M

(since in the induction formula (31) we consider N instead of M).

However, this induction only proves '(m) for m 2 M . If we want

to verify that '(n) holds for all n 2 N , then we also have to prove

a permissibility conjecture which shows that '(n) also holds for all

n 2 N nM . It will turn out that in most cases, these permissibility

conjectures can also be proved without actually determining the setM .

This enables us to perform induction proofs w.r.t. algorithms without

having any knowledge about their domains.

In other words, an induction w.r.t. a (possibly partial) algorithm

f using the induction variables x

�

only proves a conjecture '(x

�

) for

those instantiations where f(x

�

) is de�ned. Hence, in addition one also

has to verify '(x

�

) for those instantiations where f(x

�

) is not de�ned,

i.e., one also has to prove the permissibility conjecture

:def(f(x

�

)) ) '(x

�

): (32)

For instance, let ' be the awed conjecture def(x)) :x = x. If we

intended to prove ' by induction w.r.t. the non-terminating function

f with the de�ning equation f(x) = f(x), then the (only) induction

formula would be a tautology. However, the permissibility conjecture

:def(f(x)) ) ' would not hold. Thus, permissibility conjectures are

indeed needed to prevent the proof of false facts like '. Thus, we obtain

the following induction rule.

1

00

. Induction w.r.t. Algorithms

f con(r

i

; �

i;j

) = true ^ '(s

�

i;j

) ) '(t

�

i

) j i = 1; : : : ; k; j = 1; : : : ; n

i

g

f con(r; �

i;1

) = false ^ : : : ^ con(r; �

i;n

i

) = false ) '(t

�

i

) j i = 1; : : : ; k g

:def(f(x

�

)) ) '(x

�

)

'(x

�

)

if f has the de�ning equations f(t

�

i

) = r

i

for i = 1; : : : ; k, where

r

i

j

�

i;j

= f(s

�

i;j

) for j = 1; : : : ; n

i

.

For example, induction w.r.t. minus using x and y as induction vari-

ables transforms (30) into the following conjectures. Here, '

def

(x; y; z)

abbreviates the formula def((x�y)�z; (x�z)�y) = true and '

eq

(x; y; z)

abbreviates (x�y)�z = (x�z)�y. Moreover since con(minus(x; y); �)

is true, we omitted it in the induction step formula and we also omit-

ted the formula with the premise \con(minus(x; y); �) = false" (where

� denotes the top position).

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.25



26 J

�

URGEN GIESL

'

def

(x; 0; z) ) '

eq

(x; 0; z) (33)

['

def

(x; y; z)) '

eq

(x; y; z)]) ['

def

(s(x); s(y); z)) '

eq

(s(x); s(y); z)] (34)

:def(x� y) ) ['

def

(x; y; z)) '

eq

(x; y; z)] (35)

These formulas reect the considerations from the beginning of Sec-

tion 5. In fact, partial truth of the former step formula '

eq

(x; y; z) )

'

eq

(s(x); s(y); z), i.e.

(x�y)�z = (x�z)�y ) (s(x)� s(y))�z = (s(x)�z)� s(y); (21)

is only su�cient for the new induction step formula (34), if one can

also prove that de�nedness of the (former) induction conclusion implies

de�nedness of the (former) induction hypothesis, i.e. '

def

(s(x); s(y); z)

) '

def

(x; y; z) or, in other words,

def((s(x)� s(y))� z; (s(x) � z)� s(y)) ) def((x � y)� z; (x� z)� y):

Similar to induction w.r.t algorithms, a structural induction using

the induction variable x only proves '(x) for instantiations of x with

de�ned terms. In other words, in addition we also have to check whether

the permissibility conjecture :def(x)) '(x) holds.

2

00

. Structural Induction

f'(x

i;1

) ^ : : : ^ '(x

i;n

i

) ) '(c

i

(x

�

i

)) j i = 1; : : : ; kg

:def(x) ) '(x)

'(x)

if x is a variable of a data type � with the constructors c

1

; : : : ; c

k

, and

if x

i;1

; : : : ; x

i;n

i

are the variables of the data type � occurring in x

�

i

.

The rule for symbolic evaluation now has to take into account that

a de�ning equation f(t

�

) = r can only be applied to evaluate the term

�(f(t

�

)) if the arguments �(t

�

) are de�ned, i.e., if def(�(t

�

)) = true

holds. Hence, when evaluating the term �(f(t

�

)) in a formula ', one

also has to prove the permissibility conjecture :def(�(t

�

))) '.

3

00

. Symbolic Evaluation

'( �(r) )

:def(�(t

�

)) ) '( �( f(t

�

) ) )

'( �( f(t

�

) ) )

if � is a substitution and f(t

�

) = r is a de�ning equation.

Recall that for the base case in the induction proof of (30), we have to

prove the formula

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.26



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 27

def((x� 0)� z; (x� z)� 0) ) (x� 0)� z = (x� z)� 0: (33)

For example, in order to evaluate the subterm (x�z)�0 to x�z, Rule

3

00

transforms (33) into

def((x� 0)� z; x� z) ) (x� 0)� z = x� z and

:def(x� z; 0) ) (33):

In the rule for �rst order consequences, in addition to Ax

data

we can

now also use axioms about de�nedness, which state how def operates

on terms built with algorithms, conditionals, and constructors. The

soundness of these axioms follows from Lemma 7 and 8.

Ax

def

= fdef(f(x

�

)) ) def(x

�

) j for all algorithms fg

[ fdef(if(x; y; z)) ) def(x)g

[ fdef(c(x

�

)) = def(x

�

) j for all constructors cg:

With these axioms about def, the permissibility conjectures and con-

jectures about de�nedness required by our calculus can often be proved

without actually computing or even approximating the domain of f .

4

00

. First Order Consequence

 

1

; : : : ;  

n

'

if Ax

data

[Ax

def

`  

1

^ : : : ^  

n

) '.

The generalization rule again remains unchanged.

5

00

. Generalization

'

�(')

where � is a substitution.

Finally, for the conjecture '( if(t

1

; t

2

; t

3

) ) a case analysis w.r.t. t

1

only proves the conjecture for instantiations where t

1

is de�ned. Hence,

we also have to verify that the conjecture holds if def(t

1

) is not true.

6

00

. Case Analysis

t

1

= true ) '(t

2

)

t

1

= false ) '(t

3

)

:def(t

1

) ) '( if(t

1

; t

2

; t

3

) )

'( if(t

1

; t

2

; t

3

) )

Note that in particular, the rules 4

00

and 6

00

allow us to prove

def(x

1

; : : : ; x

n

) ) def(x

i

) (36)

for all i = 1; : : : ; n. Now we can �nish the proof of (30), as symbolic

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.27



28 J

�

URGEN GIESL

evaluation and Rule 4

00

transform all remaining proof obligations into

trivial theorems, instantiations of (36), and the lemmata

def(x� z) ) s(x)� z = s(x� z); (37)

def((x� y)� z) ) def(x� z); (38)

def(x� z) ) def(s(x)� z); (39)

which in turn are veri�ed by inductions w.r.t. minus. The following

theorem proves the soundness of our calculus.

THEOREM 10. If ' can be derived with the rules 1

00

{ 6

00

, then 8x

�

'(x

�

)

is inductively true.

Proof. Let I be the initial model from De�nition 5. For each rule

'

1

;:::;'

n

'

it can be shown that I j= '

1

; : : : ; I j= '

n

implies I j= '. For

Rule 1

00

, validity of its �rst premises implies I j= '(q

�

) for all data

objects (and hence, also for all ground terms) q

�

where evaluation of

f(q

�

) is de�ned (this can be proved similarly to Lemma 2). By Lemma

8, this is equivalent to I j= def(f(x

�

)) ) '(x

�

). Thus, validity of the

permissibility conjecture :def(f(x

�

)) ) '(x

�

) implies I j= '(x

�

). The

soundness of the remaining rules is proved in an analogous way. 2

Apart from partial correctness statements (of the form \' holds if

its evaluation is de�ned"), our calculus can also verify \de�nedness con-

jectures" like (38) and (39) which are often needed in both partial and

total correctness proofs. In particular, the calculus can even perform

termination proofs. For example, totality of the algorithm plus, i.e.

def(x; y) ) def(plus(x; y)); (40)

can easily be proved by structural induction on x. But in addition to

such de�nedness theorems the calculus can also verify unde�nedness.

For instance, the conjecture stating that div is always unde�ned if its

second argument is 0,

y = 0 ) :def(div(x; y)) = true; (41)

can be proved by induction w.r.t. the partial algorithm div.

Moreover, the induction rules 1

00

and 2

00

can be strengthened further

by allowing arbitrary instantiations of non-induction variables, cf. e.g.

[6, 17, 42, 75]. So when proving '(x

�

; y

�

) by induction w.r.t. f(x

�

), in

each induction formula

'(s

�

; y

�

) ) '(t

�

; y

�

) (42)

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.28



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 29

(resulting from a de�ning equation f(t

�

) = : : : f(s

�

) : : :), one may re-

place the non-induction variables y

�

in the induction hypotheses by

arbitrary terms r

�

. Thus, instead of (42) one may construct an induc-

tion formula of the form

'(s

�

; r

�

1

) ^ : : : ^ '(s

�

; r

�

n

) ) '(t

�

; y

�

):

Of course, a corresponding extension can also be used for structural

inductions and for inductions w.r.t. algorithms with conditionals and

with several recursive calls in a de�ning equation.

For example, when proving partial truth of z � y ) x� y � x� z

by induction w.r.t. x� y (where \�" abbreviates ge), in the induction

hypothesis the non-induction variable z may be instantiated by p(z).

Here, p computes the predecessor of a natural number, where p(0) = 0.

Then a subsequent induction (resp. case analysis) w.r.t. p can be used

to solve the remaining proof obligations. Thus, with this extension one

can for instance model the heuristic of [6, 42] to merge the suggested

induction relations of x � y and x � z. Moreover, this extension also

allows the use of other re�ned techniques for the generation of suit-

able induction relations, cf. e.g. [6, \measured subsets"], [75, \domain

generalization"], and [42, \non-basic induction schemes"]. Note that an

arbitrary instantiation of non-induction variables could not be done in

our �rst calculus for partial functions from Section 3 and 4, since in this

calculus an instantiation of non-induction variables y

�

with unde�ned

terms r

�

would enable the proof of false facts.

To conclude, by explicit reasoning about de�nedness it is possible to

perform more re�ned inference steps than those allowed by the calculus

of Section 3 and 4. On the other hand, the new calculus imposes more

proof obligations, since now de�nedness conditions have to be checked

explicitly, whereas this was not necessary in the former calculus. Hence,

for statements containing just one occurrence of a partial function, it

is often advantageous to use the calculus of Section 3 and 4 instead.

The calculus of the present section represents a very powerful meth-

od for induction proofs about partial functions. The only di�erence

between the rules of this calculus and the rules typically used for induc-

tion theorem proving (with total functions) is the function symbol def,

the axioms Ax

def

, and an additional permissibility conjecture which

has to be proved whenever one of the rules 1

00

, 2

00

, 3

00

, or 6

00

is applied.

Hence, the existing induction provers can easily be extended to this

calculus and in this way, these systems can be directly used to reason

about de�nedness of partial functions. In particular, they may now per-

form an induction w.r.t. partial functions whenever the corresponding

permissibility conjecture can be veri�ed.

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.29



30 J

�

URGEN GIESL

6. Computation of Domains

In the calculus of the previous section we introduced an explicit (object-

level) notion of de�nedness using the function def. Hence, now de�ned-

ness of a function (or in particular, its termination) can also be proved

within the calculus. However, while termination of plus can indeed be

veri�ed, a similar conjecture for div, viz.

def(x; y) ^ :y = 0 ) def(div(x; y)); (43)

is problematic for the calculus. The reason is that here we would need

an induction w.r.t. the recursions of div. But this induction cannot

be done using Rule 1

00

, because we cannot prove the corresponding

permissibility conjecture which states that (43) also holds under the

condition :def(div(x; y)) = true. In fact, the only induction possible

for conjecture (43) is structural induction or an induction w.r.t. an

algorithm whose termination is already veri�ed for y 6= 0. Hence, we

need a method to ensure well-foundedness of relations outside of our

calculus. This is similar to the calculi in Section 2 and 3, which required

totality of functions in the conditions of some rules, but where totality

had to be veri�ed outside of the calculus, too.

Thus, in this section we present a method to analyze the de�nedness

of possibly partial functions. More precisely, for every algorithm f :

�

1

� : : :��

n

! � , a (total) algorithm �

f

: �

1

� : : :��

n

! bool (a domain

predicate for f) is generated, such that the truth of �

f

(t

�

) implies that

the evaluation of f(t

�

) is de�ned. Thus, �

f

is a total function specifying

the domain of f . Our aim is to synthesize

7

domain predicates which

return true as often as possible, but of course in general this goal cannot

be reached as the domains of functions are undecidable. As domain

predicates themselves are always total, we do not construct domain

predicates �

�

f

of domain predicates.

In our calculus we now introduce additional axiomsAx

dom

. For every

algorithm f with the domain predicate �

f

, Ax

dom

contains the axiom

�

f

(x

�

) ) def(f(x

�

)) (44)

which states that the truth of �

f

is su�cient for de�nedness of f , i.e.,

the domain predicate �

f

is partially correct. Moreover, for each such

�

f

, Ax

dom

also contains the following axiom which states that domain

predicates are total functions.

def(x

�

) ) def(�

f

(x

�

)) (45)

7

Strictly speaking, we synthesize algorithms which compute domain predicates.

For the sake of brevity we also refer to these algorithms as \domain predicates".

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.30



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 31

To use these additional axioms, the fourth rule of our calculus is

re�ned by allowing the inference

 

1

;:::; 

n

'

whenever Ax

data

[ Ax

def

[

Ax

dom

`  

1

^ : : : ^  

n

) ' holds. Now conjecture (43) can easily be

proved, provided that �

div

has the de�ning equations �

div

(x; 0) = false

and �

div

(x; s(y)) = true. Then Rule 4

00

transforms (43) into

def(x; y) ^ :y = 0 ) �

div

(x; y):

Subsequent induction (resp. case analysis) w.r.t. the algorithm �

div

and

symbolic evaluation of �

div

results in trivial theorems and consequences

of Ax

dom

. So in this way, the original conjecture (43) is veri�ed, i.e., now

the calculus is able to prove the well-foundedness of \new" relations.

Moreover, for algorithms f whose totality can be veri�ed by exist-

ing automated methods, we would have �

f

(x

�

) = true. Then the above

re�nement allows us to prove all de�nedness conditions about f imme-

diately (since the axiom (44) would now be true) def(f(x

�

))). Thus, if

all algorithms are total and this totality is reected in the correspond-

ing domain predicates, then compared to the standard techniques for

induction proofs, the calculus of Section 5 does not result in any sig-

ni�cant extra proof obligations.

Of course, we still have to explain how domain predicate algorithms

like �

div

can be generated automatically. For that purpose the termina-

tion behaviour of the algorithms under consideration is analyzed.

While most work on automated termination proofs has been done for

term rewriting systems (for surveys see e.g. [20, 73]) and logic programs

(e.g. [19, 64, 74]), only a few methods have been developed for func-

tional programs (e.g. [6, 24, 25, 26, 76]). These approaches aim to prove

that an algorithm terminates for each input. However, together with

J. Brauburger we developed a technique to adapt these methods for

automated termination analysis of partial functions, cf. [11, 12, 13, 28].

A �rst approach to generate a domain predicate �

div

would be to

replace the results of div's non-recursive cases by true and to replace

div's recursive call by a corresponding call of �

div

.

function �

div

: nat� nat! bool

�

div

(0; s(y)) = true

�

div

(s(x); y) = if( ge(s(x); y); �

div

(minus(s(x); y); y); true)

This algorithm returns true whenever its evaluation is de�ned. As the

patterns and recursions of �

div

correspond to those of div, the algorithm

div is de�ned whenever �

div

yields true. Hence, the above algorithm for

�

div

is in fact partially correct, cf. (44).

However, this algorithm does not compute a total function (i.e.,

(45) does not hold). First of all, �

div

is not completely de�ned. For

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.31



32 J

�

URGEN GIESL

every set of (non-overlapping and linear) patterns t

�

1

; : : : ; t

�

n

one can

easily compute a set of (linear) missing patterns t

0�

1

; : : : ; t

0�

m

such that

the whole set of patterns t

�

1

; : : : ; t

�

n

; t

0�

1

; : : : ; t

0�

m

is non-overlapping and

complete, i.e., for every tuple of data objects q

�

there exists a pattern

t

�

i

or t

0�

j

such that q

�

= �(t

�

i

) or q

�

= �(t

0�

j

) for some substitution �, cf.

e.g. [38].

8

Thus, the de�nition of a domain predicate �

f

should contain

the equation �

f

(t

0�

) = false for all missing patterns t

0�

. In our example,

this results in the additional de�ning equation �

div

(0; 0) = false.

Second, we have to ensure that in the domain predicates, auxiliary

algorithms likeminus are only called with inputs from their domains. Of

course, in the above algorithm the condition ge(s(x); y) already ensures

de�nedness of minus(s(x); y), but in general the de�nedness of auxiliary

algorithms has to be guaranteed separately. So in general, before call-

ing minus(s(x); y) we have to check whether �

minus

(s(x); y) yields true.

Hence, the result of the last de�ning equation is changed to

if( ge(s(x); y); if(�

minus

(s(x); y)); �

div

(minus(s(x); y); y); false); true):

But a third problem is that �

div

does not terminate. In other words,

no well-founded ordering � satis�es �

div

's termination hypothesis

ge(s(x); y) = true ) hs(x); yi � hminus(s(x); y); yi:

The central idea to transform the above algorithm into a terminating

one is to choose some well-founded ordering� and to enter the recursive

call �

div

(minus(s(x); y); y) only if hs(x); yi � hminus(s(x); y); yi holds

and to return false otherwise.

A successful heuristic for the choice of � is to use a well-founded

ordering which satis�es at least the non-strict unconditional version of

the termination hypothesis hs(x); yi � hminus(s(x); y); yi and which

satis�es the strict termination hypothesis \as often as possible". Such

orderings can be determined automatically by existing approaches for

termination analysis, cf. e.g. [25, 28]. For example, one may use an

ordering �

#

which compares pairs by the size of their �rst arguments

(where the size of an object of type nat is the number it represents, i.e.,

the number of its s-occurrences). Hence, we demand that �

div

(x; y) may

only enter its recursive call if hs(x); yi �

#

hminus(s(x); y); yi holds.

Now the method of [25, 28] can also compute a su�cient and nec-

essary requirement for hs(x); yi �

#

hminus(s(x); y); yi, viz. a so-called

di�erence equivalent �

�

#

(hs(x); yi; hminus(s(x); y); yi), which is equiv-

alent to ge(y; 1) in our example. In this way we obtain the following

domain predicate algorithm where \t

1

:̂ t

2

" abbreviates \if(t

1

; t

2

; false)"

and \t

1

:̂ t

2

:̂ : : :" abbreviates \t

1

:̂ (t

2

:̂ : : :)" to ease readability.

8

Essentially, the reason is that the depth of the missing patterns is bounded by

the maximum depths of function symbols in the patterns t

�

1

; : : : ; t

�

n

.

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.32



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 33

function �

div

: nat� nat! bool

�

div

(0; 0) = false

�

div

(0; s(y)) = true

�

div

(s(x); y) = if( ge(s(x); y);

�

minus

(s(x); y) :̂ ge(y; 1) :̂ �

div

(minus(s(x); y); y);

true)

Here, the di�erence equivalent ge(y; 1) guarantees that evaluation of

�

div

can only lead to a recursive call if the arguments of the recursive

call are�

#

-smaller than the original input. In a similar way, we obtain a

domain predicate for minus where we omitted the di�erence equivalent

�

�

#

(hs(x); s(y)i; hx; yi) because it is equivalent to true.

function �

minus

: nat� nat! bool

�

minus

(x; 0) = true

�

minus

(0; s(y)) = false

�

minus

(s(x); s(y)) = �

minus

(x; y)

The above algorithms indeed de�ne domain predicates for div and

minus, i.e., they compute total functions and their truth is su�cient

for the de�nedness of div and minus, respectively. In fact, �

minus

(x; y)

is true i� x is greater than or equal to y and �

div

(x; y) is true i� y is

greater than 0. Hence, in these examples we have even generated the

weakest possible domain predicates, as �

minus

and �

div

return true not

only for a subset but for all elements of the domains of minus and div.

To automate the above construction of domain predicates we asso-

ciate a boolean term �(t) with each term t (not containing the symbol

def) such that evaluation of �(t) is always de�ned and evaluation of t

is de�ned whenever �(t) is true.

9

�(t) is called a domain condition for

t and its de�nition is based on the domain predicates:

(i) �(x) :� true for variables x,

(ii) �(if(s

1

; s

2

; s

3

)) :� �(s

1

) :̂ if(s

1

; �(s

2

); �(s

3

))

(iii) �(c(s

1

: : :s

n

)) :� �(s

1

) :̂ : : : :̂�(s

n

) for constructors c,

(iv) �(g(s

1

: : :s

n

)) :� �(s

1

) :̂ : : : :̂�(s

n

) :̂ �

g

(s

1

: : :s

n

) for algorithms g.

Thus, if f and g are algorithms, then �(f(g(t))) is �(t) :̂ �

g

(t) :̂

�

f

(g(t)). So indeed, domain conditions are always de�ned, because �

g

(t)

is only evaluated if �(t) holds.

Now if f(t

�

) = r is a de�ning equation of an algorithm f , then our

aim is to use �

f

(t

�

) = �(r) as a de�ning equation for the correspond-

ing domain predicate. However, for termination of �

f

we also have to

9

More precisely, this implication holds for each substitution � of t's variables by

data objects: For all such �, evaluation of �(�(t) ) is de�ned and �(�(t) ) = true

implies that the evaluation of �(t) is also de�ned.

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.33



34 J

�

URGEN GIESL

guarantee that the arguments of recursive calls are smaller than the

corresponding inputs. Therefore, for recursive calls in a de�ning equa-

tion f(t

�

) = : : : f(s

�

) : : : we add a requirement to the domain condition

of f(s

�

) which ensures t

�

� s

�

. For that purpose, instead of (iv) we use

(v) �(f(s

1

: : :s

n

)) :� �(s

1

) :̂ : : : :̂�(s

n

) :̂ �

�

(t

�

; s

�

) :̂ �

f

(s

1

: : :s

n

)

when computing the domain conditions of f 's result terms. So we obtain

the following construction principle for domain predicates.

From each de�ning equation f(t

�

) = r of f

construct a de�ning equation �

f

(t

�

) = �(r) for �

f

.

For each missing pattern t

0�

of f

construct a de�ning equation �

f

(t

0�

) = false for �

f

.

This construction of domain predicates can be automated directly.

For instance, the above algorithms �

div

and �

minus

were built according

to this principle (where we omitted the domain predicate �

ge

for the

total function ge and replaced terms like if(true; t; : : :) by t).

To ease subsequent reasoning, we also developed a procedure to sim-

plify the generated domain predicates. For instance, by the technique

of recursion elimination [76], the algorithm for �

div

can be simpli�ed to

function �

div

: nat� nat! bool

�

div

(x; 0) = false

�

div

(x; s(y)) = true:

See [11, 13] for a description of the simpli�cation techniques and for a

collection of examples which demonstrate that this approach is indeed

able to generate sophisticated domain predicates (e.g., for quot our

method synthesizes the domain predicate \divides", for a logarithm algo-

rithm it generates a domain predicate which checks if one number is a

power of another one, for a delete algorithm a domain predicate for list

membership is synthesized, etc.). For all these examples the generat-

ed domain predicate is not only su�cient for de�nedness, but it even

describes the exact domain of the function.

7. Applications of our Calculi

In this section we analyze areas for possible applications of our results,

cf. Figure 1. At �rst sight, one could guess that for those partial func-

tions whose domain can be determined automatically, techniques for

handling partiality are not necessary any more. Indeed, such a func-

tion f(x

�

) could be replaced by a new total function f

0

(x

�

) which �rst

tests whether the corresponding domain predicate �

f

(x

�

) holds and

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.34



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 35

Transformation into total functions possible, but changes semantics

automatically

total functionspartial functions

domain undecidable

nested recursion

be determined

domain can
be determined

domain cannot

automaticallydomain cannot be determined manually

and exactness proofs for domain predicates require reasoning about partial functions

Domain predicate generation often requires reasoning about (possibly) partial functions

No automated reasoning possible without handling of (possibly) partial functions

Figure 1. The use of our calculus for di�erent classes of functions

only executes its body if �

f

(x

�

) is true. Otherwise, f

0

(x

�

) returns some

default value. However, this transformation of partial functions into

total ones leads to several problems.

The �rst problem is that this approach changes the semantics of

f . For example, the partial correctness statement (6) for minus does

not hold any more if minus is replaced by a total extension minus

0

. On

the other hand, conjectures like minus(0; 1) = minus(3; 5) would now

be considered as true (because minus

0

returns the same default value

for all inputs where minus is unde�ned), although the algorithm for

minus provides no evidence for this conjecture. Hence, many authors

advocate that it is preferable to keep partial functions instead of their

total extensions, cf. e.g. [1, 21, 46, 47, 51, 77].

Moreover, to transform partial functions f into total extensions f

0

one has to construct f 's domain predicate. However, for many algo-

rithms with nested or mutual recursion, the generation of domain pred-

icates already requires reasoning about (possibly) partial functions.

The reason is that if evaluation of f(t) leads to a nested recursive call

f(f(r)), then one has check whether both arguments r and f(r) are

smaller than the corresponding input t. In other words, one has to prove

t � r and t � f(r) for some well-founded ordering � (resp. one has

to generate corresponding di�erence equivalents). But the statement

t � f(r) contains the function f which may be partial (as we have not

yet veri�ed termination of its algorithm). For that reason previously

developed methods for automated termination analysis of functional

programs often failed for nested and mutual recursion [6, 25, 76]. How-

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.35



36 J

�

URGEN GIESL

ever, our calculi allow us to prove termination of algorithms with nested

or mutual recursion without having to verify their correctness simul-

taneously. In fact for these proof obligations t � f(r), the calculus of

Section 3 and 4 is often already su�cient, since for most algorithms,

in their termination proof one only has to deal with conjectures con-

taining at most one occurrence of a possibly partial function. Thus, by

combining the existing techniques for automated termination proofs

with this calculus, these techniques can be directly extended to nested

and mutual recursion. This for instance enables automated termination

proofs for well-known challenge problems such as J. McCarthy's f 91

function. For a detailed description of these results see [26].

10

But the main problem with the transformation of partial functions

f into total ones is that in general the synthesized domain predicate

�

f

is only su�cient, but not necessary for de�nedness of f , i.e., it

only returns true for a subset of f 's domain. To determine whether

a generated domain predicate indeed describes f 's exact domain, one

may again apply our calculus from Section 5. For example, if �

div

is

de�ned as in Section 6, then def(div(x; y)) ) �

div

(x; y) can be veri�ed

by induction w.r.t. div. Hence, even for a partial function where an exact

domain predicate can be synthesized, one still needs an induction proof

w.r.t. a partial function in order to verify this exactness.

However, there are many interesting algorithms where an exact do-

main predicate cannot be generated automatically. In particular, as

the halting problem is undecidable (and as totality is not even semi-

decidable), there are even many important total algorithms where total-

ity cannot be veri�ed automatically. For example, the well-known uni-

�cation algorithm by J. A. Robinson [67] is total, but its termination is

a \deep theorem" [61] and none of the current methods for automated

termination analysis succeeds with this example. Hence, such functions

cannot be handled by (fully) automated theorem provers without the

ability of reasoning about possibly partial functions.

To show that our approach indeed can be used to prove relevant the-

orems about (possibly) partial functions, in [27] we applied our calculi

on a large benchmark of conjectures from the area of term rewriting

systems. In this case study, we regard a data type termlist for lists

of terms

11

and to represent substitutions, we use termlists of the form

10

For termination proofs one only has to verify statements of a special form (viz.

inequalities t � s). Therefore, to control the application of the rules 1

0

{ 6

0

, here it

is advantageous to use a very restricted version of our calculus which is especially

suited for the veri�cation of such inequalities, e.g., the approach suggested in [26].

11

The reason for using just one data type of termlists (instead of two separate

mutually recursive types for terms and termlists) is that this formalization simpli-

�es the proofs considerably. Techniques for automated reasoning about mutually

recursive data types and algorithms can for instance be found in [4, 14, 26, 43].

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.36



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 37

\hvariable, term, variable, term, . . . i". Then is subst(�) checks whether

� is a termlist of this form, apply(�; l) applies the substitution � to all

terms in l, and uni�es is Robinson's uni�cation algorithm. The follow-

ing theorem states that uni�es(l; k) returns true whenever the termlists

l and k are uni�able.

is subst(�) ^ apply(�; l) = apply(�; k) ) uni�es(l; k) (46)

In contrast to previous correctness proofs of the uni�cation algo-

rithm (e.g. [55, 61]), our calculi can prove the partial truth of (46)

by induction w.r.t. uni�es without having to verify its termination, cf.

[27]. Indeed, this proof is already possible with the calculus from Sec-

tion 3 and 4 if the auxiliary function apply is total. Thus, the proof can

even be done without any reasoning about de�nedness. So the ability

of our calculi to use induction relations without ensuring their well-

foundedness is needed for algorithms where the automated methods

fail in determining the domains. But moreover, this ability also allows

us to prove conjectures about algorithms like the famous \3x+1" prob-

lem (attributed to Collatz) [23] where totality is still an open question,

i.e., algorithms whose domain has not even been determined manually.

Moreover, there are numerous practically relevant algorithms with

undecidable domain, i.e., there does not exist any exact domain pred-

icate. Typical examples for such algorithms include interpreters for

programming languages and algorithms for automated reasoning (e.g.,

any implementation of a sound and complete �rst order calculus). For

instance, regard the following algorithm rewrites*(l; k; R) which returns

true i� there exist t 2 l and s 2 k such that t !

�

R

s. Here, term

rewriting systems t

1

! s

1

, t

2

! s

2

; : : : are represented as termlists

ht

1

; s

1

; t

2

; s

2

; : : :i and rewrite(l; R) is an auxiliary algorithm which gen-

erates a list of all those terms s which result from a term t 2 l by one

rewrite step with R (i.e., s 2 rewrite(l; R) i� t!

R

s for some t 2 l).

function rewrites* : termlist� termlist� termlist! bool

rewrites*(l; k; R) = if(disjoint(l; k);

if(rewrite(l; R) � l;

false;

rewrites*(rewrite(l; R); k; R));

true)

The domain of this algorithm is obviously undecidable. Hence, if

one wants to prove any conjecture about this algorithm, one de�nitely

needs a method to deal with partial functions. For example, one might

try to prove that rewrites* is stable under subsets.

rewrites*(l; k

1

; R) = true ^ k

1

� k

2

) rewrites*(l; k

2

; R) (47)

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.37



38 J

�

URGEN GIESL

With the calculus of Section 5 one can prove the truth (not just the

partial truth) of this conjecture by induction w.r.t. the partial function

rewrites* using l; k

1

; R as induction variables. The corresponding per-

missibility conjecture obviously holds (and it can be proved by Rule

4

00

) as rewrites*(l; k

1

; R) = true implies def(rewrites*(l; k

1

; R)) = true.

After generating the induction formulas, Rule 6

00

is used to perform

suitable case analyses. If disjoint(l; k

1

) = true and rewrite(l; R) 6� l,

then symbolic evaluation of rewrites* transforms the induction conclu-

sion into the induction hypothesis. The other cases can be proved using

a straightforward lemma about disjoint and \�".

In a similar way one can de�ne an algorithm joinable(l; k; R) which

is true i� there exist terms t 2 l, s 2 k, and q such that t !

�

R

q  

�

R

s

and an algorithm jcp(R) which checks whether all critical pairs of R

are joinable. Of course, the domains of joinable and jcp are again unde-

cidable. Moreover, let trs(R) be a function which determines whether

R represents a proper term rewriting system. Then with the calculus of

Section 5 we also proved partial truth of a variant of D. E. Knuth and

P. B. Bendix' critical pair lemma [49] which states that if all critical

pairs of a (possibly non-terminating, cf. [34]) term rewriting system are

joinable, then the system is locally conuent.

trs(R) ^ jcp(R) ^ length(l) = 1 ^ rewrites(l; k

1

; R) ^ rewrites(l; k

2

; R))

joinable(k

1

; k

2

; R)

The proof of this fundamental theorem used several inductions w.r.t.

functions like rewrites* whose domains are undecidable.

12

In our case study [27], inductions w.r.t. partial functions (or func-

tions like uni�es where automated termination proofs fail) were used

for about 40 % of the conjectures considered. We experimented with

mechanized support by the induction theorem prover inka [36, 75],

but we did not modify its implementation in a signi�cant way. (Essen-

tially, the only modi�cation needed for the calculus of Section 5 was to

trace all applications of induction, symbolic evaluation, and case analy-

sis and to generate the corresponding permissibility conjectures, which

had to be proved as well subsequently.) In particular, we did not devel-

op any re�nements to its general theorem proving capabilities, since

our aim only was to demonstrate that the restrictions imposed by the

rules of Section 5 are not \signi�cant", i.e., they still allow the proof

of (almost all) interesting theorems. Therefore, in our case study many

proof steps (in particular, providing the lemmata required) were done

by the human. For further details and for a collection of numerous other

theorems about partial functions proved with our calculus see [27].

12

Thus, our proof di�ers substantially from other case studies in related areas

(e.g., the proofs of the Church-Rosser theorem for the �-calculus in [59, 69]).

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.38



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 39

Note that apart from reasoning about given partial functions, our

approach is also required for program schemes where termination of the

program depends on the instantiation of the auxiliary functions which

were left unspeci�ed. Moreover, partial algorithms can also result from

total ones during program transformations, e.g., when transforming

imperative programs into functional ones. This transformation is often

necessary for the veri�cation of imperative programs as most existing

induction provers are restricted to functional languages.

As an example consider an imperative program which computes

the truncated logarithm blog

2

(x)c w.r.t. base 2 in its result variable

r (where r is 0 for x = 0). It uses the auxiliary functions neq (for

non-equality), odd, and the predecessor function p.

r := 0;

while neq(x; 0)

do if odd(x) then x := p(x)

else r := s(r);

z := 0;

while neq(x; z)

do x := p(x);

z := s(z) od

9

>

=

>

;

sets x to

x

2

� od

To translate this program into a functional one, every while-loop is

transformed into a separate function, cf. [56]. So for the inner while-

loop we obtain a function mean which takes the input values of x and

z as arguments. If the loop-condition is satis�ed (i.e., if neq(x; z) is

true), then mean is called recursively with the new values of x and z.

Otherwise, mean returns the value of x. (Of course, a similar function

computing the output value of z could also be constructed.)

function mean : nat� nat! nat

mean(x; z) = if(neq(x; z); mean(p(x); s(z)); x)

The algorithm mean(x; z) computes the arithmetical mean

x+z

2

of two

numbers provided that x�z is a non-negative even number. Otherwise,

the algorithm mean does not terminate. Using this function, the outer

while-loop is translated into the function while(x; r) which computes

r + blog

2

(x)c.

function while : nat� nat! nat

while(x; r) = if(neq(x; 0);

if(odd(x); while(p(x); r); while(mean(x; 0); s(r)));

r)

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.39



40 J

�

URGEN GIESL

Now the whole imperative program is transformed into a function

log with the de�ning equation log(x) = while(x; 0). Note that even if

the original imperative program is terminating, in general the auxiliary

functions resulting from such a translation are partial. The reason is

that in imperative programs, termination of while-loops often depends

on their contexts. For instance, in our example the inner while-loop is

only entered with an even input x. However, this restriction on x is

not present in the function mean. Therefore log and while are total, but

their auxiliary function mean is partial, as mean(x; z) only terminates

i� x � z and if x� z is even.

For the veri�cation of an imperative program (resp. of the corre-

sponding functional one) one has to prove lemmata about its auxiliary

functions. For instance, let us verify partial truth of the conjecture

neq(x; 0) ) ge(x; exp(2; log(x)))

which can be generalized to the following conjecture about while

neq(x; 0) ) ge(times(exp(2; r); x); exp(2;while(x; r)))

(where exp(x; y) computes x

y

). However, for this proof one needs the

lemmata ge(mean(x; z); z) = true and times(2;mean(x; z)) = plus(x; z)

about the partial function mean. Their partial truth (i.e., their truth

under the premise def(mean(x; z))) can now be proved by induction

w.r.t. mean using the calculus of Section 5.

Hence, to use induction theorem provers for the veri�cation of imper-

ative programs, these programs can be translated into functional ones.

But as the resulting functional programs are usually partial, one again

needs a method for induction proofs with partial functions.

Summing up, our calculi for reasoning about partial functions are

needed for all algorithms which correspond to the shaded areas in Fig-

ure 1. These algorithms constitute an important class used in many

areas and inductions w.r.t. partial functions are required for many fun-

damental theorems about such algorithms.

8. Related Work

In this section we give a detailed survey on related work. We �rst discuss

alternative notions of \truth" for partial functions in Section 8.1. Then

we comment on other techniques for automated reasoning with par-

tial functions. Section 8.2 focuses on approaches based on denotational

semantics, whereas in Section 8.3 we compare our approach with the

treatment of partial functions in existing induction theorem provers.

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.40



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 41

8.1. Notions of Truth for Partial Functions

Essentially, there are two main possibilities for a formal handling of

partial functions. One possibility is to incorporate partiality into the

logic itself. In algebraic speci�cations, partiality is often modelled by

partial algebras and di�erent appropriate semantics of equality have

been suggested in that framework (see e.g. [58, 66] for an overview and

alternatives). For example, our notion of partial truth corresponds to

validity in the initial partial model of the speci�cation with a \weak

equality" semantics, cf. [50]. Here, an equation t = s is considered to

be valid if t or s is unde�ned or if both are interpreted the same.

In some of these approaches formulas still are either true or false

(e.g., by considering all atomic formulas containing unde�ned terms

as false, cf. [21]). But one may also use a formalization with a three-

valued logic [48], where the truth value of formulas depending on unde-

�ned terms is \unde�ned". See [46, 47] for a mechanization of this last

approach and for a discussion of other alternatives.

The other main possibility to handle partiality is to de�ne an appro-

priate notion of \truth" in a classical two-valued logic where all terms

denote and where all algebras are total. (This is also the approach we

used, as our aim was to extend existing induction theorem provers to

partial functions, i.e., we did not want to change the underlying logic.)

Our notion of inductive truth corresponds to one of the de�nitions

of inductive validity proposed by C.-P. Wirth and B. Gramlich in [77,

\Type E"] and further elaborated in [51]. However, while the de�nitions

are \equivalent", we used a di�erent formalization, as we did not de�ne

the semantics of the de�nedness function def on the meta-level. Based

on Wirth and Gramlich's analysis, inference systems were presented

in [1] and [78]. These approaches can also deal with non-termination,

but in contrast to our work, they do not focus on determining suitable

induction relations automatically (by deriving them from the recursions

of the algorithms).

An alternative notion of truth has been proposed by D. Kapur and

D. R. Musser [39, 40] and a corresponding de�nition is also used by

C. Walther in [75]. Here, an equation is considered to be inductively

true if it holds in the intersection of all maximal congruence relations

satisfying the speci�cation (where a speci�cation consists of a set of

equations and a set of ground terms which must not be equal to each

other). Thus, an incompletely speci�ed function is interpreted as the set

of all possible complete and consistent extensions, cf. also [77, \Type

D

0

"]. This corresponds to the intuition that such a function is not really

partial, but it is a total function with (partly) unknown behaviour. How-

ever, there is a problem when dealing with non-termination, because

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.41



42 J

�

URGEN GIESL

a function like f(x) = s(f(x)) may fail to have a complete consistent

extension. In contrast, in our approach every speci�cation is consistent

(because the initial model of De�nition 5 always exists). Hence, we can

handle non-termination without any consistency checks. For a further

discussion on the di�erences between the semantics see e.g. [1, 39, 77].

Finally, there are also suggestions to deal with partial functions in

a total higher order logic, e.g. [22]. In this approach partial functions

are regarded as total functions whose behaviour is only speci�ed on the

intended domain and which return an arbitrary value if applied to other

arguments. To de�ne the domains of functions a (non-constructive)

notion of domain predicates is used. However, this approach cannot

model proper call-by-value semantics. The reason is that if quot(1; 0)

is equal to some (arbitrary) natural, then times(quot(1; 0); 0) evaluates

to 0 although it should be unde�ned in an eager language.

8.2. Proof Techniques Based on Denotational Semantics

In this paper, we gave an algebraic and an operational semantics for

our programming language and presented a calculus for inductions on

the objects of the data structures. Similar approaches are used in most

induction provers (i.e., in systems with powerful heuristics especially

designed for induction). However, many general purpose tools for rea-

soning about programs are based on denotational semantics instead.

Although call-by-value is not a �xpoint computation rule [54], the

semantics of our programming language can also be de�ned in a deno-

tational way by using an appropriate program transformation. The

classical technique for proofs about denotational semantics is compu-

tational induction (e.g. D. Scott 's �xpoint induction [68]). However, an

important problem is that computational induction is only sound for

so-called admissible formulas. Hence, systems based on denotational

semantics usually have complicated tests for admissibility (which still

reject many admissible formulas) [62, p. 70]. Moreover, a full formaliza-

tion of denotational semantics requires a higher order logic (as it is for

instance used in lcf [31, 62] and its descendants hol [32] and isabelle

[63]). Of course, compared to provers working on a �rst order language,

these systems are much more expressive, but in general, higher order

logics often raise harder problems for automation [5].

For that reason, an alternative formalization has been suggested by

N. Shankar who de�ned an lcf-like calculus using �rst order logic

[70, 71]. Here, lambda and apply are binary function symbols, sym-

bols like plus are nullary, and algorithms are de�ned via a least �x-

point operator �x. Hence, the de�nition of plus has the form plus =

apply(�x; lambda(f; : : :)). Shankar's induction rule is Scott's �xpoint

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.42



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 43

induction, which can now be stated as a rule on �rst order formulas. So

the requirement of a higher order logic is not necessary for the devel-

opment of an axiomatic framework based on denotational semantics.

Denotational semantics and the computational induction principle

are a powerful logical framework for reasoning about programs. How-

ever, \experience shows that the use of this principle is not always

natural" [52, p. 181]. Thus, for an automation of induction proofs, an

induction on the values of the program variables is preferable, since

\�xpoint induction de�nitely seems more painful and less intuitive to

use" [7, p. 3] (cf. also the discussions in [6, 10, 57]). Thus, even in sys-

tems like lcf where �xpoint induction forms the basis of the underlying

calculus, one immediately derives rules for structural induction, which

are usually much better suited for subsequent veri�cation tasks.

But while structural induction is easy to automate, it often is not

powerful enough. Hence, one needs Noetherian induction to allow the

use of arbitrary well-founded induction relations on the objects of the

data structures. To �nd suitable induction relations automatically, a

successful heuristic is to choose relations which correspond to the recur-

sions of algorithms occurring in the conjecture [6, 15, 75, 79].

This approach is not only used in most (explicit) induction provers

(e.g. nqthm [6], rrl [41, 79], clam [16, 17], inka [36, 75]), but it has

also been implemented in systems like hol, isabelle, and lambda,

cf. [5, 18, 72]. This may indicate that even in provers for higher order

logics, Noetherian induction on the data structure seems to be better

suitable for automation than computational induction (see also [61]).

However, a drawback is that up to now the derivation of induction

schemes from the recursions of algorithms was just considered to be a

good heuristic. But their soundness had to be guaranteed separately,

i.e., one had to verify that these induction relations were indeed well

founded. To ensure this, in the existing provers, induction relations

could only be generated from the recursions of terminating algorithms.

Here, our main observation is that induction relations do not have to

be checked for well-foundedness any more if they are obtained from the

recursions of algorithms occurring in the conjecture. So this choice is

not just a successful heuristic, but it already guarantees the soundness

of the induction schemes. Hence, the restriction only to derive induction

relations from terminating algorithms is no longer necessary.

While we proved our claim using algebraic semantics, our obser-

vation could of course also be justi�ed using denotational semantics.

In fact, Rule 1

00

transfers the idea of computational induction to an

induction on the data structure.

13

This is possible, as we regard an

13

The connection between induction w.r.t. algorithms and computational induc-

tion was already investigated in [57]. However, [57] did not consider issues like

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.43



44 J

�

URGEN GIESL

eager language. Hence, for every de�ning equation f(t

�

) = : : : f(s

�

) : : :,

evaluation of f(s

�

) takes less steps than evaluation of f(t

�

) (provided

the conditions of the conditionals governing f(s

�

) are true). Thus, the

�rst premises of Rule 1

00

imply the step formula and the permissibility

conjecture implies the base formula of computational induction.

Note that Rule 1

00

only operates on universally quanti�ed �rst order

formulas. This restriction has the advantage that such formulas are

always admissible.

14

Moreover, the formulas resulting from application

of Rule 1

00

are again universally quanti�ed. Hence, our rule directly

allows nested (multiple) inductions without admissibility checks.

This is in contrast to computational induction. Suppose that f is

de�ned as the least �xpoint of the functional F . When using computa-

tional induction, the induction step formula resulting from the universal

formula 8x : : : f(x) : : : has the form

(8x : : : F

i

[?](x) : : : ) ) (8x : : : F

i+1

[?](x) : : : );

i.e., it is not universal (and possibly not admissible) any more.

15

Hence,

for computational induction, repeated admissibility checks are required

before every induction.

So Rule 1

00

combines the advantages of structural and computation-

al induction. It performs an induction on the data structure, which is

less abstract (and therefore easier to automate) than �xpoint induc-

tion. On the other hand, our rule uses the recursion structure of the

algorithms to \suggest" plausible induction relations, i.e., it performs

inductions w.r.t. possibly non-terminating algorithms. Hence, induc-

tion proofs w.r.t. partial functions can now be automated without using

proof techniques based on denotational semantics. Thus, the existing

de�nedness, evaluation strategies, or the semantics of unde�ned terms (which are

required for an extension to partial functions). So in a sense, the present work can

be regarded as a re�nement of [57], because we examined in detail what restrictions

have to be imposed in order to use inductions w.r.t. partial algorithms, too.

14

Essentially, the reason is that our basic (i.e. non-function) data types are at

complete partial orderings. Thus, in a �rst order formula, all occurrences of functions

are in terms of chain-�nite type. A similar admissibility criterion is for instance used

in lcf [62] and a slightly weaker criterion has also been suggested in [70, 71], where

however the restriction to chain-�nite terms is not mentioned.

15

As an example, let f be de�ned by f(x) = 0 and let g have the de�ning

equations g(0) = 0, g(s(x)) = g(x). The conjecture 8x ( def(x) ) :def(f(x)) ^

def(g(x)) ) is awed, but admissible. Performing �xpoint induction on f results in a

valid base formula and the induction step formula

8x(def(x) ) :def(F

i

[?](x)) ^ def(g(x))) )

8x(def(x) ) :def(F

i+1

[?](x)) ^ def(g(x))):

This formula is awed and not admissible. However, if one neglects the check for

admissibility, then by another �xpoint induction on g, it can be falsely proved.

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.44



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 45

induction provers and their powerful heuristics can also be applied for

partial functions without adapting them to a new logical framework.

8.3. Partial Functions in Existing Induction Provers

In this section, we discuss other approaches to handle partial functions

in existing induction theorem provers. One of the �rst and most suc-

cessful induction provers is the nqthm system of R. S. Boyer and J

Moore [6]. It has been used to prove a large collection of impressive

theorems and has inuenced most of the subsequent developments in

this area. Although in their framework all functions have to be total

it nevertheless allows certain reasoning about partial functions. One

approach is to transform every partial function f(x) into a total one

f

0

(x; n) which operates like f , but which decreases the bound n in each

recursive call and terminates if n = 0, cf. e.g. [9]. However, a draw-

back is that for theorems containing several occurrences of f one now

has to deal with existential quanti�ers (or to guess suitable instanti-

ations of the bound variable n). For example, instead of a conjecture

8x

�

f(t) = f(s) one has to prove 8x

�

8n

1

9n

2

f

0

(t; n

1

) = f

0

(s; n

2

).

16

A di�erent approach is used in [10], where Boyer and Moore treat

partial functions as inputs to an interpreter. In other words, instead

of reasoning about the partial functions themselves, they reason about

the program text de�ning the partial functions. As all functions have to

be total, this interpreter is a total (non-constructive) function, which

is not given by an algorithm, but only speci�ed by axioms.

For conjectures about partial functions (resp. about the interpreter),

they have to use induction relations whose well-foundedness has already

been guaranteed (e.g. structural inductions). Thus, our approach has

the advantage that in contrast to Boyer and Moore, we can still derive

induction relations from the recursions of the occurring functions, even

if these functions are partial. Our experiments in [27] show that this

choice of the induction relation is indeed required for many conjectures.

In [7, 8, 45], Boyer and M. Kaufmann propose an extension of the

Boyer-Moore prover to a functional language with lazy evaluation strat-

egy. Their approach can handle functions which are partial on in�nite

objects. However, in order to derive induction schemes from the algo-

rithms, they still require the functions to be de�ned at least for all �nite

arguments. Thus, the topic of Boyer and Kaufmann's work is quite dif-

ferent to ours, since we focus on an eager language without in�nite

objects and in contrast to them we regard functions which are partial

16

Considering f

0

to be partial leads to similar problems in general. Such an ap-

proach was used by P. Padawitz in [60]. Here, the veri�cation of de�nedness condi-

tions was an additional di�culty, since he did not use an eager evaluation strategy.

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.45



46 J

�

URGEN GIESL

on �nite objects. However, we developed a method which nevertheless

allows to generate induction schemes from these partial functions.

Our approach has similarities to the technique of cover set induction

[42, 79], because cover sets are also based on the observation that a

conjecture about a function f can often be proved by an induction

according to f 's recursions. This technique has been implemented in

the theorem prover rrl [41] and proved successful on many challenge

problems in mathematics as well as in software and hardware analysis.

In the original method of H. Zhang, D. Kapur, and M. S. Krish-

namoorthy [79], incompletely de�ned functions are allowed, but induc-

tion schemes can only be derived from completely de�ned functions. In

[42], Kapur and M. Subramaniam relax these conditions. In the proof

of '

1

) '

2

they allow an induction w.r.t. an incompletely de�ned

function f , if f is de�ned at least for all data objects satisfying '

1

.

So similar to our approach, in [42] the permissibility of an induction

scheme also depends on the conjecture being proved.

But Kapur and Subramaniam only perform inductions w.r.t. termi-

nating functions. Thus, they have to supplement non-terminating func-

tions by a termination condition before using them for the derivation

of induction schemes. However, in general these termination conditions

are not exact and there are many interesting partial functions whose

domain is not even decidable, cf. Section 7. Here, our approach has

the advantage that we can perform inductions w.r.t. partial algorithms

without knowing anything about their termination behaviour.

Our proposal for inductions w.r.t. non-terminating functions can

be integrated into the cover set technique, but for that purpose such

partial functions must be evaluated in an eager way (whereas in [42,

79] no evaluation strategy is �xed). The reason is that otherwise an

induction w.r.t. partial functions would be unsound. For example, if

f has the de�ning equation f(x) = times(f(x); 0), then partial truth of

f(x) = 1 can be proved by induction w.r.t. f. For an eager language, this

conjecture is indeed partially true, as f is unde�ned on all arguments.

But if the semantics of the language were not eager, then f would be a

total function and all f-terms would be equal to 0.

We demanded that all de�ning equations must be non-overlapping.

(This is a restriction which is not present in [42, 79].) Otherwise the

de�nedness of an evaluation would depend on the order of the de�ning

equations applied (as can be seen by the conuent, but overlapping

equations f(x) = 0 and f(x) = f(x)). Then instead of eager evaluation,

it would be more natural not to �x any evaluation strategy. This howev-

er leads to problems for inductions w.r.t. partial functions as sketched

above. Moreover, to guarantee consistence of Eq [ Ax

data

, we want-

ed to ensure conuence of Eq in spite of non-termination. For that

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.46



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 47

reason, we also required left-linearity and hence, orthogonality of the

de�ning equations. Note that natural formulations of conditional equa-

tions and of equations with relations between constructors are often not

orthogonal. Therefore, in contrast to [42, 79], we only considered freely

constructed data types and we modelled conditions with the special

function if.

In [44], Kapur introduces an interesting extension of the cover set

technique to data types with partial constructors and he uses so-called

applicability conditions to describe the intended domains of the func-

tions. This has a similarity to our de�nedness conditions def(f(x

�

)),

but the semantics of applicability conditions can be arbitrarily spec-

i�ed, whereas our de�nedness conditions have a �xed semantics (i.e.,

def(f(t

�

)) is true i� evaluation of f(t

�

) is de�ned).

In Section 5 we added de�nedness conditions explicitly as premises

of conjectures. However as advocated in [44], to simplify the proofs, it

is often advantageous to keep such conditions implicit. Of course, for

partial correctness statements of the form def(t

�

) ) ', the calculus

of Section 5 can easily be used in such a way.

17

But the \explicit"

formulation has the advantage that the inference rules become more

general, because in this way they can also be used for conjectures like

(38) { (41), (43), and (47), which are not partial correctness statements.

To conclude, all approaches discussed in this section perform induc-

tions w.r.t. algorithms. However, our method also permits inductions

based on the recursions of partial functions, whereas in the other ap-

proaches this is only possible for terminating algorithms.

Most work mentioned up to now uses the explicit induction para-

digm, i.e., the induction relation is explicitly given (e.g., by the recur-

sions of a function) and using this relation base and step formulas are

constructed. But there has also been a lot of work based on the implicit

induction principle (also called \proof by consistency" or \inductionless

induction"), cf. e.g. [2, 4, 35, 37, 38, 40, 65]. However, these approaches

are also restricted to terminating functions (i.e., the speci�cation has

to be given by a terminating term rewriting system). Then the rewrite

ordering of this system is implicitly used for induction proofs.

9. Conclusion

Partial functions are important in many areas, but the techniques

implemented in most induction theorem provers rely on the termination

17

Reasoning about de�nedness can be separated from ordinary reasoning about

functions, if every proof obligation of the form ( def(r

�

) )  ) ) (def(t

�

) ) ' )

is transformed into def(t

�

) ) def(r

�

) and  ) '. Here, t

�

and r

�

are the top-level

terms of ' and  , respectively.

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.47



48 J

�

URGEN GIESL

of the occurring algorithms. In this paper we showed that by introduc-

ing a few appropriate restrictions, these techniques can be applied for

partial functions, too.

We �rst presented a calculus which does not require any reasoning

about de�nedness and which is already very successful for a certain class

of conjectures (in particular, conjectures containing at most one occur-

rence of a partial function). But to increase the power of our approach,

subsequently we developed a re�ned calculus where de�nedness was

made explicit. To demonstrate its power, we tested our approach on

numerous examples and used it to prove many theorems about partial

functions with undecidable domains [27]. While we did not develop a

new theorem proving system based on our inference rules, in our case

study we used some mechanized support by an existing prover. The

results of this study show that our rules indeed allow the proof of non-

trivial theorems, i.e., they do not represent a signi�cant restriction on

the class of theorems that can be proved.

Our calculi correspond to the basic rules used in induction theorem

proving. So in this way, the existing induction provers and their heuris-

tics to control the application of these rules can be directly extended to

partial functions. Thus, induction theorem proving for partial functions

may now become as powerful as it is for total functions.

Acknowledgements

I would like to thank J�urgen Brauburger, Deepak Kapur, Matt Kauf-

mann, Thomas Kolbe, Natarajan Shankar, Christoph Walther, and

Claus-Peter Wirth for helpful comments and fruitful discussions. This

work was supported by the DFG under grant no. GI 274/4-1.

References

1. Avenhaus, J. and Madlener, K., `Theorem Proving in Hierarchical Clausal

Speci�cations', in Advances in Algorithms, Languages, and Complexity (eds.

Du, Ko), Kluwer Academic Publishers (1997).

2. Bachmair, L., `Proof by Consistency in Equational Theories', in Proc. 3rd IEEE

Symp. Logic in Computer Science, Edinburgh, Scotland, IEEE Press (1988).

3. Birkho�, G., `On the Structure of Abstract Algebras', Proc. Cambridge Philos.

Soc. 31, 433-454 (1934).

4. Bouhoula, A. and Rusinowitch, M., `Implicit Induction in Conditional Theo-

ries', Journal of Automated Reasoning 14, 189-235 (1995).

5. Boulton, R. J., `Boyer-Moore Automation for the hol System', in Proc. 6th

Int. Workshop HOL Theorem Pr. Appl., Vancouver, Canada, Elsevier (1993).

6. Boyer, R. S. and Moore, J S., A Computational Logic, Academic Press (1979).

7. Boyer, R. S. and Kaufmann, M., On the Feasibility of Mechanically Verifying

sasl Programs, Tech. Rep. ARC 84-16, Burroughs Research Center (1984).

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.48



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 49

8. Boyer, R. S. and Kaufmann, M., A Prototype Theorem Prover for a Higher-

Order Functional Language, Tech. Rep. ARC 84-17, Burroughs Cent. (1984).

9. Boyer, R. S. and Moore, J S., `A Mechanical Proof of the Turing Completeness

of Pure lisp', in Automated Theorem Proving: After 25 Years (eds. W.W. Bled-

soe and D. W. Loveland), American Mathematical Society, RI (1984).

10. Boyer, R. S. and Moore, J S., `The Addition of Bounded Quanti�cation and

Partial Functions to A Computational Logic and Its Theorem Prover', Journal

of Automated Reasoning 4, 117-172 (1988).

11. Brauburger, J. and Giesl, J., `Termination Analysis for Partial Functions', in

Proc. 3rd Int. Static Analysis Symp., Aachen, Germany, Lect. Notes in CS 1145,

Springer (1996). Extended version as Tech. Rep.

18

IBN 96/33, TU Darmstadt.

12. Brauburger, J. and Giesl, J., `Termination Analysis by Inductive Evaluation',

in Proc. 15th CADE, Lindau, Germany, LNAI 1421, Springer-Verlag (1998).

13. Brauburger, J. and Giesl, J., `Approximating the Domains of Functional and

Imperative Programs', Science of Computer Programming 35 (1999).

14. Bronsard, F., Reddy, U. S., and Hasker, R. W., `Induction Using Term Orders',

Journal of Automated Reasoning 16, 3-37 (1996).

15. Bundy, A., `A Rational Reconstruction and Extension of Recursion Analysis',

in Proc. 11th Int. Joint Conf. AI, Detroit, MI, Morgan Kaufmann (1989).

16. Bundy, A., van Harmelen, F., Smaill, A., and Ireland, A., `The oyster-clam

system', in Proc. 10th Int. Conf. Automated Deduction, Kaiserslautern, Ger-

many, Lecture Notes in Arti�cial Intelligence 449, Springer-Verlag (1990).

17. Bundy, A., Stevens, A., van Harmelen, F., Ireland, A., and Smaill, A., `Rippling:

A Heuristic for Guiding Inductive Proofs', Artif. Int. 62, 185-253 (1993).

18. Busch, H., `Uni�cation-Based Induction', in Proc. 6th Int. Workshop Higher

Order Logic Theorem Proving Appl., Vancouver, Canada, Elsevier (1993).

19. De Schreye, D. and Decorte, S., `Termination of Logic Programs: The Never-

Ending Story', Journal of Logic Programming 19, 20, 199-260 (1994).

20. Dershowitz, N., `Termination of Rewriting', J. Symb. Comp. 3, 69-115 (1987).

21. Farmer, W. M., `A Partial Function's Version of Church's Simple Theory of

Types', Journal of Symbolic Logic 55, 1269-1291 (1990).

22. Finn, S., Fourman, M. P., and Longley, J., `Partial Functions in a Total Setting',

Journal of Automated Reasoning 18, 85-104 (1997).

23. Gardner, M., Wheels, Life And Other Mathematical Amusements, W. H. Free-

man and Company (1983).

24. Giesl, J., `Automated Termination Proofs with Measure Functions', in Proc.

19th Ann. German Conf. AI, Bielefeld, Germany, LNAI 981, Springer (1995).

25. Giesl, J., `Termination Analysis for Functional Programs using Term Order-

ings', in Proceedings of the 2nd International Static Analysis Symposium, Glas-

gow, Scotland, Lecture Notes in Computer Science 983, Springer-Verlag (1995).

26. Giesl, J., `Termination of Nested and Mutually Recursive Algorithms', Journal

of Automated Reasoning 19, 1-29 (1997).

27. Giesl, J., The Critical Pair Lemma: A Case Study for Induction Proofs with

Partial Functions, Technical Report

18

IBN 98/49, TU Darmstadt (1998).

28. Giesl, J., Walther, C., and Brauburger, J., `Termination Analysis for Functional

Programs', in Automated Deduction { A Basis for Applications, Vol. 3 (eds.

W. Bibel and P. Schmitt), Applied Logic Series 10, Kluwer (1998).

29. Giesl, J. and Middeldorp, A., `Transforming Context-Sensitive Rewrite Sys-

tems', in Proc. RTA-99, Trento, Italy, Lecture Notes in CS, Springer (1999).

30. Goguen, J. A., Thatcher, J. W., and Wagner, E. G., `An Initial Algebra Ap-

proach to the Speci�cation, Correctness, and Implementation of Abstract Data

Types', in Current Trends in Programming Methodology, Vol. 4 (ed. R. T. Yeh),

Prentice-Hall (1978).

18

Available from http://www.inferenzsysteme.informatik.tu-darmstadt.de/

~reports/notes/fibn-96-33.ps,ibn-98-49.psg.

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.49



50 J

�

URGEN GIESL

31. Gordon, M. J. C., Milner, R., and Wadsworth, C. P., Edinburgh lcf: A Mech-

anised Logic of Computation, Lect. Notes in Comp. Sc. 78, Springer (1979).

32. Gordon, M. J. C. and Melham, T. F., Introduction to hol: A Theorem-Proving

Environment for Higher-Order Logic, Cambridge University Press (1993).

33. Guttag, J. V., `Abstract Data Types and the Development of Data Structures',

Comm. ACM 20, 396-404 (1977).

34. Huet, G., `Conuent Reductions: Abstract Properties and Applications to Term

Rewriting Systems', Journal of the ACM 27, 797-821 (1980).

35. Huet, G. and Hullot, J.-M., `Proofs by Induction in Equational Theories With

Constructors', J. Computer and System Sciences 25, 239-266 (1982).

36. Hutter, D. and Sengler, C., `inka: The next generation', in Proc. 13th CADE,

New Brunswick, NJ, Lecture Notes in AI 1104, Springer (1996).

37. Jouannaud, J.-P. and Kounalis, E., `Automatic Proofs by Induction in Theories

Without Constructors', Information and Computation 82, 1-33 (1989).

38. Kapur, D., Narendran, P., and Zhang, H., `Proof by Induction Using Test Sets',

in Proceedings 8th International Conference on Automated Deduction, Oxford,

England, Lecture Notes in Computer Science 230, Springer-Verlag (1986).

39. Kapur, D. and Musser, D. R., `Inductive Reasoning with Incomplete Speci-

�cations', in Proceedings of the First Annual IEEE Symposium on Logic in

Computer Science, IEEE Computer Society Press (1986).

40. Kapur, D. and Musser, D. R., `Proof by Consistency', Arti�cial Intelligence

31, 125-157 (1987).

41. Kapur, D. and Zhang, H., `An Overview of Rewrite Rule Laboratory (rrl)',

Journal of Computer and Mathematics with Applications 29, 91-114 (1995).

42. Kapur, D. and Subramaniam, M., `New Uses of Linear Arithmetic in Auto-

mated Theorem Proving by Induction', J. Aut. Reasoning 16, 39-78 (1996).

43. Kapur, D. and Subramaniam, M., `Automating Induction over Mutually Recur-

sive Functions', in Proc. 5th Int. Conf. Algebraic Meth. and Software Technol-

ogy, Munich, Germany, Lect. Notes in Comp. Sc. 1101, Springer-Verlag (1996).

44. Kapur, D., `Constructors can be Partial, too', in Automated Reasoning and Its

Applications { Essays in Honor of L. Wos (ed. R. Vero�), MIT Press (1997).

45. Kaufmann, M., A Sound Theorem Prover for a Higher-Order Functional Lan-

guage, Technical Report ARC 86-01, Burroughs Austin Research Center, 1986.

46. Kerber, M. and Kohlhase, M., `A Mechanization of Strong Kleene Logic for Par-

tial Functions', in Proc. 12th Int. Conf. Automated Deduction, Nancy, France,

Lecture Notes in Arti�cial Intelligence 814, Springer-Verlag (1994).

47. Kerber, M. and Kohlhase, M., `A Tableau Calculus for Partial Functions',

Collegium Logicum { Annals of the Kurt G�odel-Society 2, 21-49 (1996).

48. Kleene, S. C., Introduction to Metamathematics, Van Nostrand (1952).

49. Knuth, D. E. and Bendix, P. B., `Simple Word Problems in Universal Algebras',

Computational Problems in Abstract Algebra (ed. J. Leech), Pergamon (1970).

50. Kreowski, H.-J., `Partial Algebras ow from Algebraic Speci�cations', in Proc.

14th Int. Coll. on Automata, Languages, and Programming, Karlsruhe, Germa-

ny, Lecture Notes in Computer Science 267, Springer-Verlag (1987).

51. K�uhler, U. and Wirth, C.-P., `Conditional Equational Speci�cations of Data

Types with Partial Operations for Inductive Theorem Proving', in Proceedings

of the 8th International Conference on Rewriting Techniques and Applications,

Sitges, Spain, Lecture Notes in Computer Science 1232, Springer-Verlag (1997).

52. Loeckx, J. and Sieber, K., The Foundations of Program Veri�cation, Wiley-

Teubner (1987).

53. Lucas, S., `Context-Sensitive Computations in Functional and Functional Logic

Programs', Journal of Functional and Logic Programming 1, 1-61 (1998).

54. Manna, Z., Mathematical Theory of Computation, McGraw-Hill (1974).

55. Manna, Z. and Waldinger, R., `Deductive Synthesis of the Uni�cation Algo-

rithm', Science of Computer Programming 1, 5-48 (1981).

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.50



INDUCTION PROOFS WITH PARTIAL FUNCTIONS 51

56. McCarthy, J., `Recursive Functions of Symbolic Expressions and their Compu-

tation by Machine', Communications of the ACM 3, (1960).

57. Morris, J. H. and Wegbreit, B., `Subgoal Induction', Communications of the

ACM 20, 209-222, 1977.

58. Mosses, P. D., `The Use of Sorts in Algebraic Speci�cations', in Proceedings of

the 7th Workshop on Speci�cations of Abstract Data Types, Lecture Notes in

Computer Science 655, Springer-Verlag (1991).

59. Nipkow, T., `More Church-Rosser Proofs (in isabelle/hol)', in Proc. 13th Int.

Conf. Aut. Ded., New Brunswick, NJ, Lect. Notes in AI 1104, Springer (1996).

60. Padawitz, P., Inductive Expansion, Internal Report MIP-8907, Universit�at Pas-

sau, Germany, 1989.

61. Paulson, L. C., `Verifying the Uni�cation Algorithm in lcf', Science of Com-

puter Programming 5, 143-169 (1985).

62. Paulson, L. C., Logic and Computation, Cambridge University Press (1987).

63. Paulson, L. C., isabelle: A Generic Theorem Prover, Lecture Notes in Com-

puter Science 828, Springer-Verlag (1994).

64. Pl�umer, L., Termination Proofs for Logic Programs, Lecture Notes in Arti�cial

Intelligence 446, Springer-Verlag (1990).

65. Reddy, U. S., `Term Rewriting Induction', in Proceedings of the 10th Interna-

tional Conference on Automated Deduction, Kaiserslautern, Germany, Lecture

Notes in Computer Science 449, Springer-Verlag (1990).

66. Reichel, H., Initial Computability, Algebraic Speci�cations and Partial Alge-

bras, Oxford University Press (1987).

67. Robinson, J. A., `A Machine Oriented Logic Based on the Resolution Principle',

Journal of the ACM 12, 23-41 (1965).

68. Scott, D. S., A Type-Theoretic Alternative to cuch, iswim, pwhy, Notes,

Oxford (1969). Annotated version in Theor. Comp. Sc. 121, 411-440 (1993).

69. Shankar, N., `A Mechanical Proof of the Church-Rosser Theorem', Journal of

the ACM 35, 475-522 (1988).

70. Shankar, N., A Logical Basis for Functional Programming, Draft, Stanford

University (1989).

71. Shankar, N., Recursive Programming and Proving, Course Notes CS 306, SRI

International (1990).

72. Slind, K., `Derivation and Use of Induction Schemes in Higher-Order Logic',

in Proc. 10th Int. Conf. on Theorem Proving in Higher Order Logics, Murray

Hill, NJ, Lecture Notes in Computer Science 1275, Springer-Verlag (1997).

73. Steinbach, J., `Simpli�cation Orderings: History of Results', Fundamenta Infor-

maticae 24, 47-87 (1995).

74. Ullman, J. D. and van Gelder, A., `E�cient Tests for Top-Down Termination

of Logical Rules', Journal of the ACM 35, 345-373 (1988).

75. Walther, C., `Mathematical Induction', in Handbook of Logic in Arti�cial Intel-

ligence and Logic Programming, Vol. 2 (eds. D. M. Gabbay, C. J. Hogger, and

J. A. Robinson), Oxford University Press (1994).

76. Walther, C., `On Proving the Termination of Algorithms by Machine', Arti�cial

Intelligence 71, 101-157 (1994).

77. Wirth, C.-P. and Gramlich, B., `On Notions of Inductive Validity for First-

Order Equational Clauses', in Proc. 12th Int. Conference on Automated Deduc-

tion, Nancy, France, Lecture Notes in AI 814, Springer-Verlag (1994).

78. Wirth, C.-P. and K�uhler, U., Inductive Theorem Proving in Theories Speci�ed

by Positive/Negative-Conditional Equations, SEKI-Report SR-95-15, Univer-

sit�at Kaiserslautern, Germany (1995).

79. Zhang, H., Kapur, D., and Krishnamoorthy, M. S., `A Mechanizable Induc-

tion Principle for Equational Speci�cations', in Proc. 9th Int. Conf. Automated

Deduction, Argonne, IL, Lect. Notes in Comp. Science 310, Springer (1988).

ibn-98-48.tex; 4/01/2000; 17:21; no v.; p.51


