
The Critical Pair Lemma:

A Case Study for Induction Proofs With Partial Functions

�

J�urgen Giesl

TU Darmstadt, Alexanderstr. 10, 64283 Darmstadt, Germany,

E-mail: giesl@informatik.tu-darmstadt.de

Abstract

In [9] we presented a calculus for automated induction proofs about partial functions. In contrast

to previous work, our approach also allows us to derive induction schemes from the recursions of partial

(and in particular, non-terminating) algorithms. In this way, existing induction theorem provers can be

directly extended to partial functions without changing their logical framework.

This report contains a large collection of theorems from the area of term rewriting systems which

were proved with our calculus (including Knuth and Bendix' well-known critical pair lemma). These

examples demonstrate the power of our approach and they show that induction schemes based on partial

functions are indeed needed frequently.

1 Introduction

Induction is the essential proof method for the veri�cation of functional programs. For that reason, several

techniques

1

have been developed to compute suitable induction relations and to perform induction proofs

automatically, cf. e.g. [2, 5, 12, 20, 21]. However, most of these techniques are only sound if all occurring

functions are total.

In [9] we showed that by slightly restricting the prerequisites of these techniques it is nevertheless possible

to use them for partial functions, too. In particular, the well-known proof technique of performing induc-

tions w.r.t. algorithms can also be applied for partial functions, i.e. (under certain conditions) one may even

perform inductions w.r.t. non-terminating algorithms. In this way, this successful method for �nding appro-

priate induction relations automatically can be used for partial functions as well. Hence, with our approach

the well-known techniques for automated induction proofs can be directly applied to partial functions.

To show that the calculus developed in [9] can be used to prove relevant theorems about (possibly) partial

functions, in the following case study we apply our calculus to prove prove more than 400 conjectures from

the area of term rewriting systems (TRSs).

The (possibly) partial functions occurring in these conjectures can be divided into several classes, cf. [9,

Section 7]. For example, there are partial functions like �rst, which returns the �rst element of a list of

terms, but which is unde�ned if the termlist is empty. Of course, such functions could easily be transformed

into total ones, but this would change their semantics and could result in non-intuitive theorems. Moreover,

for an automatic transformation of such partial functions into total ones, in general reasoning about partial

functions would still be required (cf. the problem with exactness proofs of domain predicates in [9]).

But for many interesting algorithms their exact domain cannot be determined automatically at all. In

particular, as the halting problem is undecidable (and as totality is not even semi-decidable), there are even

many important total algorithms where totality cannot be veri�ed automatically. For example, the well-

known uni�cation algorithm uni�es by J. A. Robinson [18] is total, but its termination is a \deep theorem" [17]

�

Technical Report IBN 98/49, Darmstadt University of Technology.

1

There are two research paradigms for the automation of induction proofs, viz. explicit and implicit induction (e.g. [1, 11]),

where we only focus on the �rst one.

1

and none of the current methods for automated termination analysis succeeds with this example. Hence,

such functions cannot be handled by (fully) automated theorem provers without the ability of reasoning

about possibly partial functions. In contrast to previous correctness proofs of the uni�cation algorithm (e.g.

[15, 17], our calculus can prove its partial correctness by induction w.r.t. uni�es without having to verify its

termination.

But even worse, there are numerous practically relevant partial algorithms whose domain is undecidable,

i.e. there does not exist any exact domain predicate. For instance, our collection contains an algorithm

rewrites*(s; t; R) which returns true i� the term s rewrites to the term t w.r.t. the TRS R in arbitrary many

steps. The domain of this algorithm is obviously undecidable. Hence, if one wants to prove any conjecture

about such algorithms, one de�nitely needs a method to deal with partial functions.

In particular, with our calculus we can also prove partial truth of a variant of D. E. Knuth and

P. B. Bendix' critical pair lemma [14] which states that if all critical pairs of a term rewriting system

are joinable, then the system is locally conuent. As stressed in [10], no assumption of termination is neces-

sary for this conjecture. The proof of this fundamental theorem is the last one in our collection and most of

the preceding conjectures are needed as lemmata for this proof. Our veri�cation of the critical pair lemma

required several inductions w.r.t. functions like rewrites* whose domains are undecidable. Thus, our proof

di�ers substantially from other case studies in related areas (e.g. the proofs of the Church-Rosser theorem

for the �-calculus in [16, 19]).

In Section 2 we introduce the data types and in Section 3 we give the de�nitions of all algorithms used.

The remaining sections contain theorems proved with our calculus. For a detailed overview the reader is

referred to the table of contents at the end of the report.

Several of these theorems are partial correctness theorems. Those theorems have a \(pc)" in their title.

To ease readability, for such a conjecture ' with the top-level terms t

1

; : : : ; t

n

instead of def(t

1

; : : : ; t

n

) =

true) ' we just wrote ' as an abbreviation. For the other theorems we stated the def-terms explicitly.

For the sake of brevity we only sketched the proofs of the theorems mentioned. In particular, we omitted

most of the proofs about de�nedness terms and only mentioned them at points where they are especially

interesting. In general, de�nedness conditions have to be checked in all following cases:

� Whenever one performs an induction w.r.t. a possibly partial function f during the proof of ', one has

to prove the permissibility conjecture :def(f(x

�

)) = true) '. (If f(x

�

) occurs in the conjecture ' and

if ' is a partial correctness statement, then this condition is always ful�lled.) Similar permissibility

conjectures also have to be checked for structural induction, symbolic evaluation, and case analysis.

� If a conjecture containing partial functions is proved by induction, then one has to ensure that de�ned-

ness of the induction conclusion implies de�nedness of the induction hypothesis.

� If a lemma containing partial functions is used for the proof of ', then one has to check that

de�nedness of ' implies de�nedness of (the corresponding instantiation of) .

We only regard universally closed formulas where we omitted all quanti�ers to ease readability and moreover,

instead of t = true we usually just wrote t.

2 Data Types

Booleans (bool)

true : bool

false : bool

Natural Numbers (nat)

0 : nat

s : nat� nat! nat

2

The following data type represents both terms and lists of terms.

Termlists (term)

e : term

var : nat� term! term

func : nat� term� term! term

We use naturals as names for the variables and function symbols. Then var(n; v) represents the list beginning

with the variable n followed by the remainder list v. Analogously, func(n; u; v) denotes the list starting with

a term where the function symbol n is applied to the argument list u (and the tail of the list is v). So

for example, the list [x

1

; f

1

(x

2

)] is denoted as var(1; func(1; var(2; e); e)). The reason for using just one

data type of termlists (instead of two separate mutually recursive types for terms and termlists) is that

our formalization simpli�es the proofs considerably. Techniques for automated reasoning about mutually

recursive data types and algorithms can for instance be found in [1, 4, 8, 13].

The data type tll is used to represent lists of lists of terms.

Lists of Termlists (tll)

empty : tll

add : term� tll! tll

For example, this data type is necessary for an algorithm like rewrite rule(t; l; r) which generates the list of

all termlists that can be obtained by rewriting the termlist t with the rule l ! r. (Note that an algorithm

like rewrite rule cannot only operate on terms instead of termlists, because to rewrite the term f(t

�

) one has

to rewrite the termlist of its arguments t

�

.)

To simplify the presentation in [9], we omitted the data type tll there. So the algorithm rewrites* from [9]

corresponds to the algorithm rewrites list* exists in this report, the algorithm joinable from [9] corresponds

to the algorithm joinable list in this report, and the formulation of the critical pair lemma is also slightly

di�erent.

3 Algorithms

3.1 Basic Algorithms on bool, nat, and term

3.1.1 Negation on bool

function not : bool! bool

not(true) = false

not(false)= true

3.1.2 Predecessor on nat

function p : nat! nat

p(0) = 0

p(s(x)) = x

3.1.3 Equality on nat

function eq : nat� nat! bool

eq(0; 0) = true

eq(0; s(y)) = false

eq(s(x); 0) = false

eq(s(x); s(y)) = eq(x; y)

3

3.1.4 Greater-Equal on nat

function ge : nat� nat! bool

ge(x; 0) = true

ge(0; s(y)) = false

ge(s(x); s(y)) = ge(x; y)

3.1.5 Greater on nat

function gt : nat� nat! bool

gt(0; y) = false

gt(s(x); 0) = true

gt(s(x); s(y)) = gt(x; y)

3.1.6 Addition on nat

function plus : nat� nat! nat

plus(0; y) = y

plus(s(x); y) = s(plus(x; y))

3.1.7 Equality on term

function eqterm : term� term! bool

eqterm(e; e) = true

eqterm(e; var(n

2

; r

2

)) = false

eqterm(e; func(n

2

; s

2

; r

2

)) = false

eqterm(var(n

1

; r

1

); e) = false

eqterm(var(n

1

; r

1

); var(n

2

; r

2

)) = eq(n

1

; n

2

) :̂ eqterm(r

1

; r

2

)

eqterm(var(n

1

; r

1

); func(n

2

; s

2

; r

2

)) = false

eqterm(func(n

1

; s

1

; r

1

); e) = false

eqterm(func(n

1

; s

1

; r

1

); var(n

2

; r

2

)) = false

eqterm(func(n

1

; s

1

; r

1

); func(n

2

; s

2

; r

2

)) = eq(n

1

; n

2

) :̂ eqterm(s

1

; s

1

) :̂ eqterm(r

1

; r

2

)

As in [9], \t

1

:̂ t

2

" abbreviates \if(t

1

; t

2

; false)" and \t

1

:̂ t

2

:̂ : : :" abbreviates \t

1

:̂ (t

2

:̂ : : :)" to ease read-

ability.

3.1.8 First Element of term

function �rst : term! term

�rst(var(n; r)) = var(n; e)

�rst(func(n; s; r)) = func(n; s; e)

This function is partial (�rst(e) is not de�ned).

3.1.9 Tail of term

function tail : term ! term

tail(var(n; r)) = r

tail(func(n; s; r)) = r

This function is partial (tail(e) is not de�ned).

3.1.10 Second Element of term

function second : term! term

second(t) = �rst(tail(t))

This function is partial (it is only de�ned for terms of at least length two).

4

3.1.11 Tail of Tail of term

function ttail : term ! term

ttail(t) = tail(tail(t))

This function is partial (it is only de�ned for termlists of length two or more).

3.1.12 Length of a Termlist

function length : term! nat

length(e) = 0

length(var(n; r)) = s(length(r))

length(func(n; s; r)) = s(length(r))

3.1.13 Number of Symbols in a Termlist

function symbols : term ! nat

symbols(e) = 0

symbols(var(n; r)) = s(symbols(r))

symbols(func(n; s; r)) = s(plus(symbols(s); symbols(r)))

3.1.14 Adding a Term to a Lists of Terms

function addterm : term� term ! term

addterm(var(n; e); t) = var(n; t)

addterm(func(n; s; e); t) = func(n; s; t)

This function is partial (it is not de�ned if the �rst argument has a length di�erent from 1).

3.1.15 Appending two Termlists

function appendterm : term� term ! term

appendterm(e; t) = t

appendterm(var(n; r); t) = var(n; appendterm(r; t))

appendterm(func(n; s; r); t) = func(n; s; appendterm(r; t))

3.1.16 Test Whether a term is Built With a Function

function �rst is func : term! bool

�rst is func(e) = false

�rst is func(var(n; r)) = false

�rst is func(func(n; s; r)) = true

3.1.17 Leading Function of a term

function func name : term ! nat

func name(func(n; s; r)) = n

This function is partial.

3.1.18 Arguments of the Leading Function Symbol

function func args : term! term

func args(func(n; s; r)) = s

This function is partial.

5

3.1.19 Leading Variable of a term

function var name : term! nat

var name(var(n; r)) = n

This function is partial.

3.1.20 Test Whether a Variable Occurs in a Termlist

function occurs : nat� term! bool

occurs(n; e) = false

occurs(n; var(m; r)) = if(eq(n;m); true; occurs(n; r))

occurs(n; func(m; s; r)) = occurs(n; appendterm(s; r))

3.1.21 Compute the List of Variables in a Termlist

function vars : term! term

vars(e) = e

vars(var(n; s)) = var(n; vars(s))

vars(func(n; s; r)) = appendterm(vars(s); vars(r))

3.1.22 Test Whether Two Lists of Variables are Disjoint

function disjoint : term� term ! bool

disjoint(e; t) = true

disjoint(var(n; r); t) = if(occurs(n; t); false; disjoint(r; t)

This function is partial (it is only de�ned if the �rst argument is a list of variables (of the form var(n

1

; var(n

2

;

var(: : : ; e)))) resp. if one of the variables in the �rst argument does not occur in the second and before that

variable there were only variables in the �rst argument).

3.1.23 Compute the Maximum of a List of Variables

function max : term! nat

max(e) = 0

max(var(n; e)) = n

max(var(n; var(m; t))) = if(ge(n;m);max(var(n; t));max(var(m; t)))

Again, this function is partial.

3.1.24 Rename all Variables in a Termlist

rename(n; t) adds n to all variables in the termlist t.

function rename : term� nat! term

rename(e; n) = e

rename(var(m; t); n) = var(plus(m;n); rename(t; n))

rename(func(m; s; t); n)) = func(m; rename(s; n); rename(t; n))

3.1.25 Test Whether the Variables in one Termlist are a Subset of Another

function subseteq : term� term! bool

subseteq(e; t) = true

subseteq(var(n; r); t) = if(occurs(n; t); subseteq(r; t); false)

subseteq(func(n; s; r); t) = subseteq(appendterm(s; r); t)

6

3.1.26 Disjoint Union of Two Lists of Variables

function disjoint union : term� term ! term

disjoint union(v

1

; e) = v

1

disjoint union(v

1

; var(n; v

2

)) = if(occurs(n; v

1

);

disjoint union(v

1

; v

2

);

disjoint union(appendterm(v

1

; var(n; e)); v

2

))

This function is partial (it is only de�ned if the �rst argument is a list of variables resp. if one of the variables

in the �rst argument does not occur in the second and before that variable there were only variables in the

�rst argument).

3.1.27 Test whether two Terms Occur Consecutive in a Termlist

The following function test whether two certain terms are on positions 2n�1 and 2n in a termlist. Similar to

:̂ , \t

1

_

:

t

2

" abbreviates \if(t

1

; true; t

2

)" and \t

1

_

:

t

2

_

:

: : :" abbreviates \t

1

_

:

(t

2

_

:

: : :)" to ease readability.

Moreover, t

1

:̂ t

2

_

:

t

3

stands for (t

1

:̂ t

2

)_

:

t

3

etc.

function in : term� term� term! bool

in(s; t; r) = ge(length(r); s(s(0))) :̂ (eqterm(s; �rst(r)) :̂ eqterm(t; second(r))_

:

in(s; t; ttail(r)))

3.1.28 Test whether a Pair of Terms Occurs on Even Position in a Termlist

Similar to in, the function membereven([t

1

; t

2

]; r) tests whether the terms t

1

and t

2

occur consecutive in r

(starting on an even position).

function membereven : term� term! bool

membereven(t; r) = ge(length(r); s(s(0))) :̂ (eqterm(�rst(t); �rst(r)) :̂ eqterm(tail(t); second(r))_

:

membereven(t; ttail(r)))

3.1.29 Check Whether a List of Terms is a TRS

For variables denoting term rewriting systems we will use capital letters (e.g. R) to conform with the term

rewriting literature. Then the function trs(R) checks whether R is a proper term rewriting system (in

particular, right hand sides of rules may only contain variables from their corresponding left hand sides).

function trs : term! bool

trs(e) = true

trs(var(n; q)) = false

trs(func(n; s; q)) = ge(length(q); s(0)) :̂ subseteq(vars(�rst(q)); vars(s)) :̂ trs(tail(q))

3.2 Algorithms for Substitutions

Substitutions are modelled by termlists of the form [variable; term; variable; term; : : :]. Intuitively, the �rst

element is to be substituted by the second, the third is to be substituted by the fourth etc. We use �; �; etc.

for variables which are intended to denote substitutions.

3.2.1 Check Whether a Termlist Denotes a Substitution

function is subst : term! bool

is subst(e) = true

is subst(var(n; t)) = if(eqterm(t; e); false; is subst(tail(t)))

is subst(func(n; s; t)) = false

7

3.2.2 Applying Substitutions to Variables

function apply subst var : term� nat! term

apply subst var(e; n) = var(n; e)

apply subst var(var(m; t); n) = if(eq(m;n); �rst(t); apply subst var(tail(t); n))

This function is partial (it is not de�ned if the �rst argument is not a proper substitution).

3.2.3 Applying Substitutions to Termlists

function apply subst : term� term! term

apply subst(�; e) = e

apply subst(�; var(n; r)) = addterm(apply subst var(�; n); apply subst(�; r))

apply subst(�; func(n; s; r)) = func(n; apply subst(�; s); apply subst(�; r))

3.2.4 Applying Lists of Substitutions to Termlists

function apply subst list : tll� term ! term

apply subst list(empty; t) = empty

apply subst list(add(�; l); t) = add(apply subst(�; t); apply subst list(l; t))

Hence, we have apply subst list(h�

1

; : : : ; �

n

i; t) = h�

1

(t); : : : ; �

n

(t)i (Here h�

1

; : : : ; �

n

i is a tll.)

3.2.5 Applying Substitutions to tll's

function apply subst tll : term� tll! tll

apply subst tll(�; empty) = empty

apply subst tll(�; add(t; l)) = add(apply subst(�; t); apply subst tll(�; l))

3.2.6 Domain of a Substitution

function dom : term ! term

dom(e) = e

dom(var(n; r)) = var(n; dom(tail(r)))

This function is partial.

3.2.7 Renaming the Domain of a Substitution

function rename dom : term� nat! term

rename dom(e; n) = e

rename dom(var(m; r); n) = appendterm(var(plus(m;n); �rst(r)); rename dom(tail(r); n))

This function is also partial.

3.2.8 Matching Algorithm (Tests Whether a Termlist Matches Another One)

The algorithm matches calls an auxiliary algorithm matches aux where the third argument is used to store

the parts of the matcher already computed. Hence, matches aux(s; t; �) is true i� �(s) matches t.

function matches : term� term! bool

matches(s; t) = matches aux(s; t; e)

8

function matches aux : term� term� term! bool

matches aux(e; t; �) = eqterm(e; t)

matches aux(var(n; r); t; �) = not(eqterm(e; t)) :̂

if(occurs(n; dom(�));

eqterm(�rst(t); apply subst var(�; n)) :̂ matches aux(r; tail(t); �);

matches aux(r; tail(t); appendterm(var(n; �rst(t)); �)))

matches aux(func(n; s; r); t; �) = �rst is func(t) :̂ eq(n; func name(t)) :̂ eq(length(func args(t)); length(s))) :̂

matches aux(appendterm(s; r); appendterm(func args(t); tail(t)); �)

3.2.9 Matching Algorithm (Computes the Matcher of Two Termlists)

function matcher : term� term ! term

matcher(s; t) = matcher aux(s; t; e)

function matcher aux : term� term� term! term

matcher aux(e; e; �) = �

matcher aux(var(n; r); t; �) = if(occurs(n; dom(�));

matcher aux(r; tail(t); �);

matcher aux(r; tail(t); appendterm(var(n; �rst(t)); �)))

matcher aux(func(n; s; r); t; �) = matcher aux(appendterm(s; r); appendterm(func args(t); tail(t)); �)

This function is partial (it is only de�ned if the �rst argument matches the second).

3.2.10 Uni�cation Algorithm (Tests Whether two Termlists are Uni�able)

function uni�es : term� term ! bool

uni�es(e; t) = eqterm(e; t)

uni�es(var(n

1

; r

1

); e) = false

uni�es(var(n

1

; r

1

); var(n

2

; r

2

)) = uni�es(apply subst(var(n

1

; var(n

2

; e)); r

1

);

apply subst(var(n

1

; var(n

2

; e)); r

2

))

uni�es(var(n

1

; r

1

); func(n

2

; s

2

; r

2

)) = not(occurs(n

1

; s

2

)) :̂

uni�es(apply subst(var(n

1

; func(n

2

; s

2

; e)); r

1

);

apply subst(var(n

1

; func(n

2

; s

2

; e)); r

2

))

uni�es(func(n

1

; s

1

; r

1

); e) = false

uni�es(func(n

1

; s

1

; r

1

); var(n

2

; r

2

)) = uni�es(var(n

2

; r

2

); func(n

1

; s

1

; r

1

))

uni�es(func(n

1

; s

1

; r

1

); func(n

2

; s

2

; r

2

)) = eq(n

1

; n

2

) :̂ eq(length(s

1

); length(s

2

)) :̂

uni�es(appendterm(s

1

; r

1

); appendterm(s

2

; r

2

))

3.2.11 Uni�cation Algorithm (Computes the Most General Uni�er of two Termlists)

function mgu : term� term! bool

mgu(e; e) = e

mgu(var(n

1

; r

1

); t) = if(eqterm(var(n

1

; e); �rst(t));

mgu(r

1

; tail(t));

appendterm(var(n

1

; �rst(t));

mgu(apply subst(var(n

1

; �rst(t)); r

1

);

apply subst(var(n

1

; �rst(t)); tail(t))))

mgu(func(n

1

; s

1

; r

1

); var(n

2

; r

2

)) = mgu(var(n

2

; r

2

); func(n

1

; s

1

; r

1

))

mgu(func(n

1

; s

1

; r

1

); func(n

2

; s

2

; r

2

)) = mgu(appendterm(s

1

; r

1

); appendterm(s

2

; r

2

))

This function is partial (it is only de�ned if the arguments are uni�able).

3.2.12 Test Whether One Substitution is A Specialization of Another

The following algorithm tests whether one substitution is more special than another, i.e. special subst(�; �)

is true i� � = � � � . Note that � = � � � only has to be tested for all elements of the domain of � .

9

function special subst : term� term ! bool

special subst(�; e) = true

special subst(�; var(n; t)) = eqterm(apply subst var(�; n); apply subst(�; �rst(t))) :̂ special subst(�; tail(t))

3.2.13 Check Whether a Substitution Contains no Duplicates

no duplicates checks whether a substitution contains two variable-term pairs with the same variable.

function no duplicates : term! bool

no duplicates(e) = true

no duplicates(var(n; t)) = if(occurs(n; dom(tail(t))); false; no duplicates(tail(t)))

3.2.14 Composition of Substitutions

The next algorithm composes substitutions where compose(�; �) computes � � � , i.e. � is applied �rst. Note

that the order of the variables in compose(�; �) is the one in � followed by those variables occurring only in

the domain of � . This is necessary in order to guarantee that � = � �mgu(s; t) holds for every uni�er � of s

and t. For that purpose, the algorithm compose uses an auxiliary algorithm compose aux.

function compose : term� term ! term

compose(�; �) = compose aux(�; �; disjoint union(dom(�); dom(�)))

3.2.15 Composition of Substitutions on a Certain Domain

The algorithm compose aux(�; �; v) computes the restriction of � � � on the domain v.

function compose aux : term� term� term! term

compose aux(�; �; e) = e

compose aux(�; �; var(n; t)) = if(eqterm(apply subst(�; apply subst var(�; n)); var(n; e)) :̂

not(occurs(n; dom(�)));

compose aux(�; �; t);

var(n; addterm(apply subst(�; apply subst var(�; n));

compose aux(�; �; t)))

3.2.16 Changing a Substitution in One Argument

The result of replace(�; n; s) is like �, but if � already contained a value for the variable n, then this value

is now changed to s.

function replace : term� nat� term ! term

replace(e; n; s) = e

replace(var(m; t); n; s) = if(eq(m;n);

var(n; addterm(s; tail(t)));

appendterm(var(m; �rst(t)); replace(tail(t); n; s)))

3.3 Algorithms on tll

3.3.1 Appending two Lists of Termlists

function append : tll� tll! tll

append(empty; l) = l

append(add(t; l

1

); l

2

) = add(t; append(l

1

; l

2

))

10

3.3.2 Member on tll

function member : term� tll! bool

member(t; empty) = false

member(t; add(r; l)) = if(eqterm(t; r); true;member(t; l))

3.3.3 Test Whether One tll is a Subset of Another

function subseteq list : tll� tll! bool

subseteq list(empty; k) = true

subseteq list(add(t; l); k) = if(member(t; k); subseteq list(l; k); false)

3.3.4 Remove all Occurrences of an Element from a tll

function remove : term� tll! tll

remove(t; empty) = empty

remove(t; add(s; k)) = if(eqterm(t; s); remove(t; k); add(s; remove(t; k)))

3.3.5 Compute the Number of Elements Contained in One tll but not in the Other

function setdi� : tll� tll! nat

setdi�(empty; k) = 0

setdi�(add(t; l); k) = if(member(t; k); setdi�(remove(t; l); remove(t; k)); s(setdi�(remove(t; l); k)))

3.3.6 Test Whether Two tll's are Disjoint

function disjoint list : tll� tll! bool

disjoint list(empty; l) = true

disjoint list(add(t; k); l) = if(member(t; l); false; disjoint list(k; l))

3.3.7 Test Whether a tll is Empty

function is empty : tll! bool

is empty(empty)) = true

is empty(add(t; k)) = false

3.3.8 Test Whether the Length of a tll is Even

function hasevenlength : tll! bool

hasevenlength(empty) = true

hasevenlength(add(t; empty)) = false

hasevenlength(add(t

1

; add(t

2

; l))) = hasevenlength(l)

3.3.9 List of all First Elements of a tll

function �rst list : tll! bool

�rst list(empty) = empty

�rst list(add(r; l)) = add(�rst(r); �rst list(l))

3.3.10 List of all Tails of a tll

function tail list : tll! bool

tail list(empty) = empty

tail list(add(r; l)) = add(tail(r); tail list(l))

11

3.3.11 Applying a Function to all Termlists in a tll

function apply : nat� tll! tll

apply(n; empty) = empty

apply(n; add(s; l)) = add(func(n; s; e); apply(n; l))

Hence, apply(n; hs

1

; : : : ; s

n

i) = hfunc(n; s

1

; e); : : : ; func(n; s

n

; e)i. This function is total.

3.3.12 Applying a Function to Every Second Termlist in a tll

function apply narrowlist : nat� tll! tll

apply narrowlist(n; empty) = empty

apply narrowlist(n; add(�; add(s; l))) = add(�; add(func(n; s; e); apply narrowlist(n; l)))

Hence, apply narrowlist(n; h�

1

; s

1

; : : : ; �

n

; s

n

i) = h�

1

; func(n; s

1

; e); : : : ; �

n

; func(n; s

n

; e)i. (This function is

partial, i.e. it is only de�ned on lists of even length.)

3.3.13 Appending a Termlist to Every Term in a tll (in the back)

function addtail : tll� term! tll

addtail(empty; t) = empty

addtail(add(s; l); t) = add(addterm(s; t); addtail(l; t))

Hence, addtail(hs

1

; : : : ; s

n

i; [t

1

: : : t

m

]) = h[s

1

t

�

]; : : : ; [s

n

t

�

]i.

3.3.14 Adding a Term to Every Termlist in a tll (in the front)

function add�rst : term� tll! tll

add�rst(t; empty) = empty

add�rst(t; add(s; l)) = add(addterm(t; s); add�rst(t; l))

Hence, add�rst(t; hs

1

; : : : ; s

n

i) = h[t s

1

]; : : : ; [t s

n

]i.

3.3.15 Computing all Combinations of two tll's

function all combinations : tll� tll! tll

all combinations(k; empty) = empty

all combinations(k; add(s; l)) = append(addtail(k; s); all combinations(k; l))

Hence, all combinations(hk

1

: : : k

n

i; hs

1

: : : s

m

i) = h[k

1

s

1

]; [k

2

s

1

]; : : : ; [k

n

s

1

]; : : : ; [k

1

s

m

]; [k

2

s

m

]; : : : ; [k

n

s

m

]i.

3.3.16 Appending an Instantiated Termlist to Every Second Term in a tll (in the back)

function back narrowlist : tll� term! tll

back narrowlist(empty; t) = empty

back narrowlist(add(�; add(s; l)); t) = add(�; add(addterm(s; apply subst(�; t)); back narrowlist(l; t)))

Hence, back narrowlist(h�

1

; s

1

; : : : ; �

n

; s

n

i; [t

1

: : : t

m

]) = h�

1

; [s

1

; �

1

(t

�

)]; : : : ; �

n

; [s

n

; �

n

(t

�

)]i.

3.3.17 Appending a Termlist to Every Termlist in a tll (in the front)

function append list : term� tll! tll

append list(t; empty) = empty

append list(t; add(s; l)) = add(appendterm(t; s); append list(t; l))

Hence, append list(t

�

; h[s

1;1

: : : s

1;m

1

]; : : : ; [s

n;1

: : : s

n;m

n

]i) = h[t

�

s

1;1

: : : s

1;m

1

]; : : : ; [t

�

s

n;1

: : : s

n;m

n

]i.

12

3.3.18 Adding an Instantiated Term to Every Second Termlist in a tll (in the front)

function add narrowlist : term� tll! tll

add narrowlist(t; empty) = empty

add narrowlist(t; add(�; add(s; l))) = add(�; add(addterm(apply subst(�; t); s); add narrowlist(t; l)))

Hence, add narrowlist(t; h�

1

; [s

1;1

: : : s

1;m

1

]; : : : ; �

n

; [s

n;1

: : : s

n;m

n

]i) = h�

1

; [�

1

(t); s

1;1

; : : : ; s

1;m

1

]; : : : ; �

n

;

[�

n

(t); s

n;1

; : : : ; s

n;m

n

]i. (This function is again partial.)

3.3.19 Removing the Odd Elements from a tll

function remove subst : tll! term

remove subst(empty) = e

remove subst(add(�; add(s; l))) = appendterm(s; remove subst(l))

Hence, remove subst(h�

1

; s

�

1

; : : : ; �

n

; s

�

n

i) = [s

�

1

: : : s

�

n

].

3.3.20 Check Whether a Pair is a Specialization of a Pair in a Narrowlist

The function special(�; s; l) (where l is a tll) says whether there are consecutive elements (starting on even

position) �; q in l such that �; s is a special case of �; q, i.e. such that � = � � � and s = �(q).

function special : term� term� tll! tll

special(�; s; empty) = false

special(�; s; add(�; add(q; l))) = special subst(�; �) :̂ eqterm(s; apply subst(�; q))

_

:

special(�; s; l)

3.3.21 Adding Terms from Two tll's

function addtermtwice : tll� tll! tll

addtermtwice(empty; empty) = empty

addtermtwice(add(s; l

1

); add(t; l

2

)) = add(addterm(s; t); addtermtwice(l

1

; l

2

))

3.3.22 Check Whether a tll only Consists of one Element

function onlyconsistsof : tll� term! bool

onlyconsistsof(empty; t) = true

onlyconsistsof(add(s; l); t) = eqterm(s; t) :̂ onlyconsistsof(l; t)

3.3.23 Applying a Function to Two tll's

function applytwice : nat� tll� tll! tll

applytwice(n; empty; empty) = empty

applytwice(n; add(s; l

1

); add(t; l

2

)) = add(func(n; s; t); applytwice(n; l

1

; l

2

))

3.4 Algorithms for Rewriting

3.4.1 Check Whether One Termlist Rewrites to Another With a Certain Rule in One Step

The following algorithm rewrites rule(t; s; l; r) returns true i� t can be rewritten to s (in one step) using the

rule l ! r.

13

function rewrites rule : term� term� term� term! bool

rewrites rule(e; s; l; r) = false

rewrites rule(var(n; t); s; l; r) = eqterm(�rst(s); var(n; e)) :̂ rewrites rule(t; tail(s); l; r)

rewrites rule(func(n; u; t); s; l; r) = eqterm(�rst(s); func(n; u; e)) :̂ rewrites rule(t; tail(s); l; r)

_

:

�rst is func(s) :̂ eq(func name(s); n) :̂

eqterm(tail(s); t) :̂ rewrites rule(u; func args(s); l; r)

_

:

matches(l; func(n; u; e)) :̂

eqterm(�rst(s); apply subst(matcher(l; func(n; u; e)); r)) :̂

eqterm(tail(s); t)

3.4.2 Compute the Matcher Used in a Reduction

The next algorithm returns the matcher used in the reduction. Note that this algorithm is partial.

function rewrites matcher : term� term� term� term! term

rewrites matcher(var(n; t); s; l; r) = rewrites matcher(t; tail(s); l; r)

rewrites matcher(func(n; u; t); s; l; r) = if(eqterm(�rst(s); func(n; u; e));

rewrites matcher(t; tail(s); l; r);

if(rewrites rule(u; func args(s); l; r);

rewrites matcher(u; func args(s); l; r);

matcher(l; func(n; u; e))))

3.4.3 Check Whether One Termlist Rewrites to Another w.r.t. a TRS in One Step

In the next algorithm, rewrites(t; s; R) is true i� t can be reduced to s in one step using a rule of the TRS R.

Again this algorithm is partial.

function rewrites : term� term� term! bool

rewrites(t; s; e) = false

rewrites(t; s; func(n; u; r)) = if(rewrites rule(t; s; func(n; u; e); �rst(r)); true; rewrites(t; s; tail(r)))

3.4.4 Compute the Rule Used in a Reduction

The following algorithm rule(t; s; R) returns the rule used in the reduction of t to s. The algorithm is only

de�ned if t indeed rewrites to s in one step.

function rule : term� term� term! term

rule(t; s; func(n; u; r)) = if(rewrites rule(t; s; func(n; u; e); �rst(r)); func(n; u; �rst(r)); rule(t; s; tail(r)))

3.4.5 Generate all Termlists Obtained in One Rewrite Step

The following algorithm rewrite rule(t; l; r) generates all termlists that can be obtained from t by applying

one rewrite step with the rule l ! r. More precisely, [s

1

; : : : ; s

n

] is in rewrite rule([t

1

; : : : ; t

n

]; l; r) i� there

exists an i such that t

i

!

l!r

s

i

and t

j

= s

j

for all j 6= i. This algorithm is total.

function rewrite rule : term� term� term! tll

rewrite rule(e; l; r) = empty

rewrite rule(var(n; t); l; r) = append list(var(n; e); rewrite rule(t; l; r))

rewrite rule(func(n; u; t); l; r) = append(addtail(if(matches(l; func(n; u; e));

add(apply subst(matcher(l; func(n; u; e)); r);

apply(n; rewrite rule(u; l; r)));

apply(n; rewrite rule(u; l; r)));

t);

append list(func(n; u; e); rewrite rule(t; l; r)))

14

3.4.6 Compute All Substitutions Obtainable by One Rewrite Step

The next algorithm all reductions(�; l; r) returns the list of all substitutions (as a tll) which result from � by

applying the rule l ! r once to one term in �'s domain.

function all reductions : term� term� term! tll

all reductions(e; l; r) = empty

all reductions(var(n; t); l; r) = append(append list(var(n; e); addtail(rewrite rule(�rst(t); l; r); tail(t)));

append list(var(n; �rst(t)); all reductions(tail(t); l; r))

3.4.7 Generate all Termlists Obtained in One Rewrite Step (by a Certain Rule) from a tll

The following algorithm rewrite rule list(k; l; r) (which is similar to rewrite rule) generates the list of all

termlists t

0

, such that t

0

results from one t 2 k by one rewrite step with the rule l ! r.

function rewrite rule list : tll� term� term! tll

rewrite rule list(empty; l; r) = empty

rewrite rule list(add(t; k); l; r) = append(rewrite rule(t; l; r); rewrite rule list(k; l; r))

3.4.8 Check Whether a tll Rewrites To a Termlist in Arbitrary Many Steps

The next algorithm checks whether one of the termlists in the tll k rewrites to s using an arbitrary number

of reductions with the rule l ! r. This algorithm is inherently partial, i.e. it may be non-terminating.

Moreover, its domain is undecidable, since its termination corresponds to the termination of a one-rule term

rewriting system [6].

function rewrites rule list* : tll� term� term� term! bool

rewrites rule list*(empty; s; l; r) = false

rewrites rule list*(add(t; k); s; l; r) = if(member(s; add(t; k));

true;

if(subseteq list(rewrite rule list(add(t; k); l; r); add(t; k));

false;

rewrites rule list*(append(add(t; k); rewrite rule list(add(t; k); l; r));

s; l; r)))

In this algorithm (and also in the corresponding following ones) we could have used a recursive call of

the form rewrites rule list*(rewrite rule list(add(t; k); l; r)) instead. But the reason for choosing the above for-

mulation is that it simpli�es the subsequent proofs on the correspondence between rewriting and joinability.

3.4.9 Check Whether a Termlist Rewrites To Another in Arbitrary Many Steps

Similarly, rewrites rule*(t; s; l; r) checks whether t rewrites to s using an arbitrary number of reductions with

the rule l ! r.

function rewrites rule* : term� term� term� term! bool

rewrites rule*(t; s; l; r) = rewrites rule list*(add(t; empty); s; l; r)

3.4.10 Check Whether a Termlist Rewrites To All Termlists from a tll in Arbitrary Many

Steps

The following algorithm rewrite

�

all(s; ht

1

: : : t

n

i; l; r) checks whether rewrites rule*(s; t

i

; l; r) holds for all t

i

.

(Here, ht

1

: : : t

n

i is a tll.)

function rewrite

�

all : term� tll� term� term! bool

rewrite

�

all(s; empty; l; r) = true

rewrite

�

all(s; add(t; k); l; r) = rewrites rule*(s; t; l; r) :̂ rewrite

�

all(s; k; l; r)

15

3.4.11 Check Whether Every Termlist of a tll is Reachable From Another tll

The following algorithm rewrites list* all(k

1

; k

2

; l; r) checks if every termlist of k

2

can be reached by rewriting

a termlist from k

1

.

function rewrites list* all : tll� tll� term� term! bool

rewrites list* all(k; empty; l; r) = true

rewrites list* all(k; add(s; k

0

); l; r) = rewrites rule list*(k; s; l; r) :̂ rewrites list* all(k; k

0

; l; r)

3.4.12 Check Whether a tll Rewrites To a Termlist from Another tll in Arbitrary Many Steps

The following variant of the above algorithm checks whether one of the termlists in the tll k rewrites to one

of the termlists in the tll k

0

using an arbitrary number of reductions with the rule l ! r. Again, its domain

is undecidable.

function rewrites rule list* exists : tll� tll� term� term! bool

rewrites rule list* exists(empty; k

0

; l; r) = false

rewrites rule list* exists(add(t; k); empty; l; r) = false

rewrites rule list* exists(add(t; k); add(s; k

0

); l; r) =

if(disjoint list(add(s; k

0

); add(t; k));

if(subseteq list(rewrite rule list(add(t; k); l; r); add(t; k));

false;

rewrites rule list* exists(append(add(t; k); rewrite rule list(add(t; k); l; r));

add(s; k

0

);

l;

r));

true)

3.4.13 Check Whether a Termlist Rewrites To a Termlist from a tll in Arbitrary Many Steps

The next algorithm rewrite

�

exists(s; ht

1

: : : t

n

i; l; r) checks whether rewrites rule*(s; t

i

; l; r) holds for one t

i

.

(Here, ht

1

: : : t

n

i is a tll.)

function rewrite

�

exists : term� tll� term� term! bool

rewrite

�

exists(s; k; l; r) = rewrites rule list* exists(add(s; empty); k; l; r)

3.4.14 Check Whether a tll Rewrites To a Termlist From Another tll in Arbitrary Many Steps

via a TRS

This algorithm is like rewrites rule list* exists, but it works with a TRS R instead of just a rule. Hence,

rewrites list* exists(k

1

; k

2

; R) checks whether one of the termlists of k

1

reduces to one of the termlists in k

2

w.r.t. the TRS R.

function rewrites list* exists : tll� tll� term ! bool

rewrites list* exists(k

1

; k

2

; R) = if(disjoint list(k

1

; k

2

);

if(subseteq list(rewrite list(k

1

; R); k

1

);

false;

rewrites list* exists(append(k

1

; rewrite list(k

1

; R)); k

2

; R));

true)

A modi�cation of this algorithm (which was called rewrites*) was discussed in [9, Section 7]. To ease

the presentation there, we simpli�ed the arguments in the recursive call (cf. the remarks for the algorithm

rewrites rule list*) and only presented a version of the algorithm operating on term's instead of tll's.

16

3.4.15 Generate all Termlists Obtained in One Rewrite Step from a tll

The following algorithm rewrite list(k;R) is similar to rewrite rule list, but it computes the list of all termlists

obtainable from any termlist of k in one step by any rule of R.

function rewrite list : tll� term ! tll

rewrite list(k; e) = empty

rewrite list(k; func(n; s; t)) = append(rewrite rule list(k; func(n; s; e); �rst(t)); rewrite list(k; tail(t)))

3.4.16 Check Whether a tll Rewrites To a Termlist w.r.t. a TRS in Arbitrary Many Steps

This function again has an undecidable domain.

function rewrites list* : tll� term� term ! bool

rewrites list*(k; t; R) = if(member(t; k)

true;

if(subseteq list(rewrite list(k;R); k),

false;

rewrites list*(append(k; rewrite list(k;R)); t; R)))

3.4.17 Check Whether One Termlist Rewrites To Another w.r.t. a TRS in Arbitrary Many

Steps

This function also has an undecidable domain.

function rewrites* : term� term� term! bool

rewrites*(s; t; R) = rewrites list*(add(s; empty); t; R)

3.5 Algorithms for Narrowing and Critical Pairs

3.5.1 Check Whether a tll is a Narrowlist

We use a special kind of tll's for narrowing, viz. tll's of the form h�

1

; s

1

; �

2

; s

2

; : : :i, where �

i

are substitutions

and s

i

are terms of length 1. This algorithm checks if a tll is such a narrowlist.

function is narrowlist : tll! bool

is narrowlist(empty) = true

is narrowlist(add(t; empty)) = false

is narrowlist(add(t; add(s; k))) = is subst(t) :̂ eq(length(s); s(0)) :̂ is narrowlist(k)

3.5.2 Computing Narrowings

The following algorithm narrow(t; l; r) computes all narrowings of t using the rule l ! r. More precisely,

the result of narrow([t

1

; : : : ; t

n

]; l; r) is a tll where � and [s

1

; : : : ; s

n

] are on positions 2j and 2j + 1 in

narrow([t

1

; : : : ; t

n

]; l; r) i� there exists an i 2 f1; : : : ; ng such that t

i

narrows to s

i

via the mgu � using the

rule l ! r and s

j

= �(t

j

) for all j 6= i.

function narrow : term� term� term ! tll

narrow(e; l; r) = empty

narrow(var(n; t); l; r) = add narrowlist(var(n; e); narrow(t; l; r))

narrow(func(n; s; t); l; r) = append(back narrowlist(if(uni�es(l; func(n; s; e));

add(mgu(l; func(n; s; e));

add(apply subst(mgu(l; func(n; s; e)); r);

apply narrowlist(n; narrow(s; l; r))));

apply narrowlist(n; narrow(s; l; r)))

t);

add narrowlist(func(n; s; e); narrow(t; l; r)))

17

3.5.3 Critical Pairs of Two Rules

This function computes all critical pairs that can be built with two rules. More precisely, cp rule(l; r; l

0

; r

0

) is

a list of terms were the �rst and the second one form a critical pair, the third and the fourth form a critical

pair etc. A critical pair of l! r and l

0

! r

0

is a pair of terms �(r) and l[�(r

0

)]

�

, if lj

�

is not a variable and

lj

�

uni�es with l

0

using the mgu �.

function cp rule : term� term� term� term! term

cp rule(l; r; l

0

; r

0

) = remove subst(add narrowlist(r; narrow(l; rename(l

0

; s(max(l))); rename(r

0

; s(max(l))))))

3.6 Algorithms for Joinability

3.6.1 Check Whether Two tll's Are Joinable

The algorithm joinable list(k

1

; k

2

; R) returns true i� there are termlists s 2 k

1

, t 2 k

2

such that s and t are

joinable. If this is not the case, then however it may be that joinable list is non-terminating. Thus, this

function is partial and its domain is undecidable.

function joinable list : tll� tll� term ! bool

joinable list(k

1

; k

2

; R) = if(disjoint list(k

1

; k

2

);

if(subseteq list(rewrite list(k

1

; R); k

1

) :̂ subseteq list(rewrite list(k

2

; R); k

2

);

false;

joinable list(append(k

1

; rewrite list(k

1

; R)); append(k

2

; rewrite list(k

2

; R)); R));

true)

3.6.2 Check Whether Two Termlists Are Joinable

This algorithm tests whether two termlists are joinable with the rules of a given TRS. Again, its domain is

undecidable.

function joinable : term� term� term! bool

joinable(s; t; R) = joinable list(add(s; empty); add(t; empty); R)

3.6.3 Test Whether Elements in a List are Joinable

The algorithm joinable pairs([t

1

; t

2

; t

3

; t

4

; : : :]; R) checks whether t

1

and t

2

are joinable, whether t

3

and t

4

are

joinable, etc.

function joinable pairs : term� term! bool

joinable pairs(e; R) = true

joinable pairs(var(n; t); R) = rewrites*(�rst(t); var(n; e); R) :̂ joinable pairs(tail(t); R)

joinable pairs(func(n; s; t); R) = joinable(func(n; s; e); �rst(t)) :̂ joinable pairs(tail(t); R)

3.6.4 Check Whether all Critical Pairs of a TRS are Joinable

function jcp : term! bool

jcp(R) = jcp aux1(R;R;R)

3.6.5 Check Whether all Critical Pairs of a TRS with Another One are Joinable

The algorithm jcp aux1(R

1

; R

2

; R

3

) checks whether all critical pairs built by overlapping a rule of R

1

with a

rule of R

2

are joinable using R

3

.

function jcp aux1 : term� term� term! bool

jcp aux1(e; R;R

0

) = true

jcp aux1(func(n; s; t); R;R

0

) = jcp aux2(func(n; s; e); �rst(t); R;R

0

) :̂ jcp aux1(tail(t); R;R

0

)

18

3.6.6 Check Whether all Critical Pairs of a Rule with a TRS are Joinable

The algorithm jcp aux2(l; r; R;R

0

) checks whether all critical pairs built by overlapping the rule l ! r with

a rule of R are joinable using R

0

.

function jcp aux2 : term� term� term� term ! bool

jcp aux2(l; r; e; R

0

) = true

jcp aux2(l; r; func(n; s; t); R

0

) = joinable pairs(cp rule(l; r; func(n; s; e); �rst(t)); R

0

) :̂

jcp aux2(l; r; tail(t); R

0

)

4 Theorems about Booleans, Naturals, Termlists, and tll's

4.1 Totality of not, eq, ge, gt, plus, eqterm, length, appendterm, �rst is func, vars, rename,

remove, setdi�, trs

By structural induction (Rule 2

00

) the following theorems can easily be proved:

def(x)) def(not(x)) (1)

def(x; y)) def(eq(x; y)) (2)

def(x; y)) def(ge(x; y)) (3)

def(x; y)) def(gt(x; y)) (4)

def(x; y)) def(plus(x; y)) (5)

def(s; t)) def(eqterm(s; t)) (6)

def(t)) def(length(t)) (7)

def(s; t)) def(appendterm(s; t)) (8)

def(s; t)) def(�rst is func(s; t)) (9)

def(t)) def(vars(t)) (10)

def(t; n)) def(rename(t; n)) (11)

def(t; k)) def(remove(t; k)) (12)

def(k

1

; k

2

)) def(setdi�(k

1

; k

2

)) (13)

def(R)) def(trs(R)) (14)

4.2 De�nedness of �rst, tail, second, ttail, addterm, func name, func args

The following theorems state that �rst and tail are de�ned if their argument is not e.

def(t) ^ :t = e) def(�rst(t)) (15)

def(t) ^ :t = e) def(tail(t)) (16)

These theorems can easily be proved by structural induction (where the induction hypothesis is not used).

In a similar way one can also prove the following conjectures.

def(t) ^ :t = e ^ :tail(t) = e) def(second(t)) (17)

def(t) ^ :t = e ^ :tail(t) = e) def(ttail(t)) (18)

def(s) ^ length(t) = s(0)) def(addterm(t; s)) (19)

�rst is func(t)) def(func name(t)) (20)

�rst is func(t)) def(func args(t)) (21)

19

4.3 Totality of in

The function in has partial auxiliary functions, but it itself is total.

def(s; t; r)) def(in(s; t; r)): (22)

This can easily be proved by two nested structural inductions.

In a similar way one can prove

def(t; r) ^ :t = e) def(membereven(t; r)): (23)

4.4 Totality of occurs and subseteq

To prove the totality of occurs

def(n; t)) def(occurs(n; t)) (24)

we cannot directly use structural induction. Instead, we generate the corresponding domain predicate

�

occurs

. To compare the input arguments with the arguments in the recursive call we use the ordering

�, where a pair of data objects hn; ti is �-greater than another one hn

0

; t

0

i i� the number of var- and

func-occurrences in t is greater than in t

0

. Then the di�erence equivalents �

�

(hn; var(m; r)i; hn; ri) and

�

�

(hn; func(m; s; r)i; hn; appendterm(s; r)i) are equivalent to true. (This ordering � and the di�erence equiv-

alents can easily be generated automatically using the techniques in [3, 7].) Hence, we obtain the following

domain predicate

function �

occurs

: nat� term ! bool

�

occurs

(n; e) = true

�

occurs

(n; var(m; r)) = if(eq(n;m); true; �

occurs

(n; r))

�

occurs

(n; func(m; s; r))= �

occurs

(n; appendterm(s; r)).

Now �

occurs

(n; t) = true can easily be proved by induction w.r.t. �

occurs

. (In fact, the simpli�cation techniques

of [3] can directly simplify the above algorithm to true resp. the method of [7] can directly prove termination

of the total algorithm occurs.) In a similar way one can also prove

def(s; t)) def(subseteq(s; t)): (25)

4.5 Totality of append, member, subseteq list, disjoint list, is empty, hasevenlength, apply,

onlyconsistsof, applytwice

The following conjectures can again be proved by an easy structural induction.

def(l

1

; l

2

)) def(append(l

1

; l

2

)) (26)

def(t; l)) def(member(t; l)) (27)

def(l

1

; l

2

)) def(subseteq list(l

1

; l

2

)) (28)

def(l

1

; l

2

)) def(disjoint list(l

1

; l

2

)) (29)

def(l)) def(is empty(l)) (30)

def(l)) def(hasevenlength(l)) (31)

def(n; l)) def(apply(n; l)) (32)

def(t; l)) def(append list(t; l)) (33)

def(l; t)) def(onlyconsistsof(l; t)) (34)

def(n; l

1

; l

2

)) def(applytwice(n; l

1

; l

2

)) (35)

20

4.6 Transitivity of ge (pc)

The next conjecture states that ge is transitive.

ge(x; y) ^ ge(y; z)) ge(x; z) (36)

This example is used in [2] to demonstrate the need for merging induction relations. As described in [9]

we can model this technique by using appropriate instantiations of non-induction variables in the induction

hypotheses. Hence, the conjecture can easily be proved using (the extension of) Rule 1

00

. For that purpose we

use an induction w.r.t. ge(x; z) and instantiate y with p(y) in the induction hypothesis. Then after symbolic

evaluation the induction conclusion is

ge(s(x); y) ^ ge(y; s(z))) ge(x; z)

and the induction hypothesis is

ge(x; p(y)) ^ ge(p(y); z)) ge(x; z):

Now the induction step formula is proved by induction (resp. case analysis) w.r.t. p. In both cases, symbolic

evaluation results in a tautology. In a similar way one can also prove

gt(x; y) ^ ge(y; z)) gt(x; z); (37)

ge(x; y) ^ gt(y; z)) gt(x; z): (38)

4.7 Reexivity of ge (pc)

The following conjecture is easily proved by structural induction on x.

ge(x; x) (39)

In a similar way one can also prove

:gt(x; x); (40)

gt(s(x); x) (41)

4.8 ge is a Total Relation (pc)

The next conjecture states that for every pair x; y of numbers we have ge(x; y) or ge(y; x).

:ge(x; y)) ge(y; x) (42)

It can be proved by induction w.r.t. ge. In a similar way one can also prove

ge(x; s(y))) :ge(x; y); (43)

gt(x; y)) ge(x; y) (44)

4.9 Associativity of plus (pc)

The associativity of plus can be proved by a straightforward induction w.r.t. plus using x; y as induction

variables.

plus(x; plus(y; z)) = plus(plus(x; y); z) (45)

21

4.10 Commutativity of plus (pc)

The following theorem states that plus is commutative.

plus(n;m) = plus(m;n) (46)

By induction w.r.t. plus (using the induction variables n;m), the conjecture is transformed into

m = plus(m; 0)

(which can be proved by structural induction on m), (5), and

s(plus(m;x)) = plus(m; s(x))

(which can be proved by induction w.r.t. plus using m;x as induction variables).

4.11 plus is Injective For Fixed Second Argument (pc)

The next conjecture says that if one argument of plus is �xed, then plus is injective.

plus(m;n) = plus(k; n)) m = k (47)

Using (46), the conjecture can be transformed into

plus(n;m) = plus(n; k)) m = k

which can be proved by induction w.r.t. plus.

4.12 Additions are Greater Than or Equal To Arguments (pc)

The next conjecture states that plus(x; y) is greater than or equal to y.

ge(plus(x; y); y) (48)

It can be proved by induction w.r.t. plus. In the base case, we need lemma (39) and in the step case, the

induction formula is a consequence of (41), (37), and (44). Using (48) and (46), we can also prove

ge(plus(x; y); x): (49)

Moreover, using these lemmata one can prove

:x = 0) gt(plus(x; y); y); (50)

:y = 0) gt(plus(x; y); x) (51)

by induction resp. case analysis w.r.t. plus.

4.13 :̂ is Conjunction

The next conjecture states that :̂ returns true i� both its arguments are true.

t :̂ s, t ^ s (52)

Without using abbreviations this theorem reads

if(t; s; false) = true, t = true ^ s = true:

Rule 4

00

transforms this conjecture into the two lemmata stating both directions of the conjecture. These

lemmata can easily be proved using Rule 6

00

. In a similar way one can also prove

t_

:

s, def(t) ^ (t _ s): (53)

Note however, that t _ s) t_

:

s is only partially true, but not true.

22

4.14 eqterm Computes Equality (pc)

This theorem states that for de�ned terms, eq computes the equality.

eq(n;m), n = m: (54)

It can be proved by induction w.r.t. eq. In a similar way one can also prove partial truth of

eqterm(s; t), s = t (55)

using (54) and (52).

4.15 �rst is Idempotent (pc)

The next conjecture states that �rst is idempotent.

�rst(�rst(t)) = �rst(t) (56)

It can be proved by induction resp. case analysis w.r.t. �rst. In this way one can also prove

def(�rst(t)) = true) def(�rst(�rst(t))) = true: (57)

4.16 Tail of First Element is Empty (pc)

This conjecture states that the tail of �rst(t) is empty.

tail(�rst(t)) = e (58)

It can easily be proved by induction (resp. case analysis) w.r.t. �rst. In a similar way one can also prove

eqterm(�rst(t); e) = false; (59)

length(�rst(s)) = s(0): (60)

4.17 Correctness of addterm, tail, and �rst (pc)

This theorem states that addterm, tail, and �rst are correct.

addterm(�rst(t); tail(t)) = t (61)

It can be directly proved by \induction" w.r.t. �rst.

4.18 De�nedness of addterm and Length

This conjecture states that addterm is only de�ned if its �rst argument has length 1.

def(addterm(s; t))) length(s) = s(0) (62)

It can be proved by induction (resp. case analysis) w.r.t. addterm.

4.19 �rst and tail for Length 1 (pc)

The following theorem describes the behaviour of �rst and tail for terms of length 1.

length(t) = s(0)) �rst(t) = t ^ tail(t) = e (63)

It can be proved by induction (resp. case analysis) w.r.t. length using the lemma length(r) = 0) r = e

(which is also provable by induction w.r.t. length).

23

4.20 Properties of Added Terms (pc)

The following conjectures are immediately proved by induction (resp. case analysis) w.r.t. addterm. In

particular, (66) states that appendterm and addterm are the same (provided that addterm is de�ned) and

(67) says that to prove the equality of two terms built with addterm one can look at the arguments.

tail(addterm(s; t)) = t (64)

eqterm(addterm(s; t); e) = false (65)

addterm(t; s) = appendterm(t; s) (66)

addterm(s; t) = addterm(u; v), s = u ^ t = v (67)

4.21 Correctness of func args (pc)

This conjecture states that func args is correct.

�rst(t) = func(n; func args(t); e): (68)

It can be directly proved by \induction" w.r.t. func args.

4.22 Terms in a Termlist Have Length 1 (pc)

The next theorem states that the truth of in implies that the �rst two arguments have length 1 (this will be

used later to prove that left- and right-hand sides of rules have length 1).

in(s; t; r)) length(s) = s(0) ^ length(t) = s(0) (69)

It is a consequence of (55) and (60).

4.23 Connection Between in and membereven (pc)

The following theorem states the (obvious) connection between in and membereven.

membereven(addterm(s; t); r) = in(s; t; r) (70)

It can be proved by induction w.r.t. in using �rst(addterm(s; t)) = s and tail(addterm(s; t)) = t (which can

be proved by induction resp. case analysis w.r.t addterm).

4.24 Associativity of appendterm (pc)

This is the associativity theorem for appendterm.

appendterm(appendterm(r; s); t) = appendterm(r; appendterm(s; t)) (71)

It can be proved by a straightforward induction w.r.t. appendterm and in a similar way one can also prove

associativity of append.

append(k

1

; append(k

2

; k

3

)) = append(append(k

1

; k

2

); k

3

) (72)

4.25 Appending Empty Lists (pc)

The following conjectures say that appending empty lists resp. tll's does not change the result. Both theorems

can easily be proved by structural induction.

appendterm(t; e) = t (73)

append(k; empty) = k (74)

24

4.26 First and Second Element of Appended Lists (pc)

The following conjectures says that if �rst(s) resp. second(s) is de�ned, then to compute the �rst resp. the

second element of appendterm(s; t) one only has to look at s.

�rst(appendterm(s; t)) = �rst(s) (75)

second(appendterm(s; t)) = second(s) (76)

Conjecture (75) is proved by induction (resp. case analysis) w.r.t. �rst. In conjecture (76) we perform a

symbolic evaluation (evaluating second) and then it can be proved by induction w.r.t. tail using (75).

4.27 Length of Appended Lists (pc)

The next theorem says that the length of two appended terms is greater than or equal to the length of the

�rst component term.

ge(length(appendterm(s; t)); length(s)) (77)

It can be proved by a straightforward induction w.r.t. appendterm.

4.28 Decomposing Appended Lists With Equal Length (pc)

The next theorem states that if appendterm(u

1

; r

1

) and appendterm(u

2

; r

2

) are equal and if u

1

and u

2

have

equal length, then the corresponding component lists are equal, too.

length(u

1

) = length(u

2

) ^ appendterm(u

1

; r

1

) = appendterm(u

2

; r

2

)) u

1

= u

2

^ r

1

= r

2

(78)

The conjecture is proved by a straightforward induction w.r.t. eqterm(u

1

; u

2

). (This can be done although

eqterm does not occur in the conjecture, because def(eqterm(u

1

; u

2

)) is always true for de�ned arguments, cf.

(6).)

4.29 Empty Number of Symbols (pc)

The next conjecture states that if the number of symbols in a term is 0, then it is the empty term. It can

be immediately proved by induction (resp. case analysis) w.r.t. symbols.

symbols(t) = 0) t = e (79)

4.30 Number of Symbols in Appended Lists (pc)

This conjecture states that the number of symbols in an appended list is the sum of the number of symbols

in both component lists.

symbols(appendterm(s; t)) = plus(symbols(s); symbols(t)) (80)

The conjecture can be proved by induction w.r.t. appendterm using (45).

4.31 Distributivity of vars over appendterm (pc)

The next conjecture states that the variables in an appended termlist are the ones obtained by appending

the variables from both sublists.

vars(appendterm(s; t)) = appendterm(vars(s); vars(t)) (81)

The conjecture is proved by induction w.r.t. appendterm. The case s = e is trivial and in the case s = var(n; r)

the induction conclusion is a consequence of the induction hypothesis. In the case s = func(n; u; r), the

induction conclusion can be transformed into the induction hypothesis and (71).

25

4.32 vars is Idempotent (pc)

This theorem says that applying vars twice is the same as applying it once.

vars(vars(t)) = vars(t) (82)

The conjecture is proved by induction w.r.t. vars. The base case is easy and in the case t = var(n; s) the

induction conclusion can be directly reduced to the induction hypothesis. In the case t = func(n; s; r), after

symbolic evaluation the induction conclusion is

vars(appendterm(vars(s); vars(r))) = appendterm(vars(s); vars(r)):

This can be transformed into an instantiation of (81) and

appendterm(vars(vars(s)); vars(vars(r))) = vars(appendterm(vars(s); vars(r)))

which follows from the two induction hypotheses.

4.33 vars on Appended Variable Lists (pc)

The next conjecture states that the variables in an appended variable list consist of just this variable list.

vars(appendterm(vars(s); vars(t))) = appendterm(vars(s); vars(t)) (83)

The conjecture can be transformed into an instantiation of (81) and

vars(vars(appendterm(s; t))) = appendterm(vars(s); vars(t)):

This in turn can be transformed into an instantiation of (82) and into (81).

4.34 Subsets of Empty Lists are Empty (pc)

The next conjecture says that if k is a sublist of the empty list, then k is empty.

subseteq list(k; empty)) k = empty (84)

This can be proved by structural induction (resp. case analysis) on k (as the induction hypothesis is not

used).

4.35 Appending the Left Arguments of subseteq (pc)

This conjecture says that if both t

1

and t

2

are sublists of s, then so is appendterm(t

1

; t

2

).

subseteq(t

1

; s) ^ subseteq(t

2

; s)) subseteq(appendterm(t

1

; t

2

); s) (85)

The conjecture can be proved by induction w.r.t. appendterm, where in the last step case one needs (71).

In a similar way (using (72)) one can prove the corresponding statement for tll's.

subseteq list(l

1

; l) ^ subseteq list(l

2

; l)) subseteq list(append(l

1

; l

2

); l) (86)

4.36 Stability of subseteq under var (pc)

This theorem says that if v is a sublist of w, then this also holds for var(n;w).

subseteq(v; w)) subseteq(v; var(n;w)) (87)

The conjecture is proved by induction w.r.t. subseteq. The base case is trivial. If v = var(m; r) then the

induction conclusion is transformed into the induction hypothesis and

occurs(m;w)) occurs(m; var(n;w))

26

which can be proved by symbolic evaluation. In the case v = func(m; s; r), the induction conclusion is

directly implied by the induction hypothesis.

In an analogous way, one can prove the corresponding theorem about tll's

subseteq list(k

1

; k

2

)) subseteq list(k

1

; add(t; k

2

)) (88)

using the conjecture

member(s; k

2

)) member(s; add(t; k

2

))

which can be proved by symbolic evaluation.

4.37 Stability of subseteq under func on Arguments (pc)

This conjecture states that if v is a sublist of w, then this also holds for func(n;w; q).

subseteq(v; w)) subseteq(v; func(n;w; q)) (89)

The conjecture is again proved by induction w.r.t. subseteq. The base case is trivial and in the case v =

func(m; s; r), the induction conclusion is directly implied by the induction hypothesis. If v = var(m; r) then

the induction conclusion is transformed into the induction hypothesis and

occurs(m;w)) occurs(m; appendterm(w; r)):

This can be proved by induction w.r.t. appendterm where in the case w = func(m

0

; s

0

; r

0

) one needs (71).

4.38 Stability of subseteq under func on Tail (pc)

This conjecture states that if v is a sublist of w, then this also holds for func(n; q; w).

subseteq(v; w)) subseteq(v; func(n; q; w)) (90)

The conjecture is proved by induction w.r.t. subseteq where again the base case is trivial and in the case

v = func(m; s; r), the induction conclusion is directly implied by the induction hypothesis. If v = var(m; r)

then the induction conclusion is transformed into the induction hypothesis and

occurs(m;w)) occurs(m; appendterm(r; w))

This is a consequence of occurs(m;w)) occurs(m; appendterm(w; r)) (which was veri�ed during the proof

of (89)) and

occurs(m; appendterm(w; r))) occurs(m; appendterm(r; w)):

This conjecture is proved by induction w.r.t. appendterm. The base case is trivial. If w = var(k; s) and

eq(m; k), then by (54) one has to prove

occurs(m; appendterm(r; var(m; s)))

which can be done by structural induction on r. If w = var(k; s) and :eq(m; k), then by structural induction

on r one can prove

occurs(m; appendterm(r; s))) occurs(m; appendterm(r; var(k; s))):

Then the induction hypothesis implies the induction conclusion.

Finally, in the last case one has to prove the lemma

occurs(m; appendterm(r; appendterm(s

1

; s

2

)))) occurs(m; appendterm(r; func(k; s

1

; s

2

)))

to apply the induction hypothesis. Again this can be done by induction on r.

27

4.39 Reexivity of subseteq (pc)

This theorem states that subseteq is reexive.

subseteq(v; v) (91)

We prove the conjecture by structural induction on v. If v = e, then the proof is trivial. If v = var(m; v

0

),

then the induction conclusion follows from the induction hypothesis and (87). If v = func(m; v

1

; v

2

), then

the induction hypotheses, (89), (90), and (85) apply the induction conclusion.

In a similar way one can also prove the corresponding statement for subseteq list

subseteq list(k; k) (92)

using the lemma (88).

4.40 Stability of occurs under Subsets (pc)

The next conjecture states that if n occurs in a list of terms, then this also holds for every superlist.

occurs(n; v

1

) ^ subseteq(v

1

; v

2

)) occurs(n; v

2

) (93)

The proof is done by induction w.r.t. subseteq. In a similar way one can also prove the corresponding theorem

for tll's.

subseteq list(k

1

; k

2

) ^member(t; k

1

)) member(t; k

2

) (94)

4.41 Transitivity of subseteq (pc)

The following conjecture is the transitivity of subseteq.

subseteq(u; v) ^ subseteq(v; w)) subseteq(u;w) (95)

The conjecture is proved by induction w.r.t. subseteq(u; v) using (93).

In a similar way (using (94)) one can also prove

subseteq list(l

1

; l

2

) ^ subseteq list(l

2

; l

3

)) subseteq list(l

1

; l

3

): (96)

Moreover, by using a case analysis, (92) and (96) also imply

subseteq list(k; if(b; add(t; k); k)): (97)

4.42 Appending the Right Arguments of subseteq (Version 1) (pc)

This theorem says that the variables of every termlist v

1

are contained in appendterm(v

1

; v

2

).

subseteq(v

1

; appendterm(v

1

; v

2

)) (98)

It can be proved by a straightforward induction w.r.t. appendterm. In a similar way one can also prove

subseteq list(l; append(l; l

0

)): (99)

4.43 Appending the Right Arguments of subseteq (Version 2) (pc)

This is the converse of the above theorem relating the second argument of appendterm.

subseteq(v

2

; appendterm(v

1

; v

2

)) (100)

It can be proved by induction w.r.t. appendterm using (91) and (87). In a similar way one can also prove

subseteq list(l; append(l

0

; l)): (101)

28

4.44 Appending Both Arguments of subseteq (pc)

The following theorems gives more facts about the relation of subseteq and appendterm.

subseteq(t

1

; t

2

) ^ subseteq(s

1

; s

2

)) subseteq(appendterm(t

1

; s

1

); appendterm(t

2

; s

2

)) (102)

It is a consequence of (85), (98), and (100).

In an analogous way one can prove

subseteq list(k

1

; k

2

) ^ subseteq list(l

1

; l

2

)) subseteq list(append(l

1

; k

1

); append(l

2

; k

2

)): (103)

4.45 Arguments and Tails are Subsets of Function Applications (pc)

The next conjecture says that all variables occurring in the arguments of a function and in the tail of the

function also occur in the whole termlist.

subseteq(appendterm(s; r); func(n; s; r)) (104)

This is an easy consequence of subseteq(func(n; s; r); func(n; s; r)) = subseteq(appendterm(s; r); func(n; s; r))

(which can be proved by symbolic evaluation) and of (91).

4.46 Variables in Arguments also Occur in the Termlist (pc)

The following theorem is a consequence of (104), (98), and (95).

subseteq(s; func(n; s; r)) (105)

4.47 Variables in Heads also Occur in the Termlist (pc)

The next conjecture is a consequence of (98), (66), (61) and (91).

subseteq(�rst(t); t) (106)

In a similar way one can also prove

subseteq(tail(t); t): (107)

4.48 Removing the Head of a Superlist (pc)

This conjecture says that if v

1

is a sublist of var(n; v

2

), then v

1

is also a sublist of v

2

, provided that whenever

n occurs in v

1

then n also occurs in v

2

.

subseteq(v

1

; var(n; v

2

)) ^ (occurs(n; v

1

)) occurs(n; v

2

))) subseteq(v

1

; v

2

) (108)

The conjecture is a consequence of

:occurs(n; v

1

) ^ subseteq(v

1

; var(n; v

2

))) subseteq(v

1

; v

2

);

(which can be proved by induction w.r.t. subseteq) and

occurs(n; v

2

)) subseteq(var(n; v

2

); v

2

);

(which is a consequence of (91), and (95)).

29

4.49 Lists are Subsets of Disjoint Unions (Version 1) (pc)

The next theorem says that every list of variables v

1

is a subset of the disjoint union of v

1

and v

2

.

subseteq(v

1

; disjoint union(v

1

; v

2

)) (109)

Using (91) and (25), we transform the conjecture into

subseteq(v

1

; w)) subseteq(v

1

; disjoint union(w; v

2

)):

This conjecture is now proved by induction w.r.t. disjoint union. The base case v

2

= e is easy. In the step

case we have v

2

= var(n; q). If occurs(n;w), then the induction conclusion can be reduced to the induction

hypothesis. If :occurs(n;w), then the induction conclusion is

subseteq(v

1

; w)) subseteq(v

1

; disjoint union(appendterm(w; var(n; e)); q))

and the induction hypothesis is

subseteq(v

1

; appendterm(w; var(n; e)))) subseteq(v

1

; disjoint union(appendterm(w; var(n; e)); q)):

Hence, the theorem is proved by Rule 4

00

using (100) and (95).

4.50 Lists are Subsets of Disjoint Unions (Version 2) (pc)

The following theorem is similar to the one above, but works with the second argument of disjoint union.

subseteq(v

2

; disjoint union(v

1

; v

2

)) (110)

The conjecture can be proved using Rule 1

00

by induction w.r.t. disjoint union. In the case v

2

= e it

is trivial. If v

2

= var(n; v) and occurs(n; v

1

), then the induction conclusion can be transformed into the

induction hypothesis. Otherwise (if :occurs(n; v

1

)) the induction conclusion is

subseteq(var(n; v); disjoint union(appendterm(v

1

; var(n; e)); v

2

))

which can be transformed into the induction hypothesis and into

occurs(n; disjoint union(appendterm(v

1

; var(n; e)); v

2

)):

This in turn can be transformed into

subseteq(var(n; e); disjoint union(appendterm(v

1

; var(n; e)); v

2

)):

This can be proved by (100) and (109).

4.51 Occurrence of Variables in Unions of Lists (pc)

The following theorem states that if n occurs in v

1

or v

2

, then it also occurs in the disjoint union of of v

1

and v

2

.

occurs(n; v

1

) _ occurs(n; v

2

)) occurs(n; disjoint union(v

1

; v

2

)): (111)

The theorem is a consequence of (109), (110), and (93).

4.52 Occurrence of Variables in Appended Termlists (pc)

This conjecture states that if n is a member of an appended termlist, then it is a member of one of the

argument lists.

occurs(n; appendterm(s; t))) occurs(n; s) _ occurs(n; t) (112)

The conjecture is proved by induction w.r.t. appendterm. In a similar way one can also prove

member(t; append(k

1

; k

2

))) member(t; k

1

) _member(t; k

2

): (113)

30

4.53 Commutation of appendterm (pc)

This conjecture states that if one commutes the arguments of appendterm then the resulting termlist has

the same arguments.

subseteq(appendterm(s; t); appendterm(t; s)) (114)

The conjecture is a consequence of (85), (98), and (100). In a similar way one can also prove the corresponding

theorem for tll's

subseteq list(append(k

1

; k

2

); append(k

2

; k

1

)): (115)

4.54 Application of disjoint to Empty Termlist (pc)

This conjecture says that every term is disjoint with the empty termlist.

disjoint(t; e) (116)

We transform the conjecture into

s = e) disjoint(t; s)

and prove it by induction w.r.t. disjoint.

4.55 Application of disjoint list to Empty tll (pc)

This is the corresponding conjecture for disjoint list.

disjoint list(k; empty): (117)

It can easily be proved by structural induction on k.

4.56 Lists with Equal Elements are Not Disjoint (pc)

The next theorem states that if k

1

and k

2

have a common element, then they are not disjoint.

member(s; k

1

) ^member(s; k

2

)) disjoint list(k

1

; k

2

) = false (118)

The conjecture is proved by induction w.r.t. disjoint list. In the case k

1

= add(t; l) and member(t; k

2

) = false

one needs (55) in order to prove that the induction hypothesis entails the induction conclusion.

4.57 Disjointness of Appended Lists (pc)

This theorem says that if both s and t are disjoint with r, then so is the appended list of s and t.

disjoint(s; r) ^ disjoint(t; r)) disjoint(append(s; t); r) (119)

It can be proved by a straightforward induction w.r.t. appendterm. In a similar way one can prove

disjoint list(k

1

; k) ^ disjoint list(k

2

; k)) disjoint list(append(k

1

; k

2

); k): (120)

4.58 Stability of disjoint under Subsets (pc)

The following theorem states that subsets of disjoint variable lists are also disjoint.

subseteq(v

1

; v

2

) ^ subseteq(v

3

; v

4

) ^ disjoint(v

2

; v

4

)) disjoint(v

1

; v

3

) (121)

The conjecture is proved by induction w.r.t. disjoint(v

1

; v

3

). The base case is trivial. If v

1

= var(n; r) then

we have :occurs(n; v

3

) (due to (93)) and to

occurs(n; v

2

) ^ disjoint(v

2

; v

4

)) :occurs(n; v

4

)

31

which can be proved by induction w.r.t. disjoint(v

2

; v

4

)). Hence, the induction conclusion follows from the

induction hypothesis.

In a similar way one can prove the corresponding theorem for tll's.

subseteq list(k

1

; k

2

) ^ subseteq list(k

3

; k

4

) ^ disjoint list(k

2

; k

4

)) disjoint list(k

1

; k

3

) (122)

using (94).

4.59 Commutativity of disjoint (pc)

This is the commutativity theorem for disjoint.

disjoint(s; t) = disjoint(t; s) (123)

We prove the theorem by induction w.r.t. disjoint(s; t). If s = e, then the theorem follows from (116). If

s = var(n; r) and occurs(n; t), then we have to prove

occurs(n; t)) :disjoint(t; var(n; r)):

This lemma can be proved by induction w.r.t. occurs. The base case is trivial and in the case t = var(m; s)

and eq(n;m) the conjecture follows from (54). If eq(n;m) = false, then the induction conclusion follows from

the induction hypothesis, (121), (91), and (100). If t = func(m; s

1

; s

2

), then the induction conclusion is a

consequence of the induction hypothesis and

disjoint(func(m; s

1

; s

2

); r)) disjoint(appendterm(s

1

; s

2

); r):

This is a consequence of (121) and (104).

Finally, we consider the case s = var(n; r) and occurs(n; t) = false. Now the induction conclusion is

implied by the induction hypothesis, (121), (91), and (100).

4.60 Commutativity of disjoint list (pc)

This is the corresponding theorem for disjoint list.

disjoint list(l; k) = disjoint list(k; l) (124)

The proof is similar to the proof of (123). We use an induction w.r.t. disjoint(l; k). If l = e, then the theorem

follows from (117). If l = add(t; k

0

) and member(t; l), then we have to prove

member(t; l)) :disjoint list(k

2

; add(y; k

0

)):

This lemma can be proved by induction w.r.t. member. The base case is trivial and in the case l = add(r; l

0

)

and eqterm(t; r) the conjecture follows from (55). If eqterm(t; r) = false, then the induction conclusion follows

from the induction hypothesis, (122), (92), and (101).

Finally, we consider the case l = add(t; k

0

) and member(t; l) = false. Now the induction conclusion is

implied by the induction hypothesis, (122), (92), and (101).

4.61 Reexivity of disjoint list (pc)

This theorem proves that disjoint list is reexive.

:k = empty) disjoint list(k; k) = false (125)

This can easily be proved by structural induction (resp. case analysis) on k (as the induction hypothesis is

not used).

32

4.62 Maximal Variable is Greater than or Equal to the Head (pc)

This conjecture states that the maximal variable of a variable list is at least as great as the �rst element.

ge(max(var(n; t)); n) (126)

We transform the conjecture into

s = e_

:

ge(max(s); var name(s))

and prove it by induction w.r.t. max using (39), (42), and (36).

4.63 Variables that do not Occur in Termlists (pc)

This conjecture states that a variable with higher index than all variables of r does not occur in r.

:occurs(plus(m; s(max(v))); v) (127)

We prove the conjecture by induction w.r.t. max. If v = e, then the proof is trivial. If v = var(n; e), then by

(54) it su�ces to prove

:plus(m; s(n)) = n:

This is a consequence of (48), (41), (38), and (40).

If v = var(n; var(k; t)) and ge(n; k), then the induction conclusion follows from the induction hypothesis,

(54) and

:plus(m; s(max(n; t))) = k

(which is due to (48), (41), (38), (37), and (126)). The other step case can be proved in an analogous way.

4.64 Exchanging tail and rename (pc)

The following conjecture says that one may exchange tail and rename.

tail(rename(t; n)) = rename(tail(t); n) (128)

It can easily be proved by induction (resp. case analysis) w.r.t. tail.

4.65 Distributivity of rename over appendterm (pc)

This conjecture states that instead of renaming an appended list one may rename the arguments.

rename(appendterm(s; t); n) = appendterm(rename(s; n); rename(t; n)) (129)

It can be proved by a straightforward induction w.r.t. appendterm.

4.66 Length of Renamed Termlists (pc)

This conjecture states that the length does not change by renaming.

length(t) = length(rename(t; n)) (130)

It is easily proved by induction w.r.t. rename.

33

4.67 Stability of subseteq under rename (pc)

This conjecture says that if all variables of r are contained in l, then this is also true after renaming.

subseteq(vars(r); vars(l))) subseteq(vars(rename(r; n)); vars(rename(l; n))) (131)

The conjecture is proved by induction w.r.t. rename(r; n). The base case is trivial. If r = var(m; t), then the

induction conclusion follows from the induction hypothesis and

occurs(m; vars(l))) occurs(plus(m;n); vars(rename(l; n))):

This can be proved by induction w.r.t. rename using (93) and (112).

In the last case, the induction conclusion is implied by the induction hypothesis, (98), (100), (95), and

(85).

4.68 Renamed Termlists Have Disjoint Variables (pc)

This conjecture states that if all variables in a termlist are renamed appropriately, then the new termlist

and the original termlist are variable disjoint.

disjoint(v; vars(rename(t; s(max(v))))) (132)

We �rst commute the arguments of disjoint (using (123)). The conjecture is proved by structural induction on

t. The case t = e is easy. If t = var(m; q), then the induction conclusion follows from the induction hypothesis

and (127). In the last step case, to transform the induction conclusion into the induction hypothesis one

needs lemma (119).

4.69 Stability of subseteq list under remove (pc)

This theorem states that if k is a sublist of l, then this also holds if an element is removed from both lists.

subseteq list(k; l)) subseteq list(remove(t; k); remove(t; l)) (133)

This can be proved by induction w.r.t. subseteq list.

4.70 Stability of :subseteq list under remove (pc)

This is the converse to the above theorem. If k is no sublist of l, then this also holds if an element is removed

from both lists, provided it occurred at least in l.

member(t; l) ^ :subseteq list(k; l)) :subseteq list(remove(t; k); remove(t; l)) (134)

We prove the conjecture by induction w.r.t. subseteq list. The case k = empty is trivial. If k = add(s; k

0

) and

:member(s; l) then this implies :s = t. Hence, the conjecture follows from (94) and

subseteq list(remove(t; l); l)

(which is proved by induction w.r.t. remove using (101)).

Finally, if k = add(s; k

0

) and member(s; l), then the premises imply :subseteq list(k

0

; l). If s = t, then the

induction conclusion can be directly transformed into the induction hypothesis and otherwise one needs the

lemma

member(s; l) ^ :s = t) member(s; remove(t; l))

which can be proved by induction w.r.t. member.

34

4.71 Removing Non-Contained Elements From Lists (pc)

The nest conjecture states that if l does not contain t, then removing t does not change l.

:member(t; l)) remove(t; l) = l (135)

It can be proved by a straightforward induction w.r.t. member.

4.72 Lists with the Same Elements (Version 1) (pc)

This conjecture says that if k

1

contains no arguments that are not also contained in k

2

, then k

1

is a subset

of k

2

.

setdi�(k

1

; k

2

) = 0) subseteq list(k

1

; k

2

) (136)

It can be proved by induction w.r.t. setdi� using (134).

4.73 Lists with the Same Elements (Version 2) (pc)

This is the other direction of the above conjecture.

subseteq list(k

1

; k

2

)) setdi�(k

1

; k

2

) = 0 (137)

It can be proved by induction w.r.t. setdi� using (133).

4.74 Connection Between subseteq list and setdi� (pc)

This theorem says that if k

1

� k

2

� k

3

then setdi�(k

3

; k

1

) > setdi�(k

3

; k

2

).

subseteq list(k

1

; k

2

) ^ not(subseteq list(k

2

; k

1

)) ^ subseteq list(k

2

; k

3

))

ge(setdi�(k

3

; k

1

); setdi�(k

3

; k

2

)) ^ not(ge(setdi�(k

3

; k

2

); setdi�(k

3

; k

1

))) (138)

The theorem is transformed into

subseteq list(k

1

; k

2

) ^ subseteq list(k

2

; k

3

)) ge(setdi�(k

3

; k

1

); setdi�(k

3

; k

2

)) (139)

and

subseteq list(k

1

; k

2

) ^ not(subseteq list(k

2

; k

1

)) ^ subseteq list(k

2

; k

3

))

not(ge(setdi�(k

3

; k

2

); setdi�(k

3

; k

1

))): (140)

We �rst sketch the proof of (139). For that purpose we use an induction w.r.t. both setdi�(k

3

; k

2

) and

setdi�(k

3

; k

1

) (i.e. we perform an induction w.r.t. setdi�(k

3

; k

2

) and change the non-induction variable k

1

appropriately, cf. the merging technique of [2, 12]). In the base case (k

3

= empty) the proof is trivial. If

k

3

= add(t; l) then we have to regard the di�erent cases. If member(t; k

1

), then (94) implies member(t; k

2

).

Hence, the induction conclusion can be transformed into the induction hypothesis and (133). Otherwise,

if :member(t; k

1

) and member(t; k

2

), then the induction conclusion follows from the induction hypothesis,

(133), (135), (41), and (44). Finally, if :member(t; k

1

) and :member(t; k

2

), then instead of (41) and (44)

one can use symbolic evaluation to transform the induction conclusion into the induction hypothesis.

Now we prove (140) applying the same induction relation. In the base case (k

3

= empty) we use (84).

If k

3

= add(t; l) and member(t; k

1

), then (94) again implies member(t; k

2

). So the induction conclusion

follows from the induction hypothesis, (133), and (134). Otherwise, if :member(t; k

1

) and member(t; k

2

),

then the induction conclusion is implied by (133), (134), (139), (43), and the induction hypothesis. Finally,

if :member(t; k

1

) and :member(t; k

2

), then the induction conclusion can be transformed into the induction

hypothesis, (133), and (134) by symbolic evaluation.

35

4.75 Distributivity of tail list over append (pc)

The next theorem says that computing the tail-list of an appended tll is the same as computing the tail-lists

of both arguments and appending them afterwards.

append(tail list(k

1

); tail list(k

2

)) = tail list(append(k

1

; k

2

)) (141)

The conjecture can be proved by an easy induction w.r.t. append and in this way one can also prove

append(�rst list(k

1

); �rst list(k

2

)) = �rst list(append(k

1

; k

2

)): (142)

4.76 Stability of member under tail list(pc)

This conjecture states that if t is a member of the tll k then the tail of t is a member of the tail-list of k.

member(t; k)) member(tail(t); tail list(k)) (143)

This can easily be proved by induction w.r.t. member using (55). In this way one can also prove

member(t; k)) member(�rst(t); �rst list(k)): (144)

4.77 Stability of subseteq list under tail list (pc)

This conjecture says that is k

1

is a subset of k

2

, then this also holds for the tail-lists.

subseteq list(k

1

; k

2

)) subseteq list(tail list(k

1

); tail list(k

2

)) (145)

It can be proved by induction w.r.t. subseteq list using (143).

4.78 Disjointness of tll's from Disjointness of Their Tails or Heads (pc)

The next theorem states that is the lists of heads or the list of tails of two tll's are disjoint, then the two tll's

are also disjoint.

disjoint list(�rst list(k

1

); �rst list(k

2

)) _ disjoint list(tail list(k

1

); tail list(k

2

))) disjoint list(k

1

; k

2

) (146)

The conjecture is proved by induction w.r.t. disjoint list using (143) and (144).

4.79 Adding Empty Termlists (pc)

The following theorem states that if one adds an empty termlist to every term in a tll, then the tll does not

change.

k = addtail(k; e) (147)

It is easily proved by structural induction on k using addterm(s; e) = s which can be proved by induction

(resp. case analysis) w.r.t. addterm.

4.80 Application of �rst list to addtail (pc)

The following conjecture says that (if addtail is de�ned), then �rst list is the inverse to addtail.

�rst list(addtail(k; s)) = k (148)

The conjecture is proved by induction w.r.t. addtail. The base case is obvious and the step case follows using

�rst(addterm(s; t)) = s (which can be proved by induction resp. case analysis w.r.t. addterm).

36

4.81 member and apply (pc)

The following conjecture states that one may drop function contexts when regarding member.

member(func(n; s; e); apply(n; k))) member(s; k) (149)

It can easily be proved by induction w.r.t. member. In this way one can also prove

member(addterm(s; t); addtail(k; t))) member(s; k) (150)

and

member(u; k)) member(func(n; u; t); addtail(apply(n; k); t)): (151)

4.82 Stability of subseteq list Under apply (pc)

The following conjecture states that if apply(n; k

1

) is a subset of apply(n; k

2

), then this also holds for k

1

and

k

2

.

subseteq list(apply(n; k

1

); apply(n; k

2

))) subseteq list(k

1

; k

2

) (152)

The conjecture can be proved by induction w.r.t. apply. In the step case one also needs (149).

In a similar way one can also prove

subseteq list(addtail(k

1

; t); addtail(k

2

; t))) subseteq list(k

1

; k

2

) (153)

and a corresponding statement for add�rst.

4.83 Stability of disjoint list under apply (pc)

This conjecture states that if two tll's k

1

and k

2

are disjoint, then this also holds if one applies a function to

them.

disjoint list(k

1

; k

2

)) disjoint list(apply(n; k

1

); apply(n; k

2

)) (154)

The conjecture is proved by induction w.r.t. disjoint list where in the step case one needs the lemma (149).

In a similar way one can also prove

disjoint list(k

1

; k

2

)) disjoint list(addtail(k

1

; t); addtail(k

2

; t)) (155)

using the lemma (150).

4.84 Distributivity of addtail over append (pc)

The next theorem says that when adding a new tail to every term in an appended tll, then one may instead

perform this adding on each of the arguments of append.

addtail(append(k

1

; k

2

); t) = append(addtail(k

1

; t); addtail(k

2

; t)) (156)

The conjecture is proved by induction w.r.t. append. In this way one can also prove

add�rst(t; append(k

1

; k

2

)) = append(add�rst(t; k

1

); add�rst(t; k

2

)) (157)

and

apply(n; append(k

1

; k

2

)) = append(apply(n; k

1

); apply(n; k

2

)): (158)

4.85 member for addtail (pc)

The next conjecture states that if t is contained in the tll k, then one may also add a new tail to t and k.

member(t; k)) member(addterm(t; s); addtail(k; s)) (159)

The conjecture is proved by induction w.r.t. member using (55). In a similar way one can also prove

member(t; k)) member(addterm(s; t); add�rst(s; k)) (160)

and

member(s; k)) member(func(n; s; e); apply(n; k)): (161)

37

4.86 Stability of subseteq list under addtail (pc)

The next conjecture says that if k

1

is a subset of k

2

, then this also holds if a termlist is added to each element

of these lists.

subseteq list(k

1

; k

2

)) subseteq list(addtail(k

1

; t); addtail(k

2

; t)) (162)

The conjecture is proved by induction w.r.t. subseteq list using (159).

4.87 back narrowlist has Even Length (pc)

The next conjecture states that every tll built with back narrowlist has even length.

hasevenlength(back narrowlist(l; t)) (163)

The conjecture can be proved by a straightforward induction w.r.t. back narrowlist.

4.88 append list lifts appendterm to tll's (pc)

This is the correctness theorem for append list.

member(t; k)) member(appendterm(s; t); append list(s; k)) (164)

It is easily proved by induction w.r.t. append list.

4.89 Stability of subseteq list under append list (pc)

The next conjecture relates subseteq list and append list.

subseteq list(l

1

; l

2

)) subseteq list(append list(t; l

1

); append list(t; l

2

)) (165)

It is proved by induction w.r.t. append list using (164).

4.90 tail list when Appending Terms of Length 1 (pc)

This conjecture states that if one appends a term of length 1, then tail list is the inverse operation to

append list.

length(t) = s(0)) tail list(append list(t; k)) = k: (166)

This can be proved by induction w.r.t. append list using length(t) = s(0)) tail(appendterm(t; s)) = s (which

can be proved by structural induction (resp. case analysis) on t).

4.91 Elements of append list (pc)

The next conjecture says that if tail(s) is a member of k, then appending �rst(s) to every element of k

generates a list containing s.

member(tail(s); k)) member(s; append list(�rst(s); k)) (167)

The conjecture can be proved by structural induction on k, where in the step case one uses (61) and (66).

4.92 tail list of addtail (pc)

The next conjecture states an obvious connection for tail list and addtail.

onlyconsistsof(tail list(addtail(k; t)); t) (168)

It can easily be proved by induction w.r.t. addtail.

38

4.93 Variables in Rules of TRSs (pc)

The following theorem says that for a TRS, the right-hand sides of rules only contain variables from the

left-hand side.

trs(R) ^ in(l; r; R)) subseteq(vars(r); vars(l)) (169)

It can be proved by a straightforward induction w.r.t. trs.

4.94 Rules of TRSs are Built With Functions (pc)

The next conjecture says that in a TRS all left-hand sides are built with a function symbol.

trs(R) ^ in(l; r; R)) �rst is func(l) (170)

It can be proved by induction (resp. case analysis) w.r.t. trs, as the induction hypothesis is not used.

5 Theorems about Substitutions

This section consists of theorems about algorithms dealing with substitutions.

5.1 Totality of is subst

The following theorem is easily proved by structural induction using (55) and (16).

def(t)) def(is subst(t)) (171)

5.2 De�nedness of apply subst var, apply subst, dom, apply subst tll, special subst,

compose, replace

The following conjectures can easily be proved by induction w.r.t. is subst.

def(n) ^ is subst(�)) def(apply subst var(�; n)) (172)

is subst(�)) def(dom(�)) (173)

def(l) ^ is subst(�)) def(apply subst tll(�; l)) (174)

Using (172), by structural induction one can also prove

def(n) ^ is subst(�)) def(apply subst(�; n)): (175)

In a similar way one can also prove

is subst(�) ^ is subst(�)) def(special subst(�; �)) (176)

is subst(�) ^ is subst(�)) def(compose(�; �)) (177)

def(n; s) ^ is subst(�)) def(replace(�; n; s)): (178)

5.3 Totality of matches

The following theorem states that matches is total.

def(s; t)) def(matches(s; t)) (179)

The theorem can be generalized to

def(s; t; �)) def(matches aux(s; t; �)):

To prove this theorem we proceed in a similar way as in the proof of (24), i.e. we again generate the

corresponding domain predicate using a relation which compares pairs of terms by the number of var- and

func-occurrences in the �rst (or second) term. (This relation can easily be generated automatically, cf. [7].)

39

5.4 De�nedness of matcher and mgu

The next conjecture states that the truth of matches implies the de�nedness of matcher.

matches(s; t)) def(matcher(s; t)) (180)

This conjecture can be generalized to

matches aux(s; t; �)) def(matcher aux(s; t; �))

which can easily be proved by induction w.r.t. matches aux.

In a similar way one can also prove the following related conjecture about uni�cation.

uni�es(s; t)) def(mgu(s; t)) (181)

Note however, that the totality of uni�es is much harder to verify than the totality of matches. The

reason is that for uni�es one needs a much more complicated relation comparing terms by the number of

di�erent variables occurring in them. To our knowledge, there is no method which can synthesize this relation

automatically. Hence, a fully automatic termination proof of uni�es is not possible (it is only possible if a

suitable relation is given to the system by the user). However, with our technique for induction proofs with

partial functions, one can nevertheless verify the needed partial correctness statements about uni�cation

without proving the termination of uni�es (cf. (247), (250), (260)).

5.5 Substitutions do not change Variables Outside Their Domain (pc)

The following theorem states that application of a substitution to a variable not in its domain does not

change this variable.

:occurs(n; dom(�))) apply subst var(�; n) = var(n; e) (182)

It can easily be proved by induction w.r.t. apply subst var.

5.6 Stability of is subst Under appendterm (pc)

The following conjecture says that appending two substitutions again generates a substitution.

is subst(�) ^ is subst(�)) is subst(appendterm(�; �)) (183)

It can easily be proved by induction w.r.t. is subst.

5.7 Distributivity of Substitutions Over addterm (pc)

The following theorem shows that substitutions are distributive over addterm.

addterm(apply subst(�; s); apply subst(�; t)) = apply subst(�; addterm(s; t)) (184)

The theorem is proved by induction (resp. case analysis) w.r.t. addterm (using Rule 1

00

).

If s = var(n; e), then we have to prove

addterm(apply subst var(�; n); apply subst(�; t)) = apply subst(�; var(n; t))

which can be veri�ed by symbolic evaluation. The case s = func(n; t; e) works in a similar way.

In an analogous way one can also prove that the de�nedness of the second termlist implies the de�nedness

of the �rst termlist.

def(apply subst(�; addterm(s; t)))) def(addterm(apply subst(�; s); apply subst(�; t))) (185)

40

5.8 Distributivity of Substitutions Over appendterm (pc)

The following theorem shows that substitutions are distributive over appendterm.

apply subst(�; appendterm(s

1

; s

2

)) = appendterm(apply subst(�; s

1

); apply subst(�; s

2

)) (186)

The proof is done by induction w.r.t. appendterm. The base case is trivial and in the case s

1

= var(n; r) one

needs (66) and (71) to reduce the induction conclusion to the induction hypothesis. The last step case is

straightforward.

5.9 Applying �rst to apply subst (pc)

This theorem states that �rst and apply subst may be exchanged.

�rst(apply subst(�; t)) = apply subst(�; �rst(t)) (187)

It can be proved by induction (resp. case analysis) w.r.t. �rst using �rst(addterm(s; t)) = s (which can be

proved by induction resp. case analysis w.r.t. addterm). In a similar way one can also prove

def(apply subst(�; �rst(t)))) def(�rst(apply subst(�; t))) (188)

and the corresponding statements for tail:

tail(apply subst(�; t)) = apply subst(�; tail(t)) (189)

def(apply subst(�; tail(t)))) def(tail(apply subst(�; t))): (190)

5.10 addterm and apply subst (pc)

We also have

addterm(s; t) = apply subst(�; r)) s = apply subst(�; �rst(r)) ^ t = apply subst(�; tail(r)); (191)

as this is a consequence of (67), (61), (187), and (189).

5.11 appendterm and apply subst var (pc)

This conjecture says that unnecessary substitution pairs can be ignored.

apply subst var(appendterm(var(n; t); �); n) = �rst(t) (192)

It can be proved by symbolic evaluation and the lemma �rst(appendterm(t; �)) = �rst(t) (which is easily

provable by induction (resp. case analysis) w.r.t. �rst).

5.12 Substitutions Preserve Length (pc)

This theorem says that substitutions preserve the length of a term.

length(t) = length(apply subst(�; t)) (193)

It can easily be proved by induction w.r.t. apply subst using length(addterm(s; t)) = s(length(t)) (which can

be proved by induction resp. case analysis w.r.t. addterm).

5.13 Length of Termlists Unifying With Variables (pc)

This conjecture says that if t uni�es with the variable n, then the length of t is 1 (i.e. t = �rst(t)).

apply subst var(�; n) = apply subst(�; t)) t = �rst(t) (194)

This can be proved by (193) and (63).

41

5.14 Equality of Substitutions on Termlists (pc)

The following theorem claims that if � and � are the same on the termlist t then this also holds for every

variable occurring in t.

apply subst(�; t) = apply subst(�; t) ^ occurs(n; t)) apply subst var(�; n) = apply subst var(�; n) (195)

The theorem is proved by an easy induction w.r.t. occurs, where in the cases t = var(m; r) one needs (67) to

reduce the induction conclusion to the induction hypothesis.

5.15 Equality of a Substitution and an Appended Substitution (pc)

The next conjecture says that if � and the appended substitution appendterm(�; �) behave the same on the

termlist r, then one may also append substitution pairs from � in front of � .

apply subst(appendterm(�; �); r) = apply subst(�; r))

apply subst(appendterm(appendterm(var(n; apply subst var(�; n)); �); �); r) = apply subst(�; r) (196)

The conjecture can be proved by induction w.r.t. apply subst using the lemmata (67) and (193).

5.16 Variables in the Result of Substitutions (pc)

The following conjecture states that if � is applied to the variable m, then another variable n can only occur

in the result if it also occurs in �.

:n = m ^ occurs(n; apply subst var(�;m))) occurs(n; �) (197)

The proof is done by induction w.r.t. apply subst var. The base case is easy and if � = var(k; t) and eq(k; n),

then one needs (106), (107), (95), and (93). Otherwise the induction conclusion can be transformed into the

hypothesis, (107), (95), and (93).

5.17 Elimination of Variables (pc)

This theorem states that if all occurrences of the variable n in the term r are replaced by t, then n can only

occur in the resulting term if it also occurs in t.

occurs(n; apply subst(var(n; t); r))) occurs(n; t) (198)

The conjecture is proved by structural induction on r. The case r = e is easy. If r = var(m; s) and eq(n;m),

then the induction conclusion is implied by (66), (112), (93), (106), and the induction hypothesis. In the

case eq(n;m) = false, to reduce the induction conclusion to the induction hypothesis one needs (66), (112),

(93), (107), and (197). The last case r = func(m; s; r

0

) is proved by reducing the induction conclusion to the

induction hypothesis, (66), (112), (93), (107), and (105).

5.18 Variables in Substituted Termlists (Version 1) (pc)

This theorem says that if � is applied to a termlist r, then the resulting termlist only contains variables from

r and �.

subseteq(vars(apply subst(�; r)); appendterm(vars(�); vars(r)) (199)

The conjecture is proved by induction w.r.t. apply subst. The base case (r = e) is trivial. In the case

r = var(n; r

0

), the induction conclusion follows from the induction hypothesis and (66), (83), (85), (95),

(100), and

subseteq(vars(apply subst var(�; n)); var(n; vars(�)))

(which can be proved by induction w.r.t. apply subst var). In the case r = func(n; s; r

0

), the induction

conclusion is implied by both hypotheses, (85) and (102).

42

5.19 Variables in Substituted Termlists (Version 2) (pc)

This is a re�nement of the above conjecture which allows to drop the �rst variable in �.

subseteq(vars(apply subst(var(n; t); r)); appendterm(vars(t); vars(r)) (200)

It is a consequence of (199), (108), and (198).

5.20 Symbols in Substituted Termlists (Version 1) (pc)

The next conjecture states that if the variable n occurs in the termlist t, then �(t) has at least as much

symbols as �(n).

occurs(n; t)) ge(symbols(apply subst(�; t)); symbols(apply subst var(�; n))) (201)

The conjecture is proved by induction w.r.t. apply subst var. The base case t = e is trivial. If t = var(m; v)

and eq(m;n), then the conjecture follows from (66), (80), and (49). If eq(m;n) = false, then the induction

conclusion follows from the induction hypothesis, (66), (80), (48), and (36). The last case t = func(m; s; r)

can be proved by transforming the induction conclusion into the induction hypothesis, (112), (49), (48), (36),

(41), and (44).

5.21 Symbols in Substituted Termlists (Version 2) (pc)

The following conjecture re�ned the previous one by stating that if t is not equal to the variable n, then the

number of symbols in the instantiation of t is strictly greater than the number of symbols in the instantiation

of n.

occurs(n; t) ^ :t = var(n; e)) gt(symbols(apply subst(�; t)); symbols(apply subst var(�; n))) (202)

The conjecture is again proved by induction w.r.t. apply subst var (resp. by case analysis, as the induction

hypotheses are not used). The base case t = e is trivial. If t = var(m; v) and eq(m;n), then the conjecture

follows from (66), (80), (79), and (51). If eq(m;n) = false, then the conjecture follows from (66), (80), (79),

(50), (201), and (37). The last case t = func(m; s; r) can be proved by (112), (201), (37), and (41).

5.22 Occur Failure (pc)

This conjecture states that if the variable n occurs in a term t (di�erent from n), then n and t are not

uni�able.

occurs(n; t)) :apply subst var(�; n) = apply subst(�; t) _ t = var(n; e) (203)

The conjecture is a consequence of (202) and (40).

5.23 Application of an Unnecessary Pair (pc)

This theorem says that if � is a uni�er of the variable n and the term t, then one can replace n by t without

changing the result of a subsequent �-application.

apply subst var(�; n) = apply subst(�; t)) apply subst(�; apply subst(var(n; t); r)) = apply subst(�; r) (204)

The conjecture is proved by induction w.r.t. apply subst. The case r = e is trivial. If r = var(m; r

0

)

and eq(n;m), then the induction conclusion is implied by the induction hypothesis, (184), and (194). If

eq(n;m) = false, the proof is similar (using also the lemma (tail(�rst(t)) = e which is provable by induction

resp. case analysis w.r.t. �rst). In the last case r = func(m; s; r

0

), the induction conclusion can be directly

reduced to the induction hypothesis.

43

5.24 Correctness of apply subst list (pc)

The following theorem is the correctness of apply subst list.

member(�; l)) member(apply subst(�; t); apply subst list(l; t)) (205)

It can easily be proved by induction w.r.t. apply subst list using (55).

5.25 apply subst list and �rst (pc)

The next theorem states that �rst can be shifted to the front when using apply subst list.

apply subst list(k; �rst(t)) = �rst list(apply subst list(k; t)) (206)

It can be proved by an easy induction w.r.t. apply subst list (using (187)). In a similar way one can also

prove

apply subst list(k; tail(t)) = tail list(apply subst list(k; t)): (207)

5.26 Decomposing the Application of Substitution Lists for Functions (pc)

The next theorem states that application of apply subst list to a term built with a function symbol can be

decomposed using applytwice.

apply subst list(l; func(n; s; t)) = applytwice(n; apply subst list(l; s); apply subst list(l; t)) (208)

It can be proved by a straightforward induction w.r.t. apply subst list. In this way one can also prove

def(apply subst list(l; func(n; s; t)))) def(applytwice(n; apply subst list(l; s); apply subst list(l; t))): (209)

5.27 Decomposing the Application of Substitution Lists by �rst and tail (pc)

The following theorem states that application of substitution lists can be decomposed using �rst and tail.

apply subst list(l; t) = addtermtwice(apply subst list(l; �rst(t)); apply subst list(l; tail(t))) (210)

The theorem is proved by induction w.r.t. apply subst list. If l = empty, then the conjecture is trivial. If

l = add(�; l

0

), then the induction conclusion reduces to

add(apply subst(�; t); apply subst list(l

0

; t)) =

add(apply subst(�; t); addtermtwice(apply subst list(l

0

; �rst(t)); apply subst list(l

0

; tail(t)))

which is a direct consequence of the induction hypothesis.

In the same way one can also prove that de�nedness of the left hand side of the equation in (210) implies

de�nedness of the right hand side.

def(apply subst list(l; t))) def(addtermtwice(apply subst list(l; �rst(t)); apply subst list(l; tail(t)))): (211)

5.28 Distributivity of apply subst list over append (pc)

The next conjectures state that apply subst list is distributive over append. They can easily be proved by

induction w.r.t. append.

apply subst list(append(l

1

; l

2

); t) = append(apply subst list(l

1

; t); apply subst list(l

2

; t)) (212)

def(apply subst list(append(l

1

; l

2

); t)) , def(append(apply subst list(l

1

; t); apply subst list(l

2

; t)))(213)

44

5.29 apply subst list and append list (Version 1) (pc)

The next lemma simpli�es expressions with apply subst list.

apply subst list(append list(var(m; e); k); var(n; e)) =

if(eq(m;n); �rst list(k); apply subst list(tail list(k); var(n; e))): (214)

It can easily be proved by structural induction on k. In this way one can also prove

def(apply subst list(append list(var(m; e); k); var(n; e))) ^ :eq(m;n))

def(apply subst list(tail list(k); var(n; e))) (215)

and

def(apply subst list(append list(var(n; e); k); var(n; e)))) def(�rst list(k)): (216)

5.30 apply subst list and append list (Version 2) (pc)

The next conjecture states a similar fact.

eq(m;n) = false) apply subst list(append list(var(m; �rst(t)); k); var(n; e)) = apply subst list(k; var(n; e)):

(217)

It can again be proved by structural induction w.r.t. k where in the step case one needs the lemma

tail(appendterm(�rst(t); �)) = � which can easily be proved by induction (resp. case analysis) w.r.t. �rst.

In this way one can also prove

def(apply subst list(append list(var(m; �rst(t)); k); var(n; e))) ^ eq(m;n) = false)

def(apply subst list(k; var(n; e))) (218)

5.31 onlyconsistsof and append list (Version 1) (pc)

The following theorem states that if a substitution list where each element starts with var(n; t) is applied to

the variable n, then the resulting lists only contains �rst(t).

onlyconsistsof(apply subst list(append list(var(n; t); k); var(n; e)); �rst(t)) (219)

The conjecture is proved by structural induction on k, where in the step case one needs (55) and �rst(

appendterm(t; s)) = �rst(t) which can easily be proved by induction (resp. case analysis) w.r.t. �rst.

5.32 onlyconsistsof and append list (Version 2) (pc)

The next conjecture says that if a substitution list k only consists of one substitution �, then application of

k to a termlist t produces a list only containing �(t).

onlyconsistsof(k; �)) onlyconsistsof(apply subst list(k; t); apply subst(�; t)) (220)

The conjecture is easily proved by induction w.r.t. onlyconsistsof using (55).

5.33 Connection Between apply subst tll and append list (pc)

The next theorems state the connection between apply subst tll and append list.

apply subst tll(�; append list(var(n; e); l)) = append list(apply subst var(�; n); apply subst tll(�; l)) (221)

def(apply subst tll(�; append list(var(n; e); l))) , def(append list(apply subst var(�; n); apply subst tll(�; l))) (222)

Both theorems can be proved by induction w.r.t. append list. For that purpose one has to replace the �rst

argument var(n; e) of append list by a new variable q and add the premise q = var(n; e). In the base case

l = empty the proofs are trivial. If l = add(s; l

0

), then for (221) we obtain the induction conclusion

45

add(apply subst(�; appendterm(var(n; e); s)); apply subst tll(�; append list(var(n; e); l

0

))) =

add(appendterm(apply subst var(�; n); apply subst(�; s));

append list(apply subst var(�; n); apply subst tll(�; l

0

))):

This follows from the induction hypothesis, (193), (185), and (66). The proof for (222) is completely

analogous.

5.34 Distributivity of apply subst tll over append (pc)

The next conjecture states that apply subst tll is distributive over append.

apply subst tll(�; append(l

1

; l

2

)) = append(apply subst tll(�; l

1

); apply subst tll(�; l

2

)) (223)

The conjecture is proved by induction w.r.t. append. The case l

1

= empty is trivial and in the case l

1

=

add(t; l) the induction conclusion reduces to the induction hypothesis. In a similar way one can also prove

def(append(apply subst tll(�; l

1

); apply subst tll(�; l

2

))), def(apply subst tll(�; append(l

1

; l

2

))): (224)

5.35 Connection Between apply subst and apply subst tll (pc)

This theorem states that if t is a member of k, then �(t) is a member of the list containing all �-instantiations

of elements from k.

member(t; k)) member(apply subst(�; t); apply subst tll(�; k)) (225)

The conjecture can be proved by an easy induction w.r.t. apply subst tll using (55).

5.36 Disjointness of Instantiated Lists (pc)

The following theorem states that if two instantiated lists are disjoint, then so are the original lists.

disjoint list(apply subst tll(�; l); apply subst tll(�; k))) disjoint list(l; k) (226)

The conjecture can be proved by induction w.r.t. apply subst tll using � and l as induction variables. The

base case is easy and in the step case the induction conclusion follows from the induction hypothesis, (122),

(92), (101), and (225).

5.37 Substitution Outside of Domain (pc)

The next conjecture states that application of a substitution to a variable outside of its domain does not

change the variable.

:occurs(n; dom(�))) apply subst var(�; n) = var(n; e) (227)

It can be directly proved by induction w.r.t. dom.

5.38 Distributivity of dom over appendterm (pc)

The following conjecture states that the domain of an appended substitution can be obtained by appending

the two subdomains.

dom(appendterm(s; t)) = appendterm(dom(s); dom(t)) (228)

The conjecture can be proved by induction w.r.t. dom. In the step case one needs the lemma tail(appendterm(

r; t)) = appendterm(tail(r); t) which can easily be proved by induction w.r.t. tail.

46

5.39 Appending Substitutions (Version 1) (pc)

The following conjecture says that if a variable already occurs in � 's domain, then appending a substitution

to � in the back does not change the result of applying the substitution to n.

occurs(n; dom(�))) apply subst var(appendterm(�; �); n) = apply subst var(�; n) (229)

The conjecture is proved by induction w.r.t. dom. In the step case (� = var(m; r)) we have to distinguish the

cases depending on the truth of eq(n;m). If this is true, then the conjecture is implied by (192). Otherwise,

the proof is similar as for (228).

5.40 Appending Substitutions (Version 2) (pc)

This theorem states that if n is not in the domain of the second substitution, then we only have to regard

the �rst substitution.

:occurs(n; dom(�))) apply subst var(appendterm(�; �); n) = apply subst var(�; n) (230)

The theorem can be proved by induction w.r.t. apply subst var using � and n as induction variables. In the

base case � = e we need (227). In the case � = var(m; t) and eq(n;m) one needs �rst(appendterm(t; s)) =

appendterm(�rst(t); s) and in the other case one needs the corresponding statement for tail.

5.41 Appending Substitutions (Version 3) (pc)

This is the symmetric counterpart of conjecture (230).

:occurs(n; dom(�))) apply subst var(appendterm(�; �); n) = apply subst var(�; n): (231)

It can be proved by induction w.r.t. dom where the step case is similar to the last case in the previous proof.

5.42 Appending Substitutions on Disjoint Domains (Version 1) (pc)

The next theorem says that those parts of substitutions which concern only variables that do not occur in

the termlist can be omitted.

disjoint(dom(�); vars(t))) apply subst(appendterm(�; �); t) = apply subst(�; t) (232)

The theorem is proved by induction w.r.t. apply subst. The base case t = e is trivial. In the case t = var(n; r),

the induction conclusion is implied by the induction hypothesis and (121), (100), (123), and (230). In the

case t = func(n; s; r) the induction conclusion can be transformed into the induction hypothesis and (121),

(98), (100).

5.43 Appending Substitutions on Disjoint Domains (Version 2) (pc)

This is the symmetric counterpart to the previous theorem.

disjoint(dom(�); vars(t))) apply subst(appendterm(�; �); t) = apply subst(�; t) (233)

Its proof is similar to the proof of (232), but instead of (230) we now need (231).

5.44 Domain of Renamed Substitutions (pc)

This conjecture states that if m is in the domain of �, then m+ n is in the domain of the substitution that

results from � by renaming all variables (by adding n to them).

occurs(m; dom(�)) = occurs(plus(m;n); dom(rename dom(�; n))) (234)

The conjecture is proved by induction w.r.t. dom. The case � = e is easy and if � = var(k; r) then in the

case eq(m; k) the conjecture follows from (54) and (47) and otherwise the induction hypothesis, (47), and

tail(appendterm(�rst(s); t)) = t imply the induction conclusion.

47

5.45 Applying Renamed Substitutions (pc)

This theorem states that application of a substitution to n is the same as application of the renamed

substitution to the renamed variable.

occurs(m; dom(�))) apply subst var(�;m) = apply subst var(rename dom(�; n); plus(m;n)) (235)

The conjecture is proved by induction w.r.t. apply subst var. The base case is trivial and in the case

� = var(k; r) we have to distinguish two cases. If eq(k;m) then the conjecture follows from (54) and

�rst(appendterm(�rst(s); t)) = �rst(s). Otherwise, the induction conclusion is implied by the induction hy-

pothesis, (54), and (47).

5.46 matcher computes Substitutions (pc)

The next conjecture states that every matcher is a substitution.

is subst(matcher(s; t)) (236)

This conjecture can be evaluated and generalized to

is subst(matcher aux(s; t; �)):

This is proved by induction w.r.t. matcher aux.

5.47 Domain of matcher (pc)

The following theorem states that a matcher only changes variables from the term to be matched.

subseteq(dom(matcher(s; t)); vars(s)) (237)

The theorem is transformed to

subseteq(dom(matcher aux(s; t; �)); appendterm(vars(s); dom(�)))

which is proved by induction w.r.t. matcher aux. The base case is trivial and if s = var(n; r) and occurs(n;

dom(�)), then the induction conclusion can be reduced to the induction hypothesis and (102), (100), (91),

and (95). If :occurs(n; dom(�)), then one needs (98), (100), and (85). In the �nal case, the reduction of the

induction conclusion into the hypothesis is also easy.

5.48 Already Computed Matcher is not Changed (pc)

The next conjecture says that when computing matcher aux(s; t; �), then the resulting substitution behaves

like � on �'s domain.

occurs(n; dom(�))) apply subst var(matcher aux(s; t; �); n) = apply subst var(�; n) (238)

The conjecture is proved by induction w.r.t. matcher aux. The base case is easy. If s = func(m; s; r) or

if s = var(m; r) and occurs(m;�), then the induction conclusion is a direct consequence of the induction

hypothesis. In the case s = var(m; r) and occurs(m;�) = false we have :n = m. Hence, the induction

conclusion follows from the hypothesis, (93), (228), and (100).

5.49 Correctness of matcher (pc)

This is the correctness theorem for the matching algorithm.

matches(s; t)) t = apply subst(matcher(s; t); s) (239)

48

It can be evaluated and generalized to

matches aux(s; t; �)) t = apply subst(matcher(s; t; �); s):

We prove this conjecture by induction w.r.t. matches aux. If s = e, then (55) implies t = e. Hence, in the

base case the proof is trivial.

If s = var(n; r), then (55) implies :t = e. If occurs(n; dom(�)), then we have �rst(t) = apply subst(�;

n). By (238) and (61), the induction conclusion can be reduced to the induction hypothesis. If :occurs(n;

dom(�)), by (61) the induction conclusion can again be reduced to the induction hypothesis, (238), and (61).

Finally, the last step case can be proved using (186) and (78).

5.50 Correctness of matches (pc)

The next theorem states that a term matches each of its instantiations.

matches(t; apply subst(�; t)) (240)

It can be generalized to

apply subst(appendterm(�; �); t) = apply subst(�; t)) matches aux(t; apply subst(�; t); �):

This conjecture can be proved by induction w.r.t. matches aux. The base case t = e is trivial. In the �rst

step case (t = var(n; r)), by (65) we have to consider two cases. If occurs(n; dom(�)), then the induction

conclusion follows from (67), (229), and the induction hypothesis. If occurs(n; dom(�)) = false, then one

needs the lemma (196). Finally, in the case t = func(n; s; r), the induction conclusion follows from the

induction hypothesis, (193), and (55).

5.51 Renaming for matches (pc)

The next theorem states that if s matches t, then this also holds if s is renamed.

matches(s; t)) matches(rename(s; n); t) (241)

The conjecture can be transformed into

matches aux(s; t; �)) matches aux(rename(s; n); t; rename dom(�; n)):

We prove this conjecture by induction w.r.t. matches aux. The base case s = e is trivial. In the case

s = var(m; r) one needs (234), (235), and (128) to transform the induction conclusion into the hypothesis.

In the last case s = func(m;u; r) this can be done by (130) and (129).

5.52 Renaming for matcher (pc)

The next theorem states that if r only contains variables from l, then application of the matcher of l and t

to r is the same as application of the corresponding matcher if l and r are renamed.

subseteq(vars(r); vars(l))) apply subst(matcher(l; t); r) = apply subst(matcher(rename(l; n); t); rename(r; n))

(242)

We perform a structural induction on r. The case r = e is trivial. In the case r = func(m; s; r

0

) the induction

conclusion is implied by the induction hypothesis, (95), (98), and (100). In the case r = var(m; r

0

) to reduce

the induction conclusion to the induction hypothesis one needs the conjecture

occurs(m; vars(l))) apply subst var(matcher(l; t);m) = apply subst var(matcher(rename(l; n); t); plus(m;n)):

This can be transformed into

occurs(m; vars(l))) apply subst var(matcher aux(l; t; �);m) =

apply subst var(matcher aux(rename(l; n); t; rename dom(�; n)); plus(m;n)):

To prove this conjecture we use an induction w.r.t. matcher aux. The base case is trivial (since the premise

evaluates to false) and in the step cases with l = var(k; r) the induction conclusion follows from the induction

hypothesis and (234). The case l = func(k; q; r) can be proved using (129).

49

5.53 Matcher is Most General (Version 1) (pc)

This conjecture says that for every variable from l, the matcher of l with �(l) behaves like �.

occurs(n; vars(l))) apply subst var(�; n) = apply subst var(matcher(l; apply subst(�; l)); n): (243)

The conjecture is a consequence of (240), (239), and (195).

5.54 Matcher is Most General (Version 2) (pc)

This conjecture says that for every r containing only variables from l, the matcher of l with �(l) behaves

like �.

subseteq(vars(r); vars(l))) apply subst(�; r) = apply subst(matcher(l; apply subst(�; l)); r) (244)

This conjecture can be proved by induction w.r.t. apply subst. The base case is trivial. In the case r =

var(n; r

0

) one needs (95), (100), and (243) to transform the induction conclusion into the hypothesis. In the

last case, the conclusion can be transformed into (86) and both induction hypotheses.

5.55 Adding New Elements Produces no Duplicates (pc)

The next conjecture states that if � is a substitution without duplicates and if one adds a new substitution

pair for a variable outside of �'s domain, then the resulting substitution has no duplicates either.

no duplicates(�) ^ :occurs(n; dom(�))) no duplicates(appendterm(var(n; �rst(t)); �)) (245)

The conjecture is proved by symbolic evaluation of no duplicates (and tail(appendterm(�rst(t); �)) = �, which

can easily be proved by induction (resp. case analysis) w.r.t. �rst).

5.56 Matcher Contains no Duplicates (pc)

The following theorem says that a matcher contains no duplicates.

no duplicates(matcher(s; t)) (246)

The conjecture is transformed into

no duplicates(�)) no duplicates(matcher aux(s; t; �)):

This conjecture is proved by induction w.r.t. matcher aux. The base case is trivial and if s = func(m; s; r)

or if s = var(m; r) and occurs(m;�), then the induction conclusion is a direct consequence of the induction

hypothesis. In the case s = var(m; r) and occurs(m;�) = false, the induction conclusion follows from the

hypothesis and (245).

5.57 Correctness of uni�es (pc)

The following theorem states the correctness of the algorithm uni�es.

apply subst(�; s) = apply subst(�; t)) uni�es(s; t) (247)

For this theorem a method for induction proofs with partial functions is very advantageous, because we need

an induction w.r.t. uni�es. Of course, uni�es is total, but this is hard to prove automatically. But with our

method we can perform an induction w.r.t. uni�es without verifying its termination.

In the base case we have s = e. Now the conjecture follows from

e = apply subst(�; t)) eqterm(e; t)

which can be proved by induction w.r.t. apply subst.

50

In the second case, we have s = var(n

1

; r

1

) and t = e. Now the conjecture is implied by (65) and (55).

In the case s = var(n

1

; r

1

), t = var(n

2

; r

2

), we only have to show that the premise of the induction

conclusion implies the premise of the induction hypothesis. This follows from (67) and (204).

If s = var(n

1

; r

1

) and t = func(n

2

; s

2

; r

2

) then by (67), (73) and (203), the premise of the induction

conclusion implies :occurs(n

1

; appendterm(s

2

; e)). Hence, again we only have to show that the premise of

the induction hypothesis is implied by the premise of the induction conclusion. This can be done using (67)

and (204).

If s = func(n

1

; s

1

; r

1

) and t = var(n

2

; r

2

) then the induction conclusion directly follows from the induction

hypothesis.

Finally, if s = func(n

1

; s

1

; r

1

) and t = func(n

2

; s

2

; r

2

), then the premise of the induction conclusion is

func(n

1

; apply subst(�; s

1

); apply subst(�; r

1

)) = func(n

2

; apply subst(�; s

2

); apply subst(�; r

2

)). By (54) and

(193) this implies eq(n

1

; n

2

) and eq(length(s

1

); length(s

2

)). Now the induction conclusion follows from the

induction hypothesis and (186).

5.58 Relation between Matching and Uni�cation (pc)

This theorem relates matching and uni�cation.

matches(s; apply subst(�; t)) ^ disjoint(vars(t); vars(s)) ^ disjoint(dom(�); vars(s))) uni�es(s; t) (248)

By (239), matches(s; apply subst(�; t)) implies apply subst(matcher(s; apply subst(�; t)); s) = apply subst(�; t).

By (121), (123), (232), and (233), this implies

apply subst(appendterm(matcher(s; apply subst(�; t)); �); s) =

apply subst(appendterm(matcher(s; apply subst(�; t)); �); t):

Hence, the conjecture is implied by (247).

5.59 mgu generates Substitutions (pc)

The following conjecture says that the result of mgu is always a substitution.

is subst(mgu(s; t)) (249)

It can easily be proved by induction w.r.t. mgu using (59).

5.60 Domain of mgu (pc)

The next theorem says that mgu(s; t) only changes variables occurring in s or t.

subseteq(dom(mgu(s; t)); appendterm(vars(s); vars(t))) (250)

The theorem is proved by induction w.r.t. mgu. The base case (s = t = e) is trivial. In the case s = var(n

1

; r

1

)

and var(n

1

; e) = �rst(t) the induction conclusion can be reduced to the induction hypothesis, (61), (100),

(102), and (95). If s = var(n

1

; r

1

) and :var(n

1

; e) = �rst(t), then by (55), to reduce the induction conclusion

to the induction hypothesis we need (66), (64), (249), (200), (83), (98), (100), (85), (102), (95), and (114).

If s = func(n

1

; s

1

; r

1

) and t = var(n

2

; r

2

), then the induction conclusion is a direct consequence of the

induction hypothesis. Finally, in the last step case, the induction conclusion is transformed into the induction

hypothesis and (81).

5.61 De�nedness of special subst and of apply subst

The following conjecture states that if special subst(�; �) is de�ned and true, then the application of � on the

domain of � is also de�ned.

special subst(�; �)) def(apply subst(�; dom(�))) (251)

The conjecture is proved by induction w.r.t. special subst. In the case � = e it is trivial. Otherwise we have

� = var(n; t) and the induction conclusion can be transformed into

51

eqterm(apply subst var(�; n); apply subst(�; �rst(t))) :̂ special subst(�; tail(t))))

def(addterm(apply subst var(�; n); apply subst(�; dom(tail(t))))).

This is a consequence of the induction hypothesis, (19), and (193).

In a similar way one can also prove

special subst(�; �)) def(apply subst(�; apply subst(�; dom(�)))): (252)

5.62 Correctness of special subst (pc)

The following theorem states the correctness of special subst.

special subst(�; �)) apply subst(�; t) = apply subst(�; apply subst(�; t)) (253)

The theorem is proved by induction w.r.t. apply subst. The base case (t = e) reduces to a tautology. We

now consider the remaining two cases.

Case 1: t = var(n; t

0

)

Using (184) and (185), the induction conclusion is evaluated to

special subst(�; �))

addterm(apply subst var(�; n); apply subst(�; t

0

))

= addterm(apply subst(�; apply subst var(�; n)); apply subst(�; apply subst(�; t

0

)))

and using (67), (193), and (15), it is transformed further into the induction hypothesis and

special subst(�; �)) apply subst var(�; n) = apply subst(�; apply subst var(�; n)):

This conjecture is proved by induction w.r.t. apply subst var (using � and n as induction variables). If � = e,

then it can be proved by symbolic evaluation. Otherwise we have � = var(m; r). If eqterm(m;n) is false, then

the induction conclusion is transformed into the induction hypothesis. Otherwise (if m = n) the induction

conclusion is transformed into

eqterm(apply subst var(�; n); apply subst(�; �rst(r)))) apply subst var(�; n) = apply subst(�; �rst(r))

which is an instantiation of (55).

Case 2: t = func(n; u; t

0

)

The induction conclusion reduces to

special subst(�; �))func(apply subst(�; u); apply subst(�; t)) =

func(apply subst(�; apply subst(�; u)); apply subst(�; apply subst(�; t)))

which is implied by the induction hypotheses.

5.63 Correctness of compose (pc)

The next theorem states that compose indeed composes substitutions.

apply subst(compose(�

1

; �

2

); t) = apply subst(�

2

; apply subst(�

1

; t)) (254)

The theorem is proved by induction w.r.t. apply subst. The base case (t = e) is trivial. We now consider the

two remaining cases.

52

Case 1: t = var(n; r)

Now (using (184) and (185)) the induction conclusion can be evaluated to

addterm(apply subst var(compose(�

1

; �

2

); n); apply subst(compose(�

1

; �

2

); r)) =

addterm(apply subst(�

2

; apply subst var(�

1

; n)); apply subst(�

2

; apply subst(�

1

; r))):

Using (67) and (15) this can be transformed into the induction hypothesis and into

apply subst var(compose(�

1

; �

2

); n) = apply subst(�

2

; apply subst var(�

1

; n))

which can be further evaluated to

apply subst var(compose aux(�

1

; �

2

; disjoint union(dom(�

1

); dom(�

2

))); n) =

apply subst(�

2

; apply subst var(�

1

; n)):

We perform the following case analysis by Rule 6

00

.

Case 1.1: occurs(n; disjoint union(dom(�

1

); dom(�

2

)))

In this case, the conjecture can be generalized to

occurs(n; v)) apply subst var(compose aux(�

1

; �

2

; v); n) = apply subst(�

2

; apply subst var(�

1

; n))

This lemma is proved by induction w.r.t. compose aux. The case v = e is trivial, since the premise is false. If

v = var(n; q), we have to distinguish two subcases. If eqterm(apply subst(�

1

; apply subst var(�

2

; n)); var(n; e))

:̂ not(occurs(n; dom(�

1

))) = true, then the proof is straightforward. Otherwise, the induction conclusion

reduces to

apply subst var(var(n; addterm(apply subst(�

2

; apply subst var(�

1

; n)); : : :)); n)

= apply subst(�

2

; apply subst var(�

1

; n))

which can be transformed into a tautology. Finally, in the case v = var(m; q) (where m 6= n) the induction

conclusion can be evaluated to the induction hypothesis.

Case 1.2: :occurs(n; disjoint union(dom(�

1

); dom(�

2

)))

In this case we have

apply subst(�

2

; apply subst var(�

1

; n)) = var(n; e)

(which follows from (111) and (182)). Hence, it su�ces to prove

:occurs(n; v)) apply subst var(compose aux(�

1

; �

2

; v); n) = var(n; e):

This can be proved by induction w.r.t. compose aux. The case v = e is again trivial. In the case v = var(m; q)

the premise implies m 6= n. But then the induction conclusion can be immediately transformed into the

induction hypothesis.

Case 2: t = func(n; s; r)

The induction conclusion can be evaluated to

func(n; apply subst(compose(�

1

; �

2

); s); apply subst(compose(�

1

; �

2

); r))

= func(n; apply subst(�

2

; apply subst(�

1

; s)); apply subst(�

2

; apply subst(�

1

; r))):

This can be immediately transformed into the induction hypotheses.

53

5.64 Relation between compose and special subst (pc)

The following theorem says that if � = � � � holds, then � is more special than � .

� = compose(�; �)) special subst(�; �) (255)

By Rule 4

00

this can be transformed into (251), (252),

� = compose(�; �)) apply subst(�; dom(�)) = apply subst(�; apply subst(�; dom(�)))

(which can be proved by (254)) and

apply subst(�; dom(�)) = apply subst(�; apply subst(�; dom(�)))) special subst(�; �):

For this conjecture we perform an induction w.r.t. special subst. If � = e then it is obviously true. In the

case � = var(n; t), by symbolic evaluation the induction conclusion can be transformed into

addterm(apply subst var(�; n); apply subst(�; dom(tail(t)))) =

apply subst(�; addterm(�rst(t); apply subst(�; dom(tail(t))))))

apply subst var(�; n) = apply subst(�; �rst(t)) :̂ special subst(�; tail(t)):

This is a consequence of the induction hypothesis and (184), (185), (15), (16), (67), (193), (63).

5.65 Removing Unnecessary Variables when Composing With Empty Substi-

tution (pc)

The following conjecture states that if n does not occur in the intended domain of a composition with the

empty substitution, then the corresponding variable term pair may be deleted.

:occurs(n; v)) compose aux(e; var(n; r); v) = compose aux(e; tail(r); v) (256)

The conjecture is proved by a straightforward induction w.r.t. compose aux.

5.66 Composition with Empty Substitution (pc)

The next theorem states that composition with the empty substitution does not change substitutions.

no duplicates(�)) compose aux(e; �; dom(�)) = � (257)

The conjecture is proved by induction w.r.t. dom. The base case is trivial and in the step case the induction

conclusion can be reduced to the induction hypothesis and (256).

5.67 Removing Unnecessary Pairs from a Composition (pc)

The next conjecture says that if � is a uni�er of the variable n and the term t, then one may remove a

substitution pair n=t from � when composing � and �.

apply subst var(�; n) = apply subst(�; t) ^ not(occurs(n; dom(�))))

compose aux(appendterm(var(n; t); �); �; v) = compose aux(�; �; v) (258)

The conjecture is proved by induction w.r.t. compose aux. The base case is trivial and in the step case

(v = var(m; t)) we have to consider two cases.

If n = m, then the conjecture follows from

apply subst(�; apply subst var(appendterm(var(n; t); �); n)) = apply subst var(�; n)

(which is a consequence of (192) and the premise apply subst var(�; n) = apply subst(�; t)) and

apply subst(�; apply subst var(�; n)) = apply subst var(�; n)

54

which is a consequence of (227) and the premise not(occurs(n; dom(�))).

If n 6= m then the theorem is a consequence of

apply subst(�; apply subst var(appendterm(var(n; t); �);m)) = apply subst(�; apply subst var(�;m))

which follows from (54).

5.68 Elimination of Variables in Compositions (pc)

The next theorem states that if the �rst argument and the second argument of compose aux are inverse on

a variable n, then this variable may be deleted from the domain list.

apply subst(�; t) = var(n; e) ^ :occurs(n; dom(�)))

compose aux(appendterm(var(n; t); �); �; disjoint union(appendterm(v

1

; var(n; e)); v

2

)) =

compose aux(appendterm(var(n; t); �); �; disjoint union(v

1

; v

2

)) (259)

The conjecture is proved by induction w.r.t. disjoint union. In the base case we have v

2

= e. Hence, we have

to prove

apply subst(�; t) = var(n; e) ^ :occurs(n; dom(�)))

compose aux(appendterm(var(n; t); �); �; appendterm(v

1

; var(n; e))) =

compose aux(appendterm(var(n; t); �); �; v

1

):

For this conjecture we use an induction w.r.t. compose aux. The base case v

1

= e can be proved using (192).

In the two step cases, the induction conclusion is directly implied by the induction hypothesis.

Now we consider the step cases of the outer disjoint union-induction, i.e. v

2

= var(m; v

0

2

). If occurs(m; v

1

),

then by (93) and (98), the induction conclusion is implied by the induction hypothesis. If :occurs(m; v

1

)

and occurs(m; appendterm(v

1

; var(n; e))), then (55) and (112) imply n = m. Hence, the conclusion of the

induction conclusion is a tautology. Finally, in the remaining case the induction conclusion can be evaluated

to the induction hypothesis.

5.69 mgu is Most General (pc)

The following theorem proves that the mgu is really most general.

no duplicates(�) ^ apply subst(�; s) = apply subst(�; t)) � = compose(mgu(s; t); �) (260)

Again we bene�t from our technique for induction proofs with partial functions, because we need an in-

duction w.r.t. mgu. Of course, if s and t unify then mgu(s; t) is total. However, this is very hard to prove

automatically. On the other hand, with our method for induction proofs with (possibly) partial functions,

we can perform an induction w.r.t. mgu without having to verify its termination.

In the base case we have s = t = e. Now the conjecture follows from (257). If s = func(n; u; r),

then the proof is straightforward and if s = var(n; r), then we distinguish two cases (omitting the premise

no duplicates(�)).

Case 1: �rst(t) = var(n; e)

By (55) and (191), the premise of the induction conclusion implies the premise apply subst(�; r) = apply subst(

�; tail(t)) of the induction hypothesis. Moreover, the conclusion of the induction conclusion can be evaluated

to the conclusion of the induction hypothesis.

55

Case 2: :�rst(t) = var(n; e)

By (55) and (191), the premise of the induction conclusion implies apply subst var(�; n) = apply subst(�; �rst(

t)) and apply subst(�; r) = apply subst(�; tail(t)). Hence, by (204) this implies the premise

apply subst(�; apply subst(var(n; �rst(t)); r)) = apply subst(�; apply subst(var(n; �rst(t)); tail(t)))

of the induction hypothesis.

Using (228) and (58), the conclusion of the induction conclusion is evaluated to

� = compose aux(appendterm(var(n; �rst(t));mgu(apply subst(var(n; �rst(t)); r);

apply subst(var(n; �rst(t)); tail(t))));

�;

disjoint union(dom(�); var(n; dom(mgu(apply subst(var(n; �rst(t)); r);

apply subst(var(n; �rst(t)); tail(t))))))):

We now perform a case analysis (Rule 6

00

) according to disjoint union.

Case 2.1: occurs(n; dom(�))

Hence, disjoint union(dom(�); var(n; dom(mgu(: : :)))) can be evaluated to disjoint union(dom(�); dom(mgu(

: : :))). Now the conclusion

� = compose aux(mgu(apply subst(var(n; �rst(t)); r); apply subst(var(n; �rst(t)); tail(t))); �; disjoint union(: : :))

of the induction hypothesis and (258), (203), (250), (198), (112), (93) imply the conclusion of the induction

conclusion.

Case 2.2: :occurs(n; dom(�))

Now disjoint union(dom(�); var(n; dom(mgu(: : :)))) is evaluated to disjoint union(appendterm(dom(�); var(n;

e)); dom(mgu(: : :))). By (227), the premise of the induction conclusion implies apply subst(�; �rst(t)) =

var(n; e). Together with (259) and (258), (203), (250), (198), (112), (93), the conclusion of the induction

hypothesis implies the conclusion of the induction conclusion.

5.70 replace generates Substitutions (pc)

The following conjecture states that the result of replace is a substitution.

is subst(�)) is subst(replace(�; n; t)) (261)

The conjecture is proved by induction w.r.t. replace. The base case is trivial. In the step case where

eq(m;n) = true, the induction conclusion follows from (65) and (64). In the other case the induction

conclusion is implied by the induction hypothesis and (183), (59), (58).

6 Theorems about Rewriting

In this section we prove theorems about rewriting.

6.1 De�nedness of rewrites rule, rewrites matcher, rewrites, rule

The �rst conjecture says that rewrites rule(t; s; l; r) is total provided s is not e.

def(t; s; l; r) ^ :s = e) def(rewrites rule(t; s; l; r)) (262)

The conjecture is easily proved by structural induction on s.

56

In a similar way (using also already proved theorems about de�nedness) one can verify the following

statements.

def(l; r) ^ :s = e ^ rewrites rule(t; s; l; r)) def(rewrites matcher(t; s; l; r)) (263)

def(t; s) ^ :s = e ^ trs(R)) def(rewrites(t; s; R) (264)

def(rewrites(t; s; R))) def(rule(t; s; R)) (265)

6.2 De�nedness of rewrite rule, rewrite rule list, rewrite list

Now we prove the de�nedness theorem for rewrite rule.

def(t; l) ^ length(r) = s(0)) def(rewrite rule(t; l; r)) (266)

This theorem can be proved by structural induction on t using (236), (193) and

def(n; l; t) ^ length(r) = s(0)) def(addtail(add(r; apply(n; l)); t))

(which can also be proved easily).

In a similar way one can show

def(k; l) ^ length(r) = s(0)) def(rewrite rule list(k; l; r)) (267)

def(k) ^ trs(R)) def(rewrite list(k;R)): (268)

6.3 De�nedness of rewrites rule implies Non-Emptiness

The following conjecture says that if rewrites rule is de�ned and the �rst argument is not empty, then the

second one is not empty either.

def(rewrites rule(addterm(t; q); s; l; r))) :s = e (269)

The conjecture is proved by induction (resp. case analysis) w.r.t. addterm. In all cases, the term rewrites rule(

: : :) can be reduced to a term containing �rst(s) (in the �rst argument of an if). Hence, the conjecture follows

from (55) and (59).

6.4 Decomposing rewrites rule with addterm (Version 1) (pc)

The next theorem says that if s rewrites to t, then this also holds if a term q is added in the front.

rewrites rule(s; t; l; r)) rewrites rule(addterm(q; s); addterm(q; t); l; r) (270)

The conjecture is proved by induction (resp. case analysis) w.r.t. addterm. In both cases (q = var(n; e) and

q = func(n; q

0

; e)), the conjecture can be proved by symbolic evaluation.

6.5 Decomposing rewrites rule with addterm (Version 2) (pc)

The next theorem says that if s rewrites to t, then this also holds if a termlist q is added in the back.

rewrites rule(s; t; l; r)) rewrites rule(addterm(s; q); addterm(t; q); l; r) (271)

The conjecture is also proved by induction (resp. case analysis) w.r.t. both occurrences of addterm. In

the cases where s = var(n; e), the premise reduces to false, because rewrites rule(e:e; l; r) is false. If s =

func(n; s

0

; e), then the second or the third disjunct must hold and the premise of the implication can be

reduced to the conclusion.

57

6.6 Composing rewrites rule with addterm (pc)

The next theorem is a kind of converse to the preceding ones. It states that when rewriting a list of terms,

the rewriting is either done in the �rst element or in the tail.

rewrites rule(addterm(t

1

; t

2

); s; l; r))

rewrites rule(t

1

; �rst(s); l; r) ^ t

2

= tail(s) _ rewrites rule(t

2

; tail(s); l; r) ^ t

1

= �rst(s) (272)

The theorem is also easily proved by induction (resp. case analysis) w.r.t. addterm and symbolic evaluation.

6.7 Length Preservation Under Rewriting (pc)

The next theorem says that application of rewrite rules to termlists preserves their length.

rewrites rule(s; t; l; r)) length(s) = length(t) (273)

It can be proved by a straightforward induction w.r.t. rewrites rule.

6.8 rewrites rule under Contexts (pc)

The following theorem states that rewriting remains stable under function contexts.

rewrites rule(s; t; l; r)) rewrites rule(func(n; s; r

0

); func(n; t; r

0

); l; r) (274)

It can easily be proved by symbolic evaluation and Rule 4

00

.

6.9 Rewriting with Renamed Rules (pc)

The next theorem says that if t rewrites to s with the rule l! r, then this also works with the rule where l

and r have been renamed.

rewrites rule(t; s; l; r) ^ subseteq(vars(r); vars(l))) rewrites rule(t; s; rename(l; n); rename(r; n)) (275)

The conjecture can easily be proved by induction w.r.t. rewrites rule, where in the third case one needs (241)

and (131). In a similar way one can also prove

def(rewrites rule(t; s; l; r)) ^ subseteq(vars(r); vars(l))) def(rewrites rule(t; s; rename(l; n); rename(r; n)))

(276)

6.10 Rewriting of Instantiated Rules (pc)

This theorem states that rules may be instantiated.

length(l) = s(0) ^ length(r) = s(0) ^ �rst is func(l) ^ subseteq(vars(r); vars(l)))

rewrites rule(apply subst(�; l); apply subst(�; r); l; r) (277)

By induction (resp. case analysis) w.r.t. �rst is func and length one can determine that the premise implies

l = func(n; u; e). Then the conjecture follows from (240), (55), (244), and (193).

6.11 Correctness of rule (pc)

The following theorem states that rule indeed returns a rule which allows the desired reduction.

rewrites(t; s; R)) rewrites rule(t; s; �rst(rule(t; s; R)); second(rule(t; s; R))): (278)

The conjecture can easily be proved by induction w.r.t. rewrites.

58

6.12 rule only Generates Rules from the TRS (pc)

This theorem states that rule only returns rules of the TRS.

in(�rst(rule(t; s; R)); second(rule(t; s; R)); R) (279)

The proof is a straightforward induction w.r.t. rule.

6.13 rewrites matcher Generates Substitutions (pc)

The next theorem is similar to (236).

is subst(rewrites matcher(t; s; l; r)) (280)

It can easily be proved by induction w.r.t. rewrites matcher using (236).

6.14 Domain of rewrites matcher (pc)

The next conjecture states that rewrites matcher(t; s; l; r) only changes variables from l.

subseteq(dom(rewrites matcher(t; s; l; r)); vars(l)) (281)

It can be proved by induction w.r.t. rewrites matcher. In all cases except the last one, the induction conclusion

is implied by the induction hypothesis. In the last case, the conjecture follows from (237).

6.15 apply and rewrite rule (pc)

The following conjecture states the connection between apply and func when using rewrite rule.

subseteq list(apply(n; rewrite rule(t; l; r)); rewrite rule(func(n; t; e); l; r)) (282)

It can be proved by symbolic evaluation and (97), (162), (96), and (147).

6.16 addtail and rewrite rule (pc)

The following conjecture states the connection between addtail and addterm when using rewrite rule.

subseteq list(addtail(rewrite rule(s; l; r); t); rewrite rule(addterm(s; t); l; r)) (283)

The conjecture is proved by induction (resp. case analysis) w.r.t. addterm. In the case s = var(n; e), it is

easy to prove. In the case s = func(n; u; e) one needs (74), (147), and (99).

6.17 tail list and rewrite rule (pc)

The following conjecture states the connection between tail and tail list when using rewrite rule.

subseteq list(rewrite rule(tail(t); l; r); tail list(rewrite rule(t; l; r))) (284)

The conjecture is proved by induction (resp. case analysis) w.r.t. tail. In the case t = var(n; t

0

), the conjecture

follows from (166). In the case t = func(n; u; t

0

) one needs (141), (101), and (166).

6.18 tail list and rewrite rule (Version 2) (pc)

The following conjecture states the (converse) connection between tail and tail list when using rewrite rule.

member(t; tail list(rewrite rule(s; l; r)))) t = tail(s) _member(t; rewrite rule(tail(s); l; r)) (285)

The conjecture is proved by induction (resp. case analysis) w.r.t. tail. In the case t = var(n; t

0

), it again

follows from (166). In the case t = func(n; u; t

0

) one needs (141), (166), and (168).

59

6.19 Exchanging rewrite rule list and append (pc)

The following theorem says that rewrite rule list is distributive over append.

append(rewrite rule list(k

1

; l; r); rewrite rule list(k

2

; l; r)) = rewrite rule list(append(k

1

; k

2

); l; r) (286)

The conjecture is easily proved by induction w.r.t. append using (72).

6.20 rewrites rule implies rewrite rule (pc)

The following theorem states that if t reduces to s according to rewrites rule, then s is also a member of

rewrite rule(t; l; r).

rewrites rule(t; s; l; r)) member(s; rewrite rule(t; l; r)) (287)

We prove the theorem by induction w.r.t. rewrites rule. The base case t = e is easy. In the case t = var(n; t

0

),

the induction conclusion can be reduced to the induction hypothesis using (167). If t = func(n; u; t

0

) we

consider three cases according to the de�nition of rewrites rule. In the �rst case, the induction conclusion

can be proved by the hypothesis and (167), (94), (101), (96). In the second case the induction conclusion is

transformed into (151), (94), (99), (96). Finally, the third case can be proved using (151) and (94).

6.21 rewrite rule implies rewrite rule list (pc)

The following conjecture states the connection between rewrite rule and rewrite rule list.

member(t; k)) subseteq list(rewrite rule(t; l; r); rewrite rule list(k; l; r)) (288)

We use Rule 1

00

to perform an induction w.r.t. member. The case k = empty is trivial. If k = add(s; k

0

) and

t = s, then the induction conclusion can be reduced to the induction hypothesis and (99). If k = add(s; k

0

)

and t 6= s, then the induction conclusion is transformed into the induction hypothesis, (96), and (101).

6.22 Correctness of replace (pc)

The next conjecture states that if � applied to n rewrites to s, then replace(�; n; s) is a member of

all reductions. In other words, rewrites rule can be used to construct an element from all reductions.

rewrites rule(apply subst var(�; n); s; l; r)) member(replace(�; n; s); all reductions(�; l; r)) (289)

The conjecture is proved by induction w.r.t. replace (or apply subst var). In the base case (� = e), the premise

reduces to false. In the case � = var(n; t), the induction conclusion can be proved using (94), (99), (164),

(159), and (287). Finally, in the case � = var(n; t) (with m 6= n), the induction conclusion can be reduced

to the induction hypothesis using (94), (101), and (164).

6.23 Connection between rewrite rule list and rewrite list (pc)

The next conjecture says that rewrite rule list is a subset of rewrite list if the rule used is a member of the

TRS.

in(l; r; R)) subseteq list(rewrite rule list(k; l; r); rewrite list(k;R)) (290)

The conjecture can be proved by induction w.r.t. in. In the case �rst(R) = l; second(R) = r, the induction

conclusion is implied by the induction hypothesis and (99). In the other induction step case, the induction

conclusion follows from the induction hypothesis and (101).

6.24 Connection between rewrite rule and rewrite rule list (pc)

The next theorem states that rewrite rule is a subset of rewrite rule list.

member(t; k)) subseteq list(rewrite rule(t; l; r); rewrite rule list(k; l; r)) (291)

The conjecture can be proved by induction w.r.t. rewrite rule list. The base case is easy. In the step case

where k = add(t; k

0

), the conjecture follows from (55) and (99). In the other step case one needs the induction

hypothesis, (101), and (96).

60

6.25 Stability of subseteq list under rewrite rule list (pc)

The next theorem states that subsets are preserved under rewrite rule list.

subseteq list(k

1

; k

2

)) subseteq list(rewrite rule list(k

1

; l; r); rewrite rule list(k

2

; l; r)) (292)

The conjecture can be proved by induction w.r.t. rewrite rule list(k

1

; l; r), where in the step case one needs

(103) and (291).

6.26 Stability of subseteq list under rewrite list (pc)

The next theorem states that subsets are preserved under rewrite list.

subseteq list(k

1

; k

2

)) subseteq list(rewrite list(k

1

; R); rewrite list(k

2

; R)) (293)

We prove the theorem by induction w.r.t. rewrite list. The base case is trivial and the step case can be proved

using (86) and (292).

6.27 Exchanging rewrite rule list and apply (pc)

The next conjecture says that one may exchange rewrite rule list and apply (yielding subsets).

subseteq list(apply(n; rewrite rule list(k; l; r)); rewrite rule(apply(n; k); l; r)) (294)

We prove the conjecture by induction w.r.t. apply (resp. w.r.t. rewrite rule list). The base case is easy and in

the step case, the induction conclusion can be transformed into the hypothesis and (158), (103), (282).

6.28 Exchanging rewrite list and apply (pc)

The next conjecture says that one may exchange rewrite list and apply (yielding subsets).

subseteq list(apply(n; rewrite list(k;R)); rewrite list(apply(n; k); R)) (295)

The conjecture can be proved by induction w.r.t. rewrite list. The base case is trivial and in the step case

the induction conclusion can be reduced to the induction hypothesis, (158), (103), and (294).

6.29 subseteq list of rewrite rule list with apply (pc)

The following theorem says that if no new terms can be generated from apply(n; k) with a rule, then this

also holds for k.

subseteq list(rewrite rule list(apply(n; k); l; r); apply(n; k))) subseteq list(rewrite rule list(k; l; r); k): (296)

By (96) and (294), this can be transformed into

subseteq list(apply(n; rewrite rule list(k; l; r)); apply(n; k))) subseteq list(rewrite rule list(k; l; r); k):

This is a consequence of (152).

6.30 subseteq list of rewrite list with apply (pc)

The following theorem says that if no new terms can be generated from apply(n; k) with the TRS R, then

this also holds for k.

subseteq list(rewrite list(apply(n; k); R); apply(n; k))) subseteq list(rewrite list(k;R); k) (297)

This can be proved by induction w.r.t. rewrite list using (86), (96), (101), and (296).

61

6.31 Exchanging rewrite rule list and addtail (pc)

The next conjecture says that one may exchange rewrite rule list and addtail (yielding subsets).

subseteq list(addtail(rewrite rule list(k; l; r); t); rewrite rule list(addtail(k; t); l; r)) (298)

We prove the conjecture by induction w.r.t. addtail (resp. w.r.t. rewrite rule list). The base case is easy and

in the step case, the induction conclusion can be transformed into the hypothesis and (156), (103), (283).

In a similar way one can also prove

subseteq list(add�rst(t; rewrite rule list(k; l; r)); rewrite rule list(add�rst(t; k); l; r)): (299)

6.32 Exchanging rewrite list and addtail (pc)

The next conjecture says that one may exchange rewrite list and addtail (yielding subsets).

subseteq list(addtail(rewrite list(k;R); t); rewrite list(addtail(k; t); R)) (300)

The conjecture can be proved by induction w.r.t. rewrite list. The base case is trivial and in the step case

the induction conclusion can be reduced to the induction hypothesis, (156), (103), and (298).

6.33 subseteq list of rewrite rule list with addtail (pc)

The following theorem says that if no new terms can be generated from addtail(k; t) with a rule, then this

also holds for k.

subseteq list(rewrite rule list(addtail(k; t); l; r); addtail(k; t))) subseteq list(rewrite rule list(k; l; r); k) (301)

By (96) and (298), this can be transformed into

subseteq list(addtail(rewrite rule list(k; l; r); t); addtail(k; t))) subseteq list(rewrite rule list(k; l; r); k):

This is a consequence of (153). In a similar way one can also prove

subseteq list(rewrite rule list(add�rst(t; k); l; r); add�rst(t; k))) subseteq list(rewrite rule list(k; l; r); k):

(302)

6.34 subseteq list of rewrite list with addtail (pc)

The following theorem says that if no new terms can be generated from addtail(k; t) with the TRS R, then

this also holds for k.

subseteq list(rewrite list(addtail(k; t); R); addtail(k; t))) subseteq list(rewrite list(k;R); k) (303)

This can be proved by induction w.r.t. rewrite list using (86), (96), (99), (101), and (301).

6.35 Exchanging rewrite rule list and tail list (pc)

The next conjecture says that one may exchange rewrite rule list and tail list (yielding subsets).

subseteq list(rewrite rule list(tail list(k); R); tail list(rewrite list(k;R))) (304)

We prove the conjecture by induction w.r.t. tail list (resp. w.r.t. rewrite rule list). The base case is easy and

in the step case, the induction conclusion can be transformed into the hypothesis and (141), (103), (284). In

a similar way one can also prove

subseteq list(rewrite rule list(�rst list(k); R); �rst list(rewrite list(k;R))): (305)

62

6.36 Exchanging rewrite list and tail list (pc)

The next conjecture says that one may exchange rewrite list and tail list (yielding subsets).

subseteq list(rewrite list(tail list(k); R); tail list(rewrite list(k;R))) (306)

The conjecture can be proved by induction w.r.t. rewrite list. The base case is trivial and in the step case

the induction conclusion can be reduced to the induction hypothesis, (141), (103), and (304). In a similar

way one can also prove

subseteq list(rewrite list(�rst list(k); R); �rst list(rewrite list(k;R))): (307)

6.37 subseteq list of rewrite rule list with tail list (pc)

The following theorem says that if no new terms can be generated from k with one rule, then this also holds

for tail list.

subseteq list(rewrite rule list(k; l; r); k)) subseteq list(rewrite rule list(tail list(k); l; r); tail list(k)) (308)

By (96) and (304), this can be transformed into

subseteq list(rewrite rule list(k; l; r); k)) subseteq list(tail list(rewrite rule list(k; l; r)); tail list(k)):

This is a consequence of (145).

6.38 subseteq list of rewrite list with �rst list and tail list (pc)

The following theorem says that if no new terms can be generated from k with a TRS, then this also holds

for �rst list and tail list.

subseteq list(rewrite list(k;R); k)) subseteq list(rewrite list(�rst list(k); R); �rst list(k))

^ subseteq list(rewrite list(tail list(k); R); tail list(k)) (309)

We will only show the proof of

subseteq list(rewrite list(k;R); k)) subseteq list(rewrite list(tail list(k); R); tail list(k))

(the proof of the corresponding statement for �rst list works in an analogous way). The above statement can

be proved by induction w.r.t. rewrite list using (86), (96), (101), and (308).

6.39 subseteq list of rewrite rule list with tail list (Version 1) (pc)

The following theorem says that the elements of tail list(rewrite rule list(k; l; r)) only come from tail list(k)

and rewrite rule list(tail list(k); l; r).

member(t; tail list(rewrite rule list(k; l; r))))

member(t; tail list(k)) _member(t; rewrite rule list(tail list(k); l; r)) (310)

We prove the conjecture by induction w.r.t. tail list (resp. w.r.t. rewrite rule list). The base case is easy and

in the step case, the induction conclusion can be transformed into the hypothesis and (141), (113), (94),

(99), (101), and (285).

63

6.40 subseteq list of rewrite list with tail list (Version 2) (pc)

The following theorem says that the elements of tail list(rewrite list(k;R)) only come from tail list(k) and

rewrite list(tail list(k); R).

member(t; tail list(rewrite list(k;R)))) member(t; tail list(k)) _member(t; rewrite list(tail list(k); R)) (311)

The theorem can be proved by induction w.r.t. rewrite list using (141), (113), (94), (99), (101), and (310).

In an analogous way one can also prove

member(t; �rst list(rewrite list(k;R)))) member(t; �rst list(k)) _member(t; rewrite list(�rst list(k); R)):

(312)

6.41 Instantiated Left-Hand Sides are Replaced by Instantiated Right-Hand

sides by rewrite rule list (pc)

This conjecture says that if an instantiated left-hand side is a member of k, then the corresponding instan-

tiated right-hand side is a member of rewrite rule list(k; l; r).

length(l) = s(0) ^ length(r) = s(0) ^ subseteq(vars(r); vars(l))^

�rst is func(l) ^member(apply subst(�; l); k))

member(apply subst(�; r); rewrite rule list(k; l; r)) (313)

The conjecture follows from (288), (94), (287), and (277).

6.42 disjoint list of rewrite rule list and apply subst list (pc)

The following theorem says that if none of the terms in apply subst list(k

0

; r) can be reached from k with the

rule l ! r, then k and apply subst list(k

0

; l) are disjoint.

length(l) = s(0) ^ length(r) = s(0) ^ subseteq(vars(r); vars(l))^

�rst is func(l) ^ disjoint list(rewrite rule list(k; l; r); apply subst list(k

0

; r)))

disjoint list(k; apply subst list(k

0

; l)) (314)

Using (124), we can transform the conjecture into

disjoint list(apply subst list(k

0

; r); rewrite rule list(k; l; r))) disjoint list(apply subst list(k

0

; l); k):

Now we perform an induction w.r.t. apply subst list. In the case member(apply subst(�; l); k) the conjecture

follows from (313). Otherwise the induction conclusion can be transformed into the induction hypothesis.

6.43 disjoint list of rewrite list and apply subst list (pc)

The following theorem says that if none of the terms in apply subst list(k

0

; r) can be reached from k and if

l! r is a rule of R, then k and apply subst list(k

0

; l) are disjoint.

trs(R) ^ disjoint list(rewrite list(k;R); apply subst list(k

0

; r)) ^ in(l; r; R)) disjoint list(k; apply subst list(k

0

; l))

(315)

This can be proved by induction w.r.t. in. If l = �rst(R) and r = second(R), then the conjecture follows from

(122), (92), (99), (169), (170), and (314). In the other step case, the induction conclusion can be reduced to

the induction hypothesis, (122), (92), (101), (169), (170), and (314).

64

6.44 Exchanging apply subst tll and rewrite list (pc)

The next theorem states the connection one obtains when exchanging apply subst tll and rewrite list

subseteq list(apply subst tll(�; rewrite list(k;R)); rewrite list(apply subst tll(�; k); R)) (316)

Using Rule 1

00

, we apply an induction w.r.t. rewrite list. The case R = e is trivial and in the case R =

func(n; s; t) we obtain the induction conclusion

subseteq list(apply subst tll(�; append(rewrite rule list(k; func(n; s; e); �rst(t)); rewrite list(k; tail(t))));

append(rewrite rule list(apply subst tll(�; k); func(n; s; e); �rst(t));

rewrite list(apply subst tll(�; k); tail(t)))):

Using (223), (224), (26), and (99), (101), (96), and (86), this can be transformed into the induction hypothesis

and (after generalization) into

subseteq list(apply subst tll(�; rewrite rule list(k; l; r)); rewrite rule list(apply subst tll(�; k); l; r)):

This conjecture is now proved by induction w.r.t. rewrite rule list. The base case (k = empty) is again trivial.

In the step case one proceeds in an analogous way as above. In this way this conjecture is transformed into

subseteq list(apply subst tll(�; rewrite rule(t; l; r)); rewrite rule(apply subst(�; t); l; r)):

Finally, this conjecture is proved by induction w.r.t. rewrite rule. The base case is again trivial. In the case

t = var(m; q), the induction conclusion can be transformed (using (221), (222)) into the following formula

subseteq list(append list(p; apply subst tll(�; rewrite rule(q; l; r)));

rewrite rule(addterm(p; apply subst(�; q)); l; r)):

By induction (resp. case analysis) w.r.t. addterm and (101) in both cases the conjecture can be reduced to

subseteq list(append list(p; apply subst tll(�; rewrite rule(q; l; r)));

append list(p; rewrite rule(apply subst(�; q); l; r))):

Now the conjecture follows from the induction hypothesis and (165).

In a similar way one can also prove the conjecture

def(rewrite list(apply subst tll(�; k); R)) ^ trs(R)) def(apply subst tll(�; rewrite list(k;R))) (317)

because rewrite list is total if R is a TRS (268).

6.45 Monotonicity of rewrite list (pc)

The next theorem states that the list of all terms obtained by rewriting using rules of R is a subset of those

terms obtained by rewriting using the whole TRS R.

in(l; r; R) ^ in(l

0

; r

0

; R))

subseteq list(rewrite list(k; addterm(l

0

; addterm(r

0

; addterm(l; addterm(r; e))))); rewrite list(k;R)) (318)

By symbolic evaluation and Rule 4

00

this can be transformed into (86), (28), and

in(l; r; R)) subseteq list(rewrite rule list(k; l; r); rewrite list(k;R)):

This theorem can be proved by induction w.r.t. rewrite list. The base case (R = e) is trivial. In the step

case we have R = func(n; s; t). Evaluation of in(l; r; func(n; s; t) suggests the following case analysis. If

l = func(n; s; e) and r = �rst(t), then the conjecture is a consequence of (99). Otherwise the induction

conclusion can be transformed into the induction hypothesis.

65

6.46 Stability of rewrites list* exists under Subsets

This theorem says that if a term in k

1

can be reached from k, then this also holds for any superlist k

2

.

subseteq list(k

1

; k

2

) ^ rewrites list* exists(k; k

1

; R)) rewrites list* exists(k; k

2

; R) (319)

It can easily be proved by induction w.r.t. rewrites list* exists(k; k

1

; R) using (122). (This proof was also

sketched in [9].) Note that in this way we proved inductive truth of this conjecture (instead of just partial

truth). This stronger statement is needed in the proof of subsequent theorems. (For example, in the

proof of (396) it is needed to ensure that the truth of rewrites list* exists(: : : ; k; : : :) implies de�nedness of

rewrites list* exists(: : : ; append(k; rewrite list(k;R)); : : :).)

6.47 rewrites rule list* exists implies rewrites list* exists

The next theorem states that if an element of k

1

reduces to an element of k with a rule from R, then this

also works with the whole trs R.

rewrites rule list* exists(k

1

; k; l; r) ^ in(l; r; R) ^ subseteq list(k

1

; k

2

)) rewrites list* exists(k

2

; k; R) (320)

We prove the conjecture by induction w.r.t. rewrites list* exists(k

1

; k; l; r).

In the case subseteq list(rewrite list(k

2

; R); k

2

), we �rst add the premise ge(setdi�(k

2

; k

1

); setdi�(k

2

; k

1

))

which we then generalize to ge(n; setdi�(k

2

; k

1

)). Now we perform another induction w.r.t. n and k

1

(this

is a structural induction about n, where k

1

is changed as in the algorithm rewrites rule list* exists, cf. the

extension of Rule 1

00

and 2

00

by allowing arbitrary instantiations in induction hypotheses [9]). If n = 0, then

by (136), (290), (292), (96) we know that subseteq list(rewrite rule list(k

1

; l; r); k

1

) also holds, i.e. in this case

the conjecture is trivial. If n = s(m), in the only interesting case for k

1

, we obtain the following induction

conclusion (of the inner n-induction).

rewrites rule list* exists(append(k

1

; rewrite rule list(k

1

; l; r)); k; l; r) ^ in(l; r; R)^

subseteq list(k

1

; k

2

) ^ ge(s(m); setdi�(k

2

; k

1

))

) false:

By (99), (292), and (138) this can be transformed into the induction hypothesis.

Finally we prove the remaining case of the outer rewrites list* exists-induction. Here, the induction

conclusion follows from the induction hypothesis, (290), and (292).

6.48 Stability of rewrites rule list* under Subsets

The following theorem states that if s can be reached from a list k

1

, then this also holds for every superlist

k

2

.

subseteq list(k

1

; k

2

) ^ rewrites rule list*(k

1

; s; l; r)) rewrites rule list*(k

2

; s; l; r) (321)

The conjecture can be proved by induction w.r.t. rewrites rule list*(k

1

; s; l; r). If member(s; k

1

) then the

conjecture follows from (94).

In the case subseteq list(rewrite rule list(k

2

; l; r); k

2

), we proceed in a similar way as in the proof of (320).

Hence, we add the premise ge(setdi�(k

2

; k

1

); setdi�(k

2

; k

1

)) which we then generalize to ge(n; setdi�(k

2

; k

1

)).

Now we perform another induction w.r.t. n and k

1

. If n = 0, then (136), (292), and (96) imply subseteq list(

rewrite rule list(k

1

; l; r); k

1

), i.e. in this case the conjecture is trivial. If n = s(m), in the only interesting case

for k

1

, we obtain the following induction conclusion (of the inner n-induction).

subseteq list(k

1

; k

2

) ^ ge(s(m); setdi�(k

2

; k

1

))^

rewrites rule list*(append(k

1

; rewrite rule list(k

1

; l; r)); s; l; r))

rewrites rule list*(append(k

2

; rewrite rule list(k

2

; l; r)); s; l; r)

By (99), (292), and (138) this can be transformed into the induction hypothesis.

Finally we prove the remaining case of the outer rewrites rule list*-induction. Here, the induction conclu-

sion follows from the induction hypothesis, (103), and (292).

66

6.49 Stability of rewrites list* under Subsets

The following theorem says that if t can be reached from an element of k

1

in the TRS R, then this also

works with any superset k

2

.

rewrites list*(k

1

; t; R) ^ subseteq list(k

1

; k

2

)) rewrites list*(k

2

; t; R) (322)

The conjecture can be proved by induction w.r.t. rewrites list*(k

1

; t; R) (where k

2

is also changed appropri-

ately, i.e. we again use a merged induction relation whose well-foundedness is guaranteed by def(rewrites list*(

k

1

; t; R))). If member(t; k

1

) then the conjecture follows from (94).

In the case subseteq list(rewrite list(k

2

; R); k

2

), we proceed in a similar way as in the proofs of (320) and

(321). Hence, we add the premise ge(setdi�(k

2

; k

1

); setdi�(k

2

; k

1

)) which we then generalize to ge(n; setdi�(k

2

;

k

1

)). Now we perform another induction w.r.t. n. If n = 0, then (136), (293), and (96) imply subseteq list(

rewrite list(k

1

; R); k

1

), i.e. in this case the conjecture is trivial. If n = s(m), in the only interesting case for

k

1

, we obtain the following induction conclusion (of the inner n-induction).

subseteq list(k

1

; k

2

) ^ ge(s(m); setdi�(k

2

; k

1

)) ^ rewrites list*(append(k

1

; rewrite list(k

1

; R)); t; R))

rewrite list(append(k

2

; rewrite list(k

2

; R)); t; R)

By (99), (293), and (138) this can be transformed into the induction hypothesis.

Finally we prove the remaining case of the outer rewrites list*-induction. Here, the induction conclusion

follows from the induction hypothesis, (103), and (293).

6.50 Stability of rewrites* and rewrites list* under Substitutions

The next theorem is the stability of reductions under substitutions.

def(apply subst(�; s)) ^ def(apply subst(�; t)) ^ rewrites*(s; t; R))

rewrites*(apply subst(�; s); apply subst(�; t); R) (323)

The theorem can be generalized to

def(apply subst tll(�; k)) ^ def(apply subst(�; t)) ^ rewrites list*(k; t; R))

rewrites list*(apply subst tll(�; k); apply subst(�; t); R): (324)

It can be proved by induction w.r.t. rewrites list*(k; t; R). If member(t; k), then the conjecture follows from

(225). If subseteq list(rewrite list(k;R); k), then the conjecture is trivial. Otherwise the induction conclusion

can be evaluated to

def(: : :) ^ def(: : :) ^ rewrites list*(append(k; rewrite list(k;R)); t; R))

rewrites list*(apply subst tll(�; k); apply subst(�; t); R):

In the case subseteq list(rewrite list(apply subst tll(�; k); R); apply subst tll(�; k)), we have

subseteq list(apply subst tll(�; append(k; rewrite list(k;R))); apply subst tll(�; k))

by (223), (103), (96), (316), and (86). Hence, by (322) the induction conclusion can be transformed into the

induction hypothesis. Otherwise the induction conclusion can be evaluated to

def(: : :) ^ def(: : :) ^ rewrites list*(append(k; rewrite list(k;R))t; R))

rewrites list*(append(apply subst tll(�; k); rewrite rule(apply subst tll(�; k); R)); apply subst(�; t); R):

This can be transformed into the induction hypothesis and (223), (103), (96), (316), (322).

67

6.51 Splitting Appended Lists when using rewrites rule list*

The next conjecture states a kind of converse to the above conjecture.

rewrites rule list*(append(k

1

; k

2

); t; l; r)) rewrites rule list*(k

1

; t; l; r)_

:

rewrites rule list*(k

2

; t; l; r): (325)

We prove the conjecture by induction w.r.t. rewrites rule list*. (Formally, we replace append(k

1

; k

2

) by a new

variable k and add the premise k = append(k

1

; k

2

). Now k

1

and k

2

are also changed appropriately by the

induction relation, i.e. we use the merged induction relations of all three calls of rewrites rule list*.) The

cases k

1

= empty or k

2

= empty can easily be proved. In the case member(t; append(k

1

; k

2

)) the conjecture

follows from (113). If

subseteq list(rewrite rule list(append(k

1

; k

2

); l; r); append(k

1

; k

2

));

then the proof is trivial. Otherwise, the induction conclusion is

rewrites rule list*(append(append(k

1

; k

2

); rewrite rule list(append(k

1

; k

2

); l; r))t; l; r))

rewrites rule list*(k

1

; t; l; r)_

:

rewrites rule list*(k

2

; t; l; r):

Due to (321) and (103), this can be transformed into

rewrites rule list*(append(append(k

1

; k

2

); rewrite rule list(append(k

1

; k

2

); l; r))t; l; r))

rewrites rule list*(append(k

1

; rewrite rule list(k

1

; l; r))t; l; r)_

:

rewrites rule list*(append(k

1

; rewrite rule list(k

2

; l; r))t; l; r)

even if subseteq list(rewrite rule list(k

1

); k

1

) or subseteq list(rewrite rule list(k

2

); k

2

) holds. Using (286), (72),

and

rewrites rule list*(append(k; k

0

); t; l; r)) rewrites rule list*(append(k

0

; k); t; l; r)

(which holds due to (321) and (115)), this can now be reduced further to the induction hypothesis.

6.52 Connection between rewrites rule list* and add�rst

The next conjecture states that one may add a new �rst element to the �rst two arguments of

rewrites rule list*.

rewrites rule list*(k; tail(t); l; r)) rewrites rule list*(add�rst(�rst(t); k); t; l; r) (326)

The conjecture is proved by induction w.r.t. rewrites rule list*(k; tail(t); l; r). If k = empty then the proof is

trivial. Ifmember(tail(t); k), then the proof is done using (160). If subseteq list(rewrite rule list(add�rst(�rst(t);

k); l; r); add�rst(�rst(t); k)), then the conjecture follows from (302). Otherwise, the induction conclusion can

be transformed into the induction hypothesis, (321), and

subseteq list(add�rst(�rst(t); append(k; rewrite rule list(k; l; r)));

append(add�rst(�rst(t); k); rewrite rule list(add�rst(�rst(t); k); l; r))):

This conjecture can be proved using (157), (299), and (103).

6.53 Connection between rewrites rule list* and addtail

The next conjecture states that rewrites rule list* applied to addtail may be split.

rewrites rule list*(k; �rst(t); l; r) ^ rewrites rule(s; tail(t); l; r)) rewrites rule list*(addtail(k; s); t; l; r) (327)

The conjecture is proved by induction w.r.t. rewrites rule list*(k; �rst(t); l; r). If k = empty then the proof

is straightforward. If member(�rst(t); k), then the proof is done using (159), (321), (326). If subseteq list(

rewrite rule list(addtail(k; s); l; r); addtail(k; s)), then the conjecture follows from (301). Otherwise, the induc-

tion conclusion can be transformed into the induction hypothesis, (321), and

subseteq list(addtail(append(k; rewrite rule list(k; l; r)); s);

append(addtail(k; s); rewrite rule list(addtail(k; s); l; r))):

This conjecture can be proved using (156), (298), and (103).

68

6.54 Decomposing rewrites rule list* with all combinations

The following theorem says that rewrites rule list* can be split using �rst and tail.

rewrites rule list*(k

1

; �rst(t); l; r) ^ rewrites rule list*(k

2

; tail(t); l; r) ^ def(all combinations(k

1

; k

2

)))

rewrites rule list*(all combinations(k

1

; k

2

); t; l; r) (328)

The theorem is proved by induction w.r.t. all combinations. The base case is trivial and in the case k

2

=

add(s; k

0

) we obtain the induction conclusion

rewrites rule list*(k

1

; �rst(t); l; r) ^ rewrites rule list*(add(s; k

0

); tail(t); l; r) ^ def(: : :))

rewrites rule list*(append(addtail(k

1

; s); all combinations(k

1

; k

0

)); t; l; r):

Using (327), (325), and (321), the induction conclusion can be transformed into the induction hypothesis.

6.55 Decomposing rewrites rule* with �rst and tail

The following theorem says that rewrites rule* can be split using �rst and tail.

rewrites rule*(�rst(s); �rst(t); l; r) ^ rewrites rule*(tail(s); tail(t); l; r)) rewrites rule*(s; t; l; r) (329)

The theorem can be evaluated and transformed into (328).

6.56 Applying appendterm in the Arguments of rewrites rule*

The following conjecture says that one may append a term without changing the result of rewrites rule*.

rewrites rule*(t; q; l; r) ^ def(s)) rewrites rule*(appendterm(s; t); appendterm(s; q); l; r) (330)

The conjecture can be proved by induction w.r.t. appendterm. In both step cases, the induction conclusion

can be transformed into the induction hypothesis and (329).

6.57 Decomposing rewrites rule list* with apply

The next conjecture says that if an element of k rewrites to u, then an element of apply(n; k) rewrites to

func(n; u; e).

rewrites rule list*(k; u; l; r) ^ def(n)) rewrites rule list*(apply(n; k); func(n; u; e); l; r): (331)

The conjecture is proved by induction w.r.t. rewrites rule list*(k; u; l; r). The case k = empty is trivial.

If member(u; k), then the conjecture follows from (161). If subseteq list(rewrite rule list(apply(n; k); l; r);

apply(n; k)), then the conjecture can be proved using (296). Finally, in the remaining case, the induction

conclusion can be transformed into the induction hypothesis, (158), (294), and (321).

6.58 Decomposing rewrites rule* with Contexts

The following theorem says that rewrites rule* can be split using the function context.

rewrites rule*(q; t; l; r)^rewrites rule*(s; u; l; r)^def(n)) rewrites rule*(func(n; s; q); func(n; u; t); l; r): (332)

The theorem is a consequence of (329) and (331).

69

6.59 Connection between rewrite

�

all and append list

The next conjecture says something similar about rewrite

�

all and append list.

rewrite

�

all(t; k; l; r) ^ def(s)) rewrite

�

all(appendterm(s; t); append list(s; k); l; r) (333)

The conjecture is proved by induction w.r.t. append list. If k = empty, then the conjecture is trivially proved.

Otherwise (if k = add(q; k

0

)), the induction conclusion is

rewrites rule*(t; q; l; r) :̂ rewrite

�

all(t; k

0

; l; r))

rewrites rule*(appendterm(s; t); appendterm(s; q); l; r) :̂

rewrite

�

all(appendterm(s; t); append list(s; k

0

); l; r):

This is a consequence of (330) and the induction hypothesis.

6.60 Stability of rewrites list* all under Subsets

The next conjecture says that if each element of k can be reached from a list k

1

, then this also holds for

every superlist k

2

.

subseteq list(k

1

; k

2

) ^ rewrites list* all(k

1

; k; l; r)) rewrites list* all(k

2

; k; l; r) (334)

The conjecture can be immediately proved by induction w.r.t. rewrites list* all using conjecture (321).

6.61 Stability of rewrites list* exists under Rule Application

The next theorem states the stability of rewrites list* exists under rule application.

rewrites list* exists(k; apply subst list(k

0

; l); R) ^ trs(R) ^ in(l; r; R))

rewrites list* exists(k; apply subst list(k

0

; r); R) (335)

This theorem can be proved by induction w.r.t. rewrites list* exists, where in the case :disjoint list(k;

apply subst list(k

0

; r)) one needs the conjectures (315), (122), (101).

6.62 rewrite rule list implies rewrites rule list* exists

The following theorem states that if t is a member of rewrite rule list(k; l; r), then this can also be veri�ed

using rewrites rule list* exists.

member(t; rewrite rule list(k; l; r)) ^ length(r) = s(0)) rewrites rule list* exists(k; add(t; empty); l; r) (336)

The conjecture is proved by induction w.r.t. rewrites rule list* exists. The base case (k = empty) is trivial.

In the step case (k = add(s; k

0

)), member(t; rewrite rule list(k; l; r)) and disjoint list(add(t; empty); k) imply

subseteq list(rewrite rule list(k; l; r); k) = false. Hence, the induction conclusion can be transformed into the

induction hypothesis, (319), and (101).

6.63 rewrites rule implies rewrites rule list* exists

The next theorem says that if s rewrites to t in one step, then this can also be veri�ed with

rewrites rule list* exists.

rewrites rule(s; t; l; r) ^ length(r) = s(0)) rewrites rule list* exists(add(s; empty); add(t; empty); l; r) (337)

This theorem is a consequence of (287), (288), and (336).

70

6.64 rewrites rule implies rewrites list* exists

The next theorem says something similar about rewrites list* exists.

rewrites rule(s; t; l; r) ^ in(l; r; R)) rewrites list* exists(add(s; empty); add(t; empty); R) (338)

This conjecture can be transformed into (69), (320), and (337).

6.65 rewrites rule implies rewrites list* all

The following theorem is a similar conjecture for rewrites list* all.

rewrites rule(s; t; l; r)) rewrites list* all(add(s; empty); add(t; empty); l; r) (339)

We perform symbolic evaluation on rewrites list* all according to Rule 3

00

. In the case t = s, the theorem is

easily proved. Otherwise, by (55) and (287), we obtain that subseteq list(rewrite rule(s; l; r); add(s; e)) = false.

Hence, the conclusion of the implication can be evaluated to

rewrites rule list*(append(add(s; empty); rewrite rule(s; l; r)); t; l; r):

This in turn can be evaluated to true, because (287), (99), and (94) imply member(t; rewrite rule(s; l; r)).

6.66 rewrite

�

all implies rewrites list* all

The next theorem shows that rewrite

�

all implies rewrites list* all.

rewrite

�

all(t; k; l; r)) rewrites list* all(add(t; empty); k; l; r) (340)

The theorem can be proved by an easy induction w.r.t. rewrite

�

all. The induction conclusion can be directly

reduced to the induction hypothesis.

6.67 rewrites list* all implies rewrites rule list*

The next conjecture states that if every element of k

2

can be reached from k

1

and s is a member of k

2

, then

s can also be reached from k

1

.

member(s; k

2

) ^ rewrites list* all(k

1

; k

2

; l; r)) rewrites rule list*(k

1

; s; l; r) (341)

The conjecture is easily proved by Rule 1

00

(using induction w.r.t. member).

6.68 rewrites rule list* implies rewrites rule list* exists

The next theorem shows the connection between rewrites rule list* and rewrites rule list* exists.

member(s; k

2

) ^ rewrites rule list*(k

1

; s; l; r)) rewrites rule list* exists(k

1

; k

2

; l; r) (342)

We prove the conjecture by induction w.r.t. rewrites rule list*. The cases k

1

= empty or k

2

= empty can

easily be veri�ed. Otherwise, in the only interesting case we have disjoint list(k

1

; k

2

). By (118), this implies

member(s; k

1

) = false. Hence, in this case the induction conclusion can be evaluated to the induction

hypothesis.

6.69 rewrites rule* implies rewrite

�

exists

The next theorem is the correctness theorem for rewrite

�

exists.

member(t; k) ^ rewrites rule*(s; t; l; r)) rewrite

�

exists(s; k; l; r)) (343)

By symbolic evaluation and generalization, it can be transformed into (342).

71

6.70 rewrites list* all implies rewrites rule list* exists for Non-Disjoint Lists

The next theorem states that if all elements of k

3

can be reached from k

2

where k

3

and k

1

are not disjoint,

then there exists an element of k

1

which reachable from k

2

.

not(disjoint list(k

1

; k

3

)) ^ rewrites list* all(k

2

; k

3

; l; r)) rewrites rule list* exists(k

2

; k

1

; l; r) (344)

We prove the conjecture by induction w.r.t. disjoint list. The base case k

1

= empty is trivial. If k

1

= add(s; k

0

)

and member(s; k

3

), then the conjecture follows from (341) and (342). If k

1

= add(s; k

0

) and member(s; k

3

) =

false, then the induction conclusion can be reduced to the induction hypothesis, (334), and (101).

6.71 Splitting rewrites rule list* exists (pc)

The next theorem says that if an element of add(t; k

0

) can be reached from k, then either t can already be

reached from k or an element of k

0

can be reached from k.

rewrites rule list* exists(k; add(t; k

0

); l; r)) rewrites rule list*(k; t; l; r) _ rewrites rule list* exists(k; k

0

; l; r)

(345)

This conjecture can be proved by a straightforward induction w.r.t. rewrites rule list* (or also w.r.t.

rewrites rule list* exists). In a similar way one can also prove

def(rewrites rule list*(k; t; l; r)) ^ def(k

0

)) def(rewrites rule list* exists(k; add(t; k

0

); l; r)) (346)

def(rewrites rule list* exists(k; k

0

; l; r)) ^ def(t)) def(rewrites rule list* exists(k; add(t; k

0

); l; r)) (347)

6.72 rewrite

�

exists for First Elements and Tails of Termlists

The following theorem relates rewrite

�

exists for �rst elements and tails of termlists.

rewrite

�

all(�rst(s); �rst list(k); l; r) ^ rewrite

�

exists(tail(s); tail list(k); l; r)) rewrite

�

exists(s; k; l; r) (348)

We prove the conjecture by structural induction on k. If k = empty, then tail list(k) = empty, hence the

conjecture is trivial. Otherwise, we have k = add(t; k

0

) and rewrite

�

all(�rst(s); �rst list(k); l; r) is evaluated to

rewrites rule*(�rst(s); �rst(t); l; r) :̂ rewrite

�

all(�rst(s); �rst list(k

0

); l; r). Note that by (345), (346), and (347),

we can replace rewrite

�

exists(tail(s); tail list(k); l; r) by rewrites rule*(tail(s); tail(t); l; r)_rewrite

�

exists(tail(s);

tail list(k

0

); l; r). If the �rst part of this disjunction is true, then the conjecture can be proved using (329)

and (343). Otherwise, the induction conclusion is implied by the hypothesis and (319).

6.73 rewrite

�

exists for Contexts

The following theorem relates rewrite

�

exists for contexts.

rewrite

�

all(q; apply subst list(k; t); l; r) ^ rewrite

�

exists(s; apply subst list(k; u); l; r))

rewrite

�

exists(func(n; s; q); apply subst list(k; func(n; u; t); l; r)) (349)

The proof is similar to the proof of (348), i.e. we prove the conjecture by structural induction on k (resp.

by induction w.r.t. apply subst list). If k = empty, then the conjecture is trivial. Otherwise, we have k =

add(�; k

0

) and rewrite

�

all(q; apply subst list(k; t); l; r) is evaluated to rewrites rule*(q; apply subst(�; t); l; r) :̂

rewrite

�

all(q; apply subst list(k

0

; t); l; r). By (345), (346), and (347), we can replace rewrite

�

exists(s;

add(apply subst(�; u); apply subst list(k

0

; u)); l; r) by rewrites rule*(s; apply subst(�; u); l; r) _ rewrite

�

exists(s;

apply subst list(k

0

; u); l; r). If the �rst part of this disjunction is true, then the conjecture can be proved using

(332) and (343). Otherwise, the induction conclusion is implied by the hypothesis and (319).

72

6.74 Correctness of rewrite rule (pc)

The following conjecture says that if func(n; u; e) can be rewritten on top position, then the result of this

rewrite is also computed by rewrite rule.

matches(l; func(n; u; e)))

member(apply subst(matcher(l; func(n; u; e)); r); rewrite rule(func(n; u; e); l; r)) (350)

This conjecture can be proved by (94), (99), and repeated symbolic evaluation.

6.75 rewrites rule implies rewrites rule* (pc)

The next theorem says that if s rewrites to t in one step, then s also rewrites to t in arbitrary many steps

(i.e. rewrites rule is a sub-relation of rewrites rule*).

rewrites rule(s; t; l; r)) rewrites rule*(s; t; l; r) (351)

The theorem can be proved by induction w.r.t. rewrites rule. The base case s = e is trivial. The case

s = var(n; s

0

) follows from the induction hypothesis and (329). If s = func(n; u; s

0

) we have to regard three

cases according to the de�nition of rewrites rule. In the �rst case, the conjecture again follows from (329).

In the second case one needs (332). The third case can be proved by (350) and (329).

6.76 Correctness of rewrite

�

all (pc)

The following theorem is the correctness theorem for rewrite

�

all.

member(t; k) ^ rewrite

�

all(s; k; l; r)) rewrites rule*(s; t; l; r) (352)

It can be proved by a straightforward induction w.r.t. member.

6.77 Splitting rewrite

�

all using addterm and addtermtwice (pc)

The following lemma states that rewrite

�

all can be split using addterm and addtermtwice.

rewrite

�

all(s; k

1

; l; r) ^ rewrite

�

all(t; k

2

; l; r)) rewrite

�

all(addterm(s; t); addtermtwice(k

1

; k

2

); l; r) (353)

It can be proved by induction w.r.t. addtermtwice. The base case is trivial and in the step case one also

needs (329). In a similar way one can also prove

def(rewrite

�

all(addterm(s; t); addtermtwice(k

1

; k

2

); l; r)))

def(rewrite

�

all(s; k

1

; l; r)) ^ def(rewrite

�

all(t; k

2

; l; r)): (354)

6.78 Splitting rewrite

�

all using append (pc)

The following lemma states a similar conjecture for rewrite

�

all and append.

rewrite

�

all(s; k

1

; l; r) ^ rewrite

�

all(s; k

2

; l; r)) rewrite

�

all(s; append(k

1

; k

2

); l; r) (355)

It can easily be proved by induction w.r.t. append. In this way one can also prove

def(rewrite

�

all(s; append(k

1

; k

2

); l; r))) def(rewrite

�

all(s; k

1

; l; r)) ^ def(rewrite

�

all(s; k

2

; l; r)): (356)

6.79 Splitting rewrite

�

all using applytwice (pc)

The following theorem shows how rewrite

�

all can be decomposed using applytwice.

rewrite

�

all(s; k

1

; l; r) ^ rewrite

�

all(t; k

2

; l; r)) rewrite

�

all(func(n; s; t); applytwice(n; k

1

; k

2

); l; r) (357)

It can easily be proved by induction w.r.t. applytwice using (332).

73

6.80 Splitting rewrite

�

all using apply (pc)

The following theorem shows a similar fact for apply.

rewrite

�

all(s; k; l; r)) rewrite

�

all(func(n; s; t); addtail(apply(n; k); t)) (358)

This conjecture can be proved in a similar way using an induction w.r.t. apply and the conjecture (332).

6.81 rewrites rule* implies rewrite

�

all if a List only Contains one Element (pc)

The next conjecture says that if s rewrites to t, then s also rewrites to all elements in a list consisting only

of t's.

rewrites rule*(s; t; l; r) ^ onlyconsistsof(k; t)) rewrite

�

all(s; k; l; r) (359)

The proof is easily done by induction w.r.t. onlyconsistsof using (55). In this way one can also prove

def(rewrite

�

all(s; k; l; r)) ^ onlyconsistsof(k; t)) def(rewrites rule*(s; t; l; r)): (360)

6.82 Connection between rewrite

�

all and rewrite rule (pc)

The following conjecture states an obvious connection between rewrite

�

all and rewrite rule.

rewrite

�

all(t; rewrite rule(t; l; r); l; r) (361)

The conjecture is proved by induction w.r.t. rewrite rule. In the case where t = e it can be evaluated to true.

If t = var(n; t

0

), then the induction conclusion is transformed into

rewrite

�

all(var(n; t

0

); append list(var(n; e); rewrite rule(t

0

; l; r)); l; r):

Rule 4

00

transforms this into the induction hypothesis and the conjecture (333). Finally, we consider the case

where t = func(n; u; t

0

). Using (355) and (356), the induction conclusion is transformed into

rewrite

�

all(func(n; u; t

0

); addtail(if(: : :); t

0

); l; r)

and

rewrite

�

all(func(n; u; t

0

); append list(func(n; u; e); rewrite rule(t

0

; l; r)); l; r):

The second conjecture can be proved using the induction hypothesis and (333). For the �rst conjecture we

perform a case analysis w.r.t. matches(l; func(n; u; e)).

Case 1: matches(l; func(n; u; e)) = false

We have to prove

rewrite

�

all(func(n; u; t

0

); addtail(apply(n; rewrite rule(u; l; r)); t

0

); l; r)

which is a consequence of the induction hypothesis and (358).

Case 2: matches(l; func(n; u; e)) = true

Now the induction conclusion can be evaluated to

rewrite

�

all(func(n; u; t

0

);

add(addterm(apply subst(matcher(l; func(n; u; e)); r); t

0

);

addtail(apply(n; rewrite rule(u; l; r)); t

0

)); l; r)

which can be further evaluated to

rewrites rule*(func(n; u; t

0

); addterm(apply subst(matcher(l; func(n; u; e)); r); t

0

); l; r)

:̂ rewrite

�

all(func(n; u; t

0

); addtail(apply(n; rewrite rule(u; l; r)); t

0

); l; r):

The second conjunct is proved as in Case 1. The �rst conjunct can be transformed into (329), (351), and

rewrites rule(func(n; u; e); apply subst(matcher(l; func(n; u; e)); r); l; r)

which can be proved by symbolic evaluation.

74

6.83 Rewriting via Substitutions Carries Over To Terms (pc)

This lemma states that if � is modi�ed by rewriting one term in the range (yielding the substitution �

0

),

then for every term t we have that �(t) rewrites to �

0

(t).

rewrite

�

all(apply subst(�; t); apply subst list(all reductions(�; l; r); t); l; r) (362)

We prove the lemma by induction w.r.t. the algorithm apply subst using Rule 1

00

.

Case 1: t = e

In this case, Rule 3

00

and Rule 5

00

transform the conjecture into

rewrite

�

all(e; apply subst list(k; e); l; r):

This conjecture can be proved by induction w.r.t. apply subst list. If k = empty, then symbolic evaluation

transforms the conjecture to true and if k = add(�; k

0

), then the induction conclusion can be evaluated to

rewrites rule*(e; e; l; r) :̂ rewrite

�

all(e; apply subst list(k

0

; e); l; r):

The �rst part of this conjunction is evaluated to true and the second one is the induction hypothesis.

Case 2: t = var(n; t

0

)

By symbolic evaluation, (61), (210), (211), (353) (using Rule 3

00

and 4

00

), the induction conclusion can be

transformed into the induction hypothesis and into

rewrite

�

all(apply subst var(�; n); apply subst list(all reductions(�; l; r); var(n; e)); l; r):

To prove this conjecture, we use an induction w.r.t. apply subst var. If � = e, then the conjecture can be

proved by symbolic evaluation. Let us now consider the case � = var(m; q). Using (212), (213), (355), and

(356), the conjecture can be split into

rewrite

�

all(apply subst var(var(m; q); n);

apply subst list(append list(var(m; e); addtail(rewrite rule(�rst(q); l; r); tail(q))); var(n; e)); l; r)

and

rewrite

�

all(apply subst var(var(m; q); n);

apply subst list(append list(var(m; �rst(q)); all reductions(tail(q); l; r)); var(n; e)); l; r):

Note that in the case q = e these conjectures are immediately transformed into tautologies. Otherwise, we

examine two cases depending on the result of eq(m;n).

Case 2.1: eq(m;n) = false

Now the two conjectures can be transformed into (214), (215), (217), (218),

rewrite

�

all(apply subst var(tail(q); n);

apply subst list(tail list(addtail(rewrite rule(�rst(q); l; r); tail(q))); var(n; e)); l; r)

(which can be proved using (168), (359), (360), and (220)) and

rewrite

�

all(apply subst var(tail(q); n); apply subst list(all reductions(tail(q); l; r); var(n; e)); l; r)

(which is the induction hypothesis).

75

Case 2.2: eq(m;n) = true

Now the two conjectures can be transformed into (214), (215), (219), (56), (57),

rewrite

�

all(�rst(q); �rst list(addtail(rewrite rule(�rst(q); l; r); tail(q))); l; r)

(which can be proved using (148) and (361)) and

onlyconsistsof(k; �rst(q))) rewrite

�

all(�rst(q); k; l; r)

(which is a consequence of (359) and (360)).

Case 3: t = func(n; u; t

0

)

This time by symbolic evaluation, (208), and (209), the induction conclusion is transformed into

rewrite

�

all(func(n; apply subst(�; u); apply subst(�; t

0

));

applytwice(n; apply subst list(all reductions(�; l; r); u); apply subst list(all reductions(�; l; r); t

0

));

l; r):

This is a consequence of the induction hypotheses and (357).

Similar to (362) one can also prove

def(apply subst(�; t)) ^ def(apply subst list(all reductions(�; l; r); t)))

def(rewrite

�

all(apply subst(�; t); apply subst list(all reductions(�; l; r); t); l; r)): (363)

7 Theorems about Narrowing

In this section we prove theorems about the algorithms which compute narrowing.

7.1 De�nedness of is narrowlist, add narrowlist, apply narrowlist, back narrowlist,

remove subst

The next theorems state that is narrowlist is total and that add narrowlist, apply narrowlist, back narrowlist,

and remove subst are de�ned for lists which represent narrowings. They can easily be proved by induction

w.r.t. is narrowlist.

def(k)) def(is narrowlist(k)) (364)

def(n; l) ^ is narrowlist(l)) def(apply narrowlist(n; l)) (365)

def(t; l) ^ is narrowlist(l) ^ length(t) = s(0)) def(add narrowlist(t; l)) (366)

def(t; l) ^ is narrowlist(l)) def(back narrowlist(l; t)) (367)

def(l) ^ is narrowlist(l)) def(remove subst(l)) (368)

7.2 Preservation of is narrowlist under add narrowlist, apply narrowlist, back narrowlist

(pc)

The following theorems state that if add narrowlist, apply narrowlist, or back narrowlist are applied to a list

representing a narrowing, then the resulting list also represents a narrowing.

is narrowlist(l)) is narrowlist(add narrowlist(t; l)) (369)

is narrowlist(l)) is narrowlist(apply narrowlist(n; l)) (370)

is narrowlist(l)) is narrowlist(back narrowlist(l; t)) (371)

These theorems are easily proved by induction w.r.t. is narrowlist.

76

7.3 narrow generates Lists Representing Narrowings (pc)

The following theorem shows that the result of narrow represents a narrowing.

length(r) = s(0)) is narrowlist(narrow(t; l; r)) (372)

The theorem is proved by induction w.r.t. narrow. The base case (t = e) is trivial. The case t = var(n; t

0

) is

easily proved using (369). Finally, the case t = func(n; s; t

0

) follows from (369), (370), (371), (249), (193),

and

is narrowlist(l

1

) ^ is narrowlist(l

2

)) is narrowlist(append(l

1

; l

2

))

which is easily proved.

7.4 De�nedness of special

The following theorem shows that special is de�ned if its �rst argument is a substitution and its third

argument represents a narrowing.

def(�; s; l) ^ is narrowlist(l) ^ is subst(�)) def(special(�; s; l)) (373)

The theorem can easily be proved by induction w.r.t. is narrowlist using already proved theorems about the

de�nedness of special's auxiliary functions.

7.5 Relation between special and append (on the First Argument) (pc)

The following theorem relates special and append (on the �rst argument).

special(�; s; l

1

)) special(�; s; append(l

1

; l

2

)) (374)

By induction w.r.t. special we obtain two induction formulas. The �rst one (in the case l

1

= empty) can

be evaluated to a tautology and in the induction step we obtain the following induction conclusion (after

symbolic evaluation)

special(�; s; add(�; add(q; l

0

1

))) special(�; s; add(�; add(q; append(l

0

1

; l

2

)))):

By symbolic evaluation of special and the induction hypothesis, this conjecture is easily proved.

7.6 Relation between special and append (on the Second Argument) (pc)

The next theorem relates special and append (on the second argument).

hasevenlength(l

1

) ^ special(�; s; l

2

)) special(�; s; append(l

1

; l

2

)) (375)

The theorem is proved by induction w.r.t. hasevenlength. If l

1

= empty or l

1

= add(t

1

; empty), then the proof

is trivial. The only remaining case (l

1

= add(t

1

; add(t

2

; l

0

1

))) yields the following induction conclusion (after

symbolic evaluation)

hasevenlength(l

0

1

) ^ special(�; s; l

2

)) special(�; s; add(t

1

; add(t

2

; append(l

0

1

; l

2

)))):

A case analysis depending on the truth of special(�; t

1

) ^ s = apply subst(t

1

; t

2

) proves the conjecture imme-

diately (resp. reduces the conclusion the induction hypothesis).

77

7.7 Relation between special, back narrowlist, and if (Version 1) (pc)

The next two theorems state facts similar to (374) and (375) using back narrowlist and if.

b ^ special(�; s; back narrowlist(add(�; add(q; empty)); t)))

special(�; s; back narrowlist(if(b; add(�; add(q; l)); l); t)) (376)

By symbolic evaluation, this conjecture is transformed into

special(�; s; back narrowlist(add(�; add(q; empty)); t))) special(�; s; back narrowlist(add(�; add(q; l)); t)):

Now the premise can be evaluated further to

special(�; s; add(�; add(addterm(q; apply subst(�; t)); empty)))

The conjecture trivially holds if the premise is false. Otherwise it can be evaluated to

special subst(�; �) :̂ eqterm(s; apply subst(�; addterm(q; apply subst(�; t)))):

The conclusion can be evaluated to

special(�; s; add(�; add(addterm(q; apply subst(�; t)); back narrowlist(l; t))))

and further to

special subst(�; �) :̂ eqterm(s; apply subst(�; addterm(q; apply subst(�; t))))_

:

: : :

Hence, the premise implies the conclusion.

7.8 Relation between special, back narrowlist, and if (Version 2) (pc)

The following theorem is similar to (376).

special(�; s; back narrowlist(l; t))) special(�; s; back narrowlist(if(b; add(�; add(q; l)); l); t)) (377)

We prove the theorem by a case analysis w.r.t. b using Rule 6

00

. In the case b = false, we obtain a tautology.

Otherwise, the conjecture can be transformed into

special(�; s; back narrowlist(l; t))) special(�; s; back narrowlist(add(�; add(q; l)); t))

and by symbolic evaluation we obtain

special(�; s; back narrowlist(l; t))) special(�; s; add(�; add(addterm(q; apply subst(�; t)); back narrowlist(l; t))))

resp. the tautology

special(�; s; back narrowlist(l; t))) : : : _

:

special(�; s; back narrowlist(l; t)):

7.9 Monotonicity of special w.r.t. addterm (pc)

The following theorem states that adding an instantiated term to the front does not change the result of

special.

special(�; s; l)) special(�; addterm(apply subst(�; r); s); add narrowlist(r; l)) (378)

We prove the conjecture (using Rule 1

00

) by induction w.r.t. special. The base case (l = e) is trivial. For the

step case (l = add(�; add(q; l

0

))), the conclusion of the induction conclusion is evaluated to

special(�; addterm(apply subst(�; r); s); add(�; add(addterm(apply subst(�; r); q); add narrowlist(r; l

0

))))

and further to

special subst(�; �) :̂ eqterm(addterm(apply subst(�; r); s); apply subst(�; addterm(apply subst(�; r); q)))

_

:

special(�; addterm(apply subst(�; r); s); add narrowlist(r; l

0

)):

We consider two cases.

78

Case 1: special subst(�; �) ^ eqterm(s; apply subst(�; q))

Using (184), (185), and (55), the conjecture can be transformed into

addterm(apply subst(�; r); s) = addterm(apply subst(�; apply subst(�; r)); apply subst(�; q))

which (under the premises of this case) can be transformed further into

apply subst(�; r) = apply subst(�; apply subst(�; r)):

Under the above premises, this is a consequence of (253).

Case 2: Otherwise

In this case the induction conclusion can be transformed into the induction hypothesis using Rule 4

00

.

7.10 Monotonicity of special w.r.t. Function Context (pc)

The following theorem states something similar for function context and adding an instantiated term in the

back.

special(�; s; l)) special(�; func(n; s; apply subst(�; r)); back narrowlist(apply narrowlist(n; l); r)) (379)

The conjecture is proved by induction w.r.t. special. The base case (l = e) is trivial. In the step case

(l = add(�; add(q; l

0

))) the induction conclusion can be evaluated (using Rule 3

00

and (55)) to

special subst(�; �) ^ s = apply subst(�; q) _ special(�; s; l

0

))

special subst(�; �) ^ func(n; s; apply subst(�; r)) =

func(n; apply subst(�; q); apply subst(�; apply subst(�; r))) _

special(�; func(n; s; apply subst(�; r)); back narrowlist(apply narrowlist(n; l

0

); r)):

Using Rule 4

00

, this can be transformed further into the induction hypothesis and (253).

7.11 Using special for the Critical Pair Approach (pc)

The following theorem proves the correctness of special's use for the critical pair approach.

length(s) = s(0) ^ length(r) = s(0)^

special(�; s; narrow(l; rename(l

0

; s(max(vars(l)))); rename(r

0

; s(max(vars(l)))))))

in(apply subst(�; r); s; apply subst(�; cp rule(l; r; l

0

; r

0

))) (380)

Using (378), (373), (372), and (70), by Rule 3

00

, 4

00

, and 5

00

, the conjecture can be transformed into

special(�; s; l)) membereven(s; apply subst(�; remove subst(l))):

This conjecture is proved by induction w.r.t. special. If l = e, then it is obviously true. If l = add(�;

add(q; l

0

)), then we consider two cases.

Case 1: special subst(�; �) ^ s = apply subst(�; q)

We have to prove

membereven(s; apply subst(�; appendterm(q; remove subst(l

0

))))

which (using (77) and (55)) can be transformed into

�rst(s) = �rst(apply subst(�; appendterm(q; remove subst(l

0

))))

and

tail(s) = second(apply subst(�; appendterm(q; remove subst(l

0

)))):

These conjectures can be proved by (187), (188), (189), (190), (75), (76), and (61).

79

Case 2: Otherwise

Now the induction conclusion can be transformed into

special(�; s; l

0

)) membereven(s; apply subst(�; appendterm(q; remove subst(l

0

))))

which can be transformed further into the induction hypothesis (similar as in Case 1).

7.12 Soundness of special (pc)

The following theorem is the soundness of special.

� = compose(�; �) ^ s = apply subst(�; q)) special(�; s; add(�; add(q; empty))): (381)

By Rule 3

00

and Rule 4

00

, it can be transformed into (255).

8 Theorems about Joinability

The next section contains theorems about the algorithms which check joinability.

8.1 Reexivity of joinable

This theorem proves the reexivity of joinable.

joinable(t; t) (382)

Its proof can immediately be reduced to the proof of (125).

8.2 Commutativity of Joinability (pc)

Now we show that joinability is commutative.

joinable(s; t; R) = joinable(t; s; R) (383)

joinable list(k

1

; k

2

; R) = joinable list(k

2

; k

1

; R) (384)

Obviously, conjecture (383) is a direct consequence of (384). The latter conjecture is proved by an easy

induction w.r.t. joinable list using (124). In a similar way one can also prove

def(joinable(s; t; R)), def(joinable(t; s; R)) (385)

def(joinable list(k

1

; k

2

; R)), def(joinable list(k

2

; k

1

; R)) (386)

(by showing both directions of the theorems separately and using induction w.r.t. the arguments of joinable list

in the premise).

8.3 Monotonicity of joinable list

The following theorem says that if k

1

and k

2

are joinable, then this also holds for all superlists of k

1

and k

2

.

subseteq list(k

1

; k

0

1

) ^ subseteq list(k

2

; k

0

2

) ^ trs(R) ^ joinable list(k

1

; k

2

; R)) joinable list(k

0

1

; k

0

2

; R) (387)

The proof is done by induction w.r.t. merged induction relations suggested by joinable list(k

1

; k

2

; R) and

joinable list(k

0

1

; k

0

2

; R), cf. the extensions of Rule 1

00

in [9]. If disjoint list(k

0

1

; k

0

2

) = false, then the proof is

trivial. Otherwise we also have disjoint list(k

1

; k

2

) = true (by (122)).

In the case where subseteq list(rewrite list(k

1

; R); k

1

) ^ subseteq list(rewrite list(k

2

; R); k

2

), we proceed in

a similar way as in the proofs of (320), (321), and (322). So we add the premise

ge(setdi�(k

0

1

; k

1

); setdi�(k

0

1

; k

1

)) ^ ge(setdi�(k

0

2

; k

2

); setdi�(k

0

2

; k

2

))

80

which we then generalize to ge(n

1

; setdi�(k

0

1

; k

1

)) ^ ge(n

2

; setdi�(k

0

2

; k

2

)). Now we perform another in-

duction w.r.t. n

1

and n

2

. If n

i

= 0, then (136), (293), and (96) imply subseteq list(rewrite list(k

i

; R);

k

i

). Hence, if both n

1

and n

2

are 0, then the conjecture is trivial. If n

1

= s(m

1

) and n

2

= 0, in the

only interesting case for k

1

and k

2

, we obtain the following induction conclusion (of the inner n

1

-induction).

subseteq list(k

1

; k

0

1

) ^ subseteq list(k

2

; k

0

2

) ^ trs(R) ^ ge(s(m

1

); setdi�(k

0

1

; k

1

))^

ge(0; setdi�(k

0

2

; k

2

)) ^ joinable list(append(k

1

; rewrite list(k

1

; R)); append(k

2

; rewrite list(k

2

; R)); R))

joinable list(append(k

0

1

; rewrite list(k

0

1

; R)); append(k

0

2

; rewrite list(k

0

2

; R)); R)

By (99), (293), (138), (136), and (137), this can be transformed into the induction hypothesis. The cases

where n

2

is not 0 work in an analogous way.

Finally we prove the remaining case of the outer joinable list-induction. Here, the induction conclusion

follows from the induction hypothesis, (103), and (293).

8.4 Joinability from Joinability of Tails (pc)

The following theorem states that for two lists of terms t and s, joinability of t and s follows from joinability

of their tails (provided their �rst elements are the same).

�rst(s) = �rst(t) ^ joinable(tail(s); tail(t); R)) joinable(s; t; R) (388)

By symbolic evaluation and generalization, the theorem is transformed into

subseteq list(�rst list(k

1

); �rst list(k

2

)) ^ subseteq list(�rst list(k

2

); �rst list(k

1

))^

joinable list(tail list(k

1

); tail list(k

2

); R))

joinable list(k

1

; k

2

; R):

We prove this conjecture by induction w.r.t. joinable list. By (146) and (309), in the only interesting case we

obtain the induction conclusion

subseteq list(�rst list(k

1

); �rst list(k

2

)) ^ subseteq list(�rst list(k

2

); �rst list(k

1

))^

joinable list(append(tail list(k

1

); rewrite list(tail list(k

1

); R));

append(tail list(k

2

); rewrite list(tail list(k

2

); R)); R))

joinable list(append(k

1

; rewrite list(k

1

; R)); append(k

2

; rewrite list(k

2

; R)); R):

This can be reduced to the induction hypothesis and (142), (307), (312), (306), (141), (387).

In a similar way one can also prove

def(joinable(s; t; R)) ^ :s = e ^ :t = e ^ �rst(s) = �rst(t)) def(joinable(tail(s); tail(t); R)): (389)

8.5 Joinability from Joinability of First Elements (pc)

The following theorem states that for two lists of terms t and s, joinability of t and s follows from joinability

of their �rst elements (provided their tails are the same).

tail(s) = tail(t) ^ joinable(�rst(s); �rst(t); R)) joinable(s; t; R) (390)

The proof for this theorem is analogous to the one of (388). In a similar way one can also prove

def(joinable(s; t; R)) ^ :s = e ^ :t = e ^ tail(s) = tail(t)) def(joinable(�rst(s); �rst(t); R)): (391)

8.6 Stability of joinable under Contexts

The following theorem states that joinability is stable under context.

joinable(s; t; R)) joinable(func(n; s; r); func(n; t; r); R) (392)

By symbolic evaluation and generalization, it can be transformed into

joinable list(k

1

; k

2

; R)) joinable list(addtail(apply(n; k

1

); r); addtail(apply(n; k

2

); r); R):

This conjecture is proved by induction w.r.t. joinable list(k

1

; k

2

; R). Using (154), (155), (297), (303), in the

only interesting case we obtain the induction conclusion

81

joinable list(append(k

1

; rewrite list(k

1

; R)); append(k

2

; rewrite list(k

2

; R)); R))

joinable list(append(addtail(apply(n; k

1

); r); rewrite list(addtail(apply(n; k

1

); r); R));

append(addtail(apply(n; k

2

); r); rewrite list(addtail(apply(n; k

2

); r); R));

R)

Rule 4

00

transforms this into (387) and

subseteq list(addtail(apply(n; append(k; rewrite list(k;R))); r);

append(addtail(apply(n; k); r); rewrite list(addtail(apply(n; k); r); R))):

This conjecture can be proved by (103), (158), (156), (295), (300).

8.7 Stability of joinable under Substitutions (pc)

The following theorem says that if two termlists are joinable, then so are all their instantiations.

trs(R) ^ joinable(s; t; R)) joinable(apply subst(�; s); apply subst(�; t); R) (393)

By symbolic evaluation and generalization, the conjecture is transformed into

joinable list(l; k; R)) joinable list(apply subst tll(�; l); apply subst tll(�; k); R):

We prove the conjecture by induction w.r.t. joinable list using l; k; R as induction variables. The case

disjoint list(l; k) = false can be proved using (226). If the premise of the implication evaluates to false,

then the proof is trivial. Otherwise, the induction conclusion is evaluated to

joinable list(append(l; rewrite list(l; R)); append(k; rewrite list(k;R)); R))

joinable list(apply subst tll(�; l); apply subst tll(�; k); R):

Due to (387) and (103), this can be transformed into

joinable list(append(l; rewrite list(l; R)); append(k; rewrite list(k;R)); R))

joinable list(append(apply subst tll(�; l); rewrite list(apply subst tll(�; l); R));

append(apply subst tll(�; k); rewrite list(apply subst tll(�; k); R));

R)

even if subseteq list(rewrite rule list(k

1

); k

1

) and subseteq list(rewrite rule list(k

2

); k

2

) hold. By (223), (224),

(387), (316), and (317), it can be transformed further into the induction hypothesis.

8.8 Rewriting implies Joinability (pc)

The following theorem states that if a termlist rewrites to another (in arbitrary many steps), then both

terms are joinable.

trs(R) ^ rewrites*(s; t; R)) joinable(s; t; R) (394)

Symbolic evaluation and generalization (Rule 5

00

) transforms the conjecture into

trs(R) ^ rewrites list*(k; t; R)) joinable list(k; add(t; empty); R):

This conjecture is proved by induction w.r.t. rewrites list*. If member(t; k) holds then by (124), the conjecture

is proved. Otherwise, in the only interesting case we obtain the induction conclusion

trs(R) ^ rewrites list*(rewrite list(k;R); t; R))

joinable list(append(k; rewrite list(k;R)); append(add(t; empty); rewrite list(add(t; empty); R)); R)

and the induction hypothesis

trs(R) ^ rewrites list*(rewrite list(k;R); t; R)) joinable list(rewrite list(k;R); add(t; empty); R):

Hence, the conjecture can be proved using (101) and (387).

82

8.9 Stability of joinable pairs under Substitutions (pc)

This theorem says that if all pairs in the list l are joinable, then this is also true for all instantiated pairs.

trs(R) ^ joinable pairs(l; R) ^ in(s; t; apply subst(�; l))) joinable(s; t; R): (395)

The theorem is proved by induction w.r.t. joinable pairs. The base case (l = e) is easy, because the second

premise evaluates to false. Now we consider the two step cases.

Case 1: l = var(n; l

0

)

The induction conclusion can be transformed into

rewrites*(�rst(l

0

); var(n; e)) ^ joinable pairs(tail(l

0

); R) ^

in(s; t; addterm(apply subst var(�; n); apply subst(�; l

0

))))

joinable(s; t; R):

Now we perform a case analysis as suggested by in. In the case s = apply subst var(�; n), t = apply subst(�;

�rst(l

0

)), the conjecture follows from (187), (188), (323), (394), and (383). Otherwise, the conclusion can be

transformed into the induction hypothesis using (189) and (190).

Case 2: l = func(n; u; l

0

)

In this case we have the (transformed) induction conclusion

joinable(func(n; u; e); �rst(l

0

)) ^ joinable pairs(tail(l

0

); R)^

in(s; t; addterm(func(n; apply subst var(�; u); apply subst(�; l

0

)))))

joinable(s; t; R):

Again we perform a case analysis w.r.t. the result of in. If s = apply subst(�; func(n; u; e)), t = apply subst(�;

�rst(l

0

)), then the theorem follows from (393). Otherwise, the induction conclusion can again be transformed

into the induction hypothesis, (189), and (190).

8.10 rewrites list* exists implies joinable list (pc)

The following theorem says that if one of the termlists in k

1

reduces to one of the termlists in k

2

, then k

1

and k

2

are joinable.

rewrites list* exists(k

1

; k

2

; R)) joinable list(k

1

; k

2

; R) (396)

The theorem can easily be proved by induction w.r.t. joinable list, where the induction conclusion can be

transformed (using Rule 4

00

) into (319), (99), and the induction hypothesis.

8.11 Connection between rewrite

�

exists, rewrite

�

all, and joinable list (pc)

The next theorem states that if one of the termlists in k

1

rewrites to one of the termlists in k

3

and if each

of the termlists in k

3

can be reached by rewriting one of the termlists in k

2

, then k

1

and k

2

are joinable.

rewrites list* exists(k

1

; k

3

; R)) ^ rewrites list* all(k

2

; k

3

; l; r) ^ in(l; r; R)) joinable list(k

1

; k

2

; R) (397)

The theorem is proved by induction w.r.t. joinable list. In the only interesting case we have disjoint list(k

1

; k

2

).

If disjoint list(k

1

; k

3

) = false, then the theorem is proved by (344), (320), (396). Otherwise (if disjoint list(k

1

;

k

3

)), we make a case analysis w.r.t. the truth of subseteq list(rewrite list(k

1

; R); k

1

). If this holds, then the

theorem is trivial. Otherwise, the induction conclusion is

rewrites list* exists(append(k

1

; rewrite list(k

1

; R)); k

3

; R) ^ rewrites list* all(k

2

; k

3

; l; r) ^ in(l; r; R))

joinable list(append(k

1

; rewrite list(k

1

; R)); append(k

2

; rewrite list(k

2

; R)); R)

Using (334) and (99) this can be transformed into the induction hypothesis.

83

8.12 Connection between rewrite

�

exists, all reductions, and joinable (pc)

The following theorem states a fact needed for the critical pair lemma.

rewrite

�

exists(s; apply subst list(all reductions(�; l

0

; r

0

); l); l

0

; r

0

)

) (subseteq(vars(r); vars(l)) ^ subseteq(vars(r

0

); vars(l

0

)) ^

�rst is func(l) ^ �rst is func(l

0

))

joinable(s; apply subst(�; r); addterm(l

0

; addterm(r

0

; addterm(l; addterm(r; e)))))) (398)

By Rule 3

00

, 4

00

, and 5

00

, it can be transformed into

rewrites rule list* exists(k; apply subst list(k

0

; l); l

0

; r

0

) ^ def(R; r) ^ trs(R) ^ in(l; r; R))

rewrites list* exists(k; apply subst list(k

0

; r); R)

(which is implied by (320) and (335)), (362), (340), and (397).

8.13 Joinability for Rules from a TRS (pc)

The next theorem says that if two termlists are joinable with rules from R, then they are also joinable with

R.

trs(R) ^ in(l; r; R) ^ in(l

0

; r

0

; R) ^ joinable(s; t; addterm(l

0

; addterm(r

0

; addterm(l; addterm(r; e))))))

joinable(s; t; R) (399)

By symbolic evaluation and generalization, the theorem is transformed into a modi�ed one where joinable(s; t;

addterm(l

0

; addterm(r

0

; addterm(l; addterm(r; e))))) is replaced by joinable list(k

1

; k

2

; addterm(l

0

; addterm(r

0

;

addterm(l; addterm(r; e))))) and joinable(s; t; R) is replaced by joinable list(k

1

; k

2

; R): This conjecture is proved

w.r.t. the induction suggested by the term joinable list(k

1

; k

2

; R). The if's in the result of joinable list lead

to several cases. All of them are trivial except the one corresponding to the step case. Here, the induction

conclusion is

trs(R) ^ in(l; r; R) ^ in(l

0

; r

0

; R) ^ joinable list(k

1

; k

2

; addterm(l

0

; addterm(r

0

; addterm(l; addterm(r; e))))))

joinable list(k

1

; k

2

; R):

Using (318), (103), and (387), this can be transformed into

trs(R) ^ in(l; r; R) ^ in(l

0

; r

0

; R)^

joinable list(append(k

1

; rewrite list(k

1

; R)); append(k

2

; rewrite list(k

2

; R));

addterm(l

0

; addterm(r

0

; addterm(l; addterm(r; e))))))

joinable list(append(k

1

; rewrite list(k

1

; R)); append(k

2

; rewrite list(k

2

; R)); R),

which is the induction hypothesis.

8.14 Correctness of jcp

This theorem shows that jcp indeed guarantees that all critical pairs are joinable.

jcp(R) ^ in(l

1

; r

1

; R) ^ in(l

2

; r

2

; R)) joinable pairs(cp rule(l

1

; r

1

; l

2

; r

2

); R) (400)

Symbolic evaluation transforms the conjecture into

jcp aux1(R;R;R) ^ in(l

1

; r

1

; R) ^ in(l

2

; r

2

; R)) joinable pairs(cp rule(l

1

; r

1

; l

2

; r

2

); R)

which can be generalized (using Rule 5

00

) to

jcp aux1(R

1

; R

2

; R) ^ in(l

1

; r

1

; R

1

) ^ in(l

2

; r

2

; R

2

)) joinable pairs(cp rule(l

1

; r

1

; l

2

; r

2

); R):

This conjecture is proved by induction w.r.t. jcp aux1. The formula in the base case (R

1

= e) reduces to

a tautology, since the premise in(l

1

; r

1

; e) reduces to false. In the step case, we have R

1

= func(n; s; t).

Symbolic evaluation of in(l

1

; r

1

; func(n; s; t)) suggests the following case analysis.

84

Case 1: l

1

= func(n; s; e); r

1

= �rst(t)

In this case we have to prove

l

1

= func(n; s; e) ^ r

1

= �rst(t) ^ jcp aux2(l

1

; r

1

; R

2

; R)^ in(l

2

; r

2

; R)) joinable pairs(cp rule(l

1

; r

1

; l

2

; r

2

); R):

This can be proved by induction w.r.t. jcp aux2. The base case is again trivial. In the step case we have

R

2

= func(m; s

0

; t

0

). If l

2

= func(m; s

0

; t

0

) and r

2

= �rst(t

0

), then the conjecture can be immediately

transformed into a tautology. Otherwise the induction conclusion is evaluated to the induction hypothesis

l

1

= func(n; s; e) ^ r

1

= �rst(t) ^ jcp aux2(l

1

; r

1

; tail(t

0

); R) ^ in(l

2

; r

2

; tail(t

0

)))

joinable pairs(cp rule(l

1

; r

1

; l

2

; r

2

); R):

Case 2: Otherwise

In this case, the induction conclusion is evaluated to the induction hypothesis

jcp aux1(tail(t); R

2

; R) ^ in(l

1

; r

1

; tail(t)) ^ in(l

2

; r

2

; R

2

)) joinable pairs(cp rule(l

1

; r

1

; l

2

; r

2

); R):

9 The Critical Pair Lemma

In Section 9.1 we �rst present a crucial lemma needed in the proof of the critical pair lemma. This lemma

itself follows in Section 9.2.

9.1 Every Non-Joinable Local Divergence is an Instantiation of a Critical Pair

(pc)

The following theorem is needed in the proof of the critical pair lemma. It states that every local divergence

is joinable or an instantiation of a critical pair.

is subst(�) ^ no duplicates(�) ^ subseteq(vars(r); vars(l)) ^ subseteq(vars(r̂); vars(

^

l))

^length(r̂) = s(0) ^ subseteq(dom(�); vars(l)) ^ �rst is func(l) ^ �rst is func(

^

l)

^ rewrites rule(apply subst(�; l); s;

^

l; r̂))

in(apply subst(�; r); s;

apply subst(

appendterm(�; rewrites matcher(apply subst(�; l); s; rename(

^

l; s(max(vars(l))));

rename(r̂; s(max(vars(l))))));

cp rule(l; r;

^

l; r̂)))

_ joinable(s; apply subst(�; r); addterm(

^

l; addterm(r̂; addterm(l; addterm(r; e))))) (401)

By Rule 4

00

, this conjecture can be replaced by (62), (281), (121), (232), (380), (398), (273), (193), (183),

(280), (373), (372), (175), (132), (130), (131), and

is subst(�) ^ no duplicates(�) ^ subseteq(vars(r

0

); vars(l

0

)) ^ disjoint(vars(l); vars(l

0

))

^ disjoint(dom(�); vars(l

0

)) ^ length(r

0

) = s(0) ^ l

0

= rename(

^

l; s(max(vars(l))))

^ r

0

= rename(r̂; s(max(vars(l)))) ^ rewrites rule(apply subst(�; l); s;

^

l; r̂))

special(appendterm(�; rewrites matcher(apply subst(�; l); s; l

0

; r

0

)); s; narrow(l; l

0

; r

0

))

_ rewrite

�

exists(s; apply subst list(all reductions(�;

^

l; r̂); l);

^

l; r̂)

To prove this conjecture, we apply an induction w.r.t. narrow. Hence, by Rule 1

00

the original conjecture

is transformed into new induction formulas and by case analysis (using Rule 6

00

) we obtain the following new

conjectures to be proved.

85

Case 1: l = e

In this case, rewrites rule(apply subst(�; l); s;

^

l; r̂) reduces to false, i.e. the conjecture is a tautology (provable

with Rule 4

00

).

Case 2: l = var(n; t)

In this case, apply subst(�; l) is evaluated to addterm(apply subst var(�; n); apply subst(�; t)). Now using Rule

4

00

,

rewrites rule(addterm(apply subst var(�; n); apply subst(�; t)); s;

^

l; r̂)

can be replaced by an instantiation of conjecture (272), (262), (269), and rewrites rule(apply subst var(�; n);

�rst(s);

^

l; r̂) ^ apply subst(�; t) = tail(s) _ rewrites rule(apply subst(�; t); tail(s);

^

l; r̂) ^ apply subst var(�; n) =

�rst(s). By Rule 4

00

we can now perform the following case analysis.

Case 2.1: rewrites rule(apply subst var(�; n); �rst(s);

^

l; r̂); apply subst(�; t) = tail(s)

We omit the premises to ease readability. Then the �rst part of the disjunction of the conclusion can be

deleted, i.e. by Rule 4

00

, the conjecture can be transformed into

rewrite

�

exists(s; apply subst list(all reductions(�;

^

l; r̂); l);

^

l; r̂):

By (289), (261), (262), (175), (205), and (343), Rule 4

00

transforms this conjecture into

rewrites rule*(s; apply subst(replace(�; n; �rst(s)); l);

^

l; r̂):

This can be transformed into (329), (187),

rewrites rule*(�rst(s); apply subst(replace(�; n; �rst(s)); �rst(l));

^

l; r̂)

(this can be proved by (55) and symbolic evaluation), and

rewrites rule*(tail(s); apply subst(replace(�; n; �rst(s)); tail(l));

^

l; r̂):

Using (55) this can be transformed into

rewrites rule*(apply subst(�; t); apply subst(replace(�; n; �rst(s)); t);

^

l; r̂);

which can be proved by (289), (352), (205), (362), and (363).

Case 2.2: rewrites rule(apply subst(�; t); tail(s);

^

l; r̂) ^ apply subst var(�; n) = �rst(s)

We have to prove

is subst(�) ^ : : : ^ r

0

= rename(r̂; s(max(vars(l)))) ^

�

l = apply subst(�; l) ^ rewrites rule(

�

l; s;

^

l; r̂)) : : :

We now apply an induction w.r.t. rewrites rule where all cases are either trivial or can be solved as in Case

2.1 except the one where

�

l = var(m; t

0

) (here, the premises imply t

0

= apply subst(�; t)). Now (omitting

unnecessary premises) the induction conclusion is symbolically evaluated to

is subst(�) ^ subseteq(vars(r

0

); vars(l

0

)) ^ disjoint(var(n; vars(t))); vars(l

0

)) ^ disjoint(dom(�); vars(l

0

))

^ length(r

0

) = s(0) ^ rewrites rule(apply subst(�; t); tail(s);

^

l; r̂))

special(appendterm(�; rewrites matcher(apply subst(�; t); tail(s); l

0

; r

0

)); s; add narrowlist(var(n; e);

narrow(t; l

0

; r

0

)))

_ rewrite

�

exists(s; apply subst list(all reductions(�;

^

l; r̂); var(n; t));

^

l; r̂)

and the induction hypothesis is

86

is subst(�) ^ subseteq(vars(r

0

); vars(l

0

)) ^ disjoint(vars(t); vars(l

0

)) ^ disjoint(dom(�); vars(l

0

))

^ length(r

0

) = s(0) ^ rewrites rule(apply subst(�; t); tail(s);

^

l; r̂))

special(appendterm(�; rewrites matcher(apply subst(�; t); tail(s); l

0

; r

0

)); tail(s);

narrow(t; l

0

; r

0

))

_ rewrite

�

exists(tail(s); apply subst list(all reductions(�;

^

l; r̂); t);

^

l; r̂).

Using Rules 4

00

and 5

00

, this induction formula can be transformed into (55), (61), (87), (91), (121), (378),

(175), (373), (372), (280), (183), (206), (207), (348), and (362).

Case 3: l = func(n; u; t)

In this case, apply subst(�; l) can be evaluated to func(n; apply subst(�; u); apply subst(�; t)). We again per-

form an induction w.r.t. rewrites rule and consider the di�erent cases according to the algorithm rewrites rule.

Case 3.1: eqterm(�rst(s); func(n; apply subst(�; u); e)); rewrites rule(apply subst(�; t); tail(s);

^

l; r̂)

This case has some similarities with Case 2.2. Omitting unnecessary premises, the induction conclusion can

be evaluated to

is subst(�) ^ subseteq(vars(r

0

); vars(l

0

)) ^ disjoint(appendterm(vars(u); vars(t)); vars(l

0

))

^ disjoint(dom(�); vars(l

0

)) ^ length(r

0

) = s(0) ^ rewrites rule(apply subst(�; t); tail(s);

^

l; r̂))

special(appendterm(�; rewrites matcher(apply subst(�; t); tail(s); l

0

; r

0

); s; narrow(func(n; u; t); l

0

; r

0

))

_ rewrite

�

exists(s; apply subst list(all reductions(�;

^

l; r̂); func(n; u; t));

^

l; r̂)

and the induction hypothesis is

is subst(�) ^ subseteq(vars(r

0

); vars(l

0

)) ^ disjoint(vars(t); vars(l

0

)) ^ disjoint(dom(�); vars(l

0

))

^ length(r

0

) = s(0) ^ rewrites rule(apply subst(�; t); tail(s);

^

l; r̂))

special(appendterm(�; rewrites matcher(apply subst(�; t); tail(s); l

0

; r

0

)); tail(s); narrow(t; l

0

; r

0

))

_ rewrite

�

exists(tail(s); apply subst list(all reductions(�;

^

l; r̂); t);

^

l; r̂).

Rule 4

00

and Rule 5

00

transform this conjecture into (55), (61), (100), (91), (121), (375), (163), (378), (175),

(373), (372), (280), (183), (206), (207), (348), and (362).

Case 3.2: �rst is func(s); eq(func name(s); n); eqterm(tail(s)); apply subst(�; t);

rewrites rule(apply subst(�; u); func args(s);

^

l; r̂)

Omitting unnecessary premises, the induction conclusion can be evaluated to

is subst(�) ^ subseteq(vars(r

0

); vars(l

0

)) ^ disjoint(appendterm(vars(u); vars(t)); vars(l

0

))

^ disjoint(dom(�); vars(l

0

)) ^ length(r

0

) = s(0) ^ rewrites rule(apply subst(�; u); func args(s);

^

l; r̂))

special(appendterm(�; rewrites matcher(apply subst(�; u); func args(s); l

0

; r

0

)); s;

narrow(func(n; u; t); l

0

; r

0

))

_ rewrite

�

exists(s; apply subst list(all reductions(�;

^

l; r̂); func(n; u; t));

^

l; r̂)

and the induction hypothesis is

is subst(�) ^ subseteq(vars(r

0

); vars(l

0

)) ^ disjoint(vars(u); vars(l

0

)) ^ disjoint(dom(�); vars(l

0

))

^ length(r

0

) = s(0) ^ rewrites rule(apply subst(�; u); func args(s);

^

l; r̂))

special(appendterm(�; rewrites matcher(apply subst(�; u); func args(s); l

0

; r

0

));func args(s);

narrow(u; l

0

; r

0

))

_ rewrite

�

exists(func args(s); apply subst list(all reductions(�;

^

l; r̂); u);

^

l; r̂).

This conjecture can be transformed into (55), (68), (61), (98), (91), (121), (374), (376), (379), (175), (373),

(372), (280), (183), (349), and (362).

87

Case 3.3: matches(

^

l; func(n; apply subst(�; u); e)); eqterm(�rst(s); apply subst(matcher(

^

l; func(n; u; e)); r̂));

eqterm(tail(s); apply subst(�; t))

In this case, we use Rule 4

00

to omit the second part of the disjunction, i.e. we obtain the following conjecture

after symbolic evaluation

is subst(�) ^ no duplicates(�) ^ subseteq(vars(r

0

); vars(l

0

)) ^ length(r

0

) = s(0)^

disjoint(appendterm(vars(u); vars(t)); vars(l

0

)) ^ disjoint(dom(�); vars(l

0

))^

l

0

= rename(

^

l; s(max(vars(l)))) ^ r

0

= rename(r̂; s(max(vars(l)))))

special(appendterm(�;matcher(l

0

; func(n; apply subst(�; u); e))); s; narrow(func(n; u; t); l

0

; r

0

)).

Using Rule 4

00

and (241), (242), (374), (175), (373), (372), (130), (280), (183), (376), (91), (121), it can be

transformed into

matches(l

0

; func(n; apply subst(�; u); e)) ^ disjoint(vars(u); vars(l

0

)) ^ disjoint(dom(�); vars(l

0

)))

uni�es(l

0

; func(n; u; e))

(which is implied by an instantiation of (248)) and

no duplicates(�) ^matches(l

0

; func(n; apply subst(�; u); e)) ^ subseteq(vars(r

0

); vars(l

0

))^

disjoint(appendterm(vars(u); vars(t)); vars(l

0

)) ^ disjoint(dom(�); vars(l

0

)))

special(appendterm(�;matcher(l

0

; func(n; apply subst(�; u); e)));

s;

add(mgu(l

0

; func(n; u; e));

add(addterm(apply subst(mgu(l

0

; func(n; u; e)); r

0

); apply subst(mgu(l

0

; func(n; u; e)); t)); empty)))

(because the third argument of special results from evaluation of back narrowlist(add(mgu(l

0

; func(n; u; e));

add(apply subst(mgu(l

0

; func(n; u; e)); r

0

); empty)); t))). By (381) this can be transformed into

no duplicates(�) ^matches(l

0

; func(n; apply subst(�; u); e)) ^ disjoint(vars(u); vars(l

0

))

^disjoint(dom(�); vars(l

0

)))

appendterm(�;matcher(l

0

; func(n; apply subst(�; u); e))) =

compose(mgu(l

0

; func(n; u; e)); appendterm(�;matcher(l

0

; func(n; apply subst(�; u); e))))

and

matches(l

0

; func(n; apply subst(�; u); e)) ^ subseteq(vars(r

0

); vars(l

0

))

^disjoint(appendterm(vars(u); vars(t)); vars(l

0

)) ^ disjoint(dom(�); vars(l

0

)))

s = apply subst(appendterm(�;matcher(l

0

; func(n; apply subst(�; u); e)));

addterm(apply subst(mgu(l

0

; func(n; u; e)); r

0

); apply subst(mgu(l

0

; func(n; u; e)); t))):

Using (260), the �rst conjecture is transformed into

matches(l

0

; func(n; apply subst(�; u); e)) ^ disjoint(vars(u); vars(l

0

)) ^ disjoint(dom(�); vars(l

0

)))

appendterm(�;matcher(l

0

; func(n; apply subst(�; u); e)))(l

0

) =

appendterm(�;matcher(l

0

; func(n; apply subst(�; u); e)))(func(n; apply subst(�; u); e))

which is in turn transformed into instantiations of (232), (233), (237), (121), (91), and (239).

Using (184), (61), and (55), the second conjecture above can be transformed into two new conjectures

matches(l

0

; func(n; apply subst(�; u); e)) ^ subseteq(vars(r

0

); vars(l

0

))

^disjoint(appendterm(vars(u); vars(t)); vars(l

0

)) ^ disjoint(dom(�); vars(l

0

)))

apply subst(matcher(l

0

; func(n; u; e)); r

0

) =

apply subst(appendterm(�;matcher(l

0

; func(n; apply subst(�; u); e))); apply subst(mgu(l

0

; func(n; u; e)); r

0

))

and

matches(l

0

; func(n; apply subst(�; u); e)) ^ disjoint(appendterm(vars(u); vars(t)); vars(l

0

))^

disjoint(dom(�); vars(l

0

)))

apply subst(�; t) = apply subst(appendterm(�;matcher(l

0

; func(n; apply subst(�; u); e)));

apply subst(mgu(l

0

; func(n; u; e)); t)):

88

By using (254) and the original �rst conjecture, these conjectures can be transformed into

matches(l

0

; func(n; apply subst(�; u); e)) ^ subseteq(vars(r

0

); vars(l

0

))

^disjoint(appendterm(vars(u); vars(t)); vars(l

0

)) ^ disjoint(dom(�); vars(l

0

)))

apply subst(matcher(l

0

; func(n; u; e)); r

0

) =

apply subst(appendterm(�;matcher(l

0

; func(n; apply subst(�; u); e))); r

0

)

and

matches(l

0

; func(n; apply subst(�; u); e)) ^ disjoint(appendterm(vars(u); vars(t)); vars(l

0

))

^disjoint(dom(�); vars(l

0

)))

apply subst(�; t) = apply subst(appendterm(�;matcher(l

0

; func(n; apply subst(�; u); e))); t).

Now both these conjectures again follow from (232), (233), (237), (121), (91), and (239).

9.2 Critical Pair Lemma (pc)

In this section we prove (a variant of) the critical pair lemma of Knuth and Bendix [14] which states that if

all critical pairs of a TRS are joinable, then the TRS is locally conuent

2

.

trs(R) ^ jcp(R) ^ rewrites(r; s; R) ^ rewrites(r; t; R)) joinable(s; t; R): (402)

By Rule 4

00

, (402) is transformed into instantiations of (278), (262), and a version of (402) where rewrites(r; s;

R) is replaced by rewrites rule(r; s; �rst(rule(r; s; R)); second(rule(r; s; R))) (and a similar replacement is done

for rewrites(r; s; R)). By another application of Rule 4

00

we obtain (279) and a modi�ed version of the

above conjecture, where in(�rst(rule(r; s; R)); second(rule(r; s; R)); R) and the similar conjecture for r and t

are added as additional conjuncts in the premise. Now four application of Rule 5

00

(to generalize the terms

�rst(rule(r; s; R)) and second(rule(r; s; R)) etc.) results in

trs(R) ^ jcp(R) ^ in(l

1

; r

1

; R) ^ in(l

2

; r

2

; R) ^

rewrites rule(r; s; l

1

; r

1

) ^ rewrites rule(r; t; l

2

; r

2

)) joinable(s; t; R): (403)

We prove (403) by induction w.r.t. the algorithm rewrites rule (i.e. w.r.t. the merged induction schemes

of rewrites rule(r; s; l

1

; r

1

) and rewrites rule(r; t; l

2

; r

2

)). So we apply Rule 1

00

for the proof of (403) and

subsequently we decompose the resulting induction formulas using Rule 6

00

for case analyses. In the following

we will consider the resulting conjectures. First note that in all cases where rewrites rule(r; s; l

1

; r

1

) or

rewrites rule(r; t; l

2

; r

2

) can be symbolically evaluated to false (using Rule 3

00

) the conjecture reduces to a

tautology (provable with Rule 4

00

). Therefore in the following we will only consider the other remaining

cases. Moreover, to ease readability we will omit the premises trs(R) ^ jcp(R) ^ in(l

1

; r

1

; R) ^ in(l

2

; r

2

; R) as

they remain unchanged in all induction conclusions and hypotheses.

Case 1: r = var(n; r

0

); eqterm(�rst(s); var(n; e)) = true; eqterm(�rst(t); var(n; e)) = true

Here, symbolic evaluation transforms the induction conclusion into

rewrites rule(r

0

; tail(s); l

1

; r

1

) ^ rewrites rule(r

0

; tail(t); l

2

; r

2

)) joinable(s; t; R)

and the induction hypothesis is

rewrites rule(r

0

; tail(s); l

1

; r

1

) ^ rewrites rule(r

0

; tail(t); l

2

; r

2

)) joinable(tail(s); tail(t); R):

Now Rule 4

00

transforms this conjecture into instantiations of (55), (382), (388), and (389).

Case 2: r = func(n; u; r

0

); eqterm(�rst(s); func(n; u; e)) = true; eqterm(�rst(t); func(n; u; e)) = true

The proof for this case is almost identical to Case 1.

2

This formulation is slightly di�erent from the one in [9, Section 7], because in [9] we omitted the data type tll for the sake

of brevity.

89

Case 3: r = func(n; u; r

0

); eqterm(�rst(s); func(n; u; e)) = true; �rst is func(t); eq(func name(t); n);

eqterm(tail(t); r

0

); rewrites rule(u; func args(t); l

2

; r

2

)

Using symbolic evaluation and conjecture (55) (by Rule 4

00

), the induction conclusion is transformed into

rewrites rule(tail(t); tail(s); l

1

; r

1

) ^ rewrites rule(u; func args(t); l

2

; r

2

)) joinable(s; t; R):

By conjecture (274) and (262), rewrites rule(u; func args(t); l

2

; r

2

) can be transformed into rewrites rule(

func(n; u; e); func(n; func args(t); e); l

2

; r

2

). Hence, by Rule 4

00

we can drop the induction hypothesis and

by (55) and (68) we obtain

rewrites rule(tail(t); tail(s); l

1

; r

1

) ^ rewrites rule(�rst(s); �rst(t); l

2

; r

2

)) joinable(s; t; R):

This follows from conjecture (270), (271), (338), (339), and (397).

Case 4: r = func(n; u; r

0

); eqterm(�rst(s); func(n; u; e)) = true;matches(l

2

; func(n; u; e));

eqterm(�rst(t); apply subst(matcher(l

2

; func(n; u; e)); r

2

)); eqterm(tail(t); r

0

)

Using symbolic evaluation and conjecture (55) (by Rule 4

00

), the induction conclusion is transformed into

rewrites rule(tail(t); tail(s); l

1

; r

1

) ^ rewrites rule(�rst(s); �rst(t); l

2

; r

2

)) joinable(s; t; R)

and

matches(l

2

; func(n; u; e))) rewrites rule(func(n; u; e); apply subst(matcher(l

2

; func(n; u; e)); r

2

); l

2

; r

2

):

The �rst conjecture again follows from (270), (271), (338), (339), (397) and the second conjecture can be

proved by symbolic evaluation and the conjectures (69), (193), (63).

Case 5: r = func(n; u; r

0

); �rst is func(s); eq(func name(s); n); eqterm(tail(s); r

0

);

rewrites rule(u; func args(s); l

1

; r

1

); eqterm(�rst(t); func(n; u; e))

This case is similar to Case 3.

Case 6: r = func(n; u; r

0

); �rst is func(s); eq(func name(s); n); eqterm(tail(s); r

0

);

rewrites rule(u; func args(s); l

1

; r

1

); �rst is func(t); eq(func name(t); n); eqterm(tail(t); r

0

)

Symbolic evaluation transforms the induction conclusion into

rewrites rule(u; func args(s); l

1

; r

1

) ^ rewrites rule(u; func args(t); l

2

; r

2

)) joinable(s; t; R)

and the induction hypothesis is

rewrites rule(u; func args(s); l

1

; r

1

) ^ rewrites rule(u; func args(t); l

2

; r

2

))

joinable(func args(s); func args(t); R):

Now Rule 4

00

transforms this conjecture into instantiations of (55), (68), (382), (390), (391), and (392).

Case 7: r = func(n; u; r

0

); �rst is func(s); eq(func name(s); n);

eqterm(tail(s); r

0

); rewrites rule(u; func args(s); l

1

; r

1

);matches(l

2

; func(n; u; e));

eqterm(�rst(t); apply subst(matcher(l

2

; func(n; u; e)); r

2

)); eqterm(tail(t); r

0

)

By symbolic evaluation and Rule 4

00

(using conjectures (55), (391), (180)), the induction conclusion is

transformed into

tail(s) = tail(t) ^ joinable(�rst(s); �rst(t); R)) joinable(s; t; R);

(which follows from conjecture (382) and (390)),

90

in(�rst(t); �rst(s);

apply subst(appendterm(matcher(l

2

; func(n; u; e)); rewrites matcher(func(n; u; e);

�rst(s);

rename(l

1

; s(max(vars(l

2

))));

rename(r

1

; s(max(vars(l

2

)))))));

cp rule(l

2

; r

2

; l

1

; r

1

))

) joinable(�rst(s); �rst(t); R)

(which can be generalized and then proved by conjectures (400), (395), (383), (385), (263), (169), (275),

(276), (175), (280), (183)),

rewrites rule(apply subst(matcher(l

2

; func(n; u; e)); l

2

); �rst(s); l

1

; r

1

))

in(apply subst(matcher(l

2

; func(n; u; e)); r

2

); �rst(s);

apply subst(appendterm(matcher(l

2

; func(n; u; e));

rewrites matcher(apply subst(matcher(l

2

; func(n; u; e)); l

2

);

�rst(s);

rename(l

1

; s(max(vars(l

2

))));

rename(r

1

; s(max(vars(l

2

)))))));

cp rule(l

2

; r

2

; l

1

; r

1

))

_ joinable(�rst(s); apply subst(matcher(l

2

; func(n; u; e)); r

2

); R)

(which (after using the conjectures (169), (237), (121), (69), (236), (246), and (399)) can be generalized to

conjecture (401) from Sect. 9.1),

matches(l

2

; func(n; u; e))) func(n; u; e) = apply subst(matcher(l

2

; func(n; u; e)); l

2

)

(which can be generalized to conjecture (239)), and

rewrites rule(func(n; u; e); �rst(s); l

1

; r

1

)

(which can be proved by symbolic evaluation and by Rule 4

00

under the above premises).

Case 8: r = func(n; u; r

0

);matches(l

1

; func(n; u; e));

eqterm(�rst(s); apply subst(matcher(l

1

; func(n; u; e)); r

1

));

eqterm(tail(s); r

0

); eqterm(�rst(t); func(n; u; e))

This case is similar to Case 4.

Case 9: r = func(n; u; r

0

);matches(l

1

; func(n; u; e));

eqterm(�rst(s); apply subst(matcher(l

1

; func(n; u; e)); r

1

));

eqterm(tail(s); r

0

); �rst is func(t); eq(func name(t); n); eqterm(tail(t); r

0

);

rewrites rule(u; func args(t); l

2

; r

2

)

This case is similar to Case 7.

Case 10: r = func(n; u; r

0

);matches(l

1

; func(n; u; e));

eqterm(�rst(s); apply subst(matcher(l

1

; func(n; u; e)); r

1

));

eqterm(tail(s); r

0

);matches(l

2

; func(n; u; e));

eqterm(�rst(t); apply subst(matcher(l

2

; func(n; u; e)); r

2

))

This case has some similarity to Case 7, too (i.e. it generates almost the same subgoals). By symbolic

evaluation and Rule 4

00

(using conjecture (55), (391), (180)), the conjecture is transformed into

tail(s) = tail(t) ^ joinable(�rst(s); �rst(t); R)) joinable(s; t; R);

91

in(�rst(t); �rst(s);

apply subst(appendterm(matcher(l

2

; func(n; u; e)); rewrites matcher(func(n; u; e);

�rst(s);

rename(l

1

; s(max(vars(l

2

))));

rename(r

1

; s(max(vars(l

2

)))))));

cp rule(l

2

; r

2

; l

1

; r

1

))

) joinable(�rst(s); �rst(t); R);

rewrites rule(apply subst(matcher(l

2

; func(n; u; e)); l

2

); �rst(s); l

1

; r

1

))

in(apply subst(matcher(l

2

; func(n; u; e)); r

2

); �rst(s);

apply subst(appendterm(matcher(l

2

; func(n; u; e));

rewrites matcher(apply subst(matcher(l

2

; func(n; u; e)); l

2

);

�rst(s);

rename(l

1

; s(max(vars(l

2

))));

rename(r

1

; s(max(vars(l

2

)))))));

cp rule(l

2

; r

2

; l

1

; r

1

))

_ joinable(�rst(s); apply subst(matcher(l

2

; func(n; u; e)); r

2

); R);

matches(l

2

; func(n; u; e))) func(n; u; e) = apply subst(matcher(l

2

; func(n; u; e)); l

2

);

matches(l

1

; func(n; u; e))) func(n; u; e) = apply subst(matcher(l

1

; func(n; u; e)); l

1

);

rewrites rule(apply subst(matcher(l

1

; func(n; u; e)); l

1

); apply subst(matcher(l

1

; func(n; u; e)); r

1

); l

1

; r

1

)

(this last conjecture can be generalized to (169), (170), and (277)).

References

[1] A. Bouhoula & M. Rusinowitch. Implicit Induction in Conditional Theories. Journal of Automated

Reasoning, 14:189-235, 1995.

[2] R. S. Boyer & J S. Moore. A Computational Logic. Academic Press, 1979.

[3] J. Brauburger & J. Giesl. Termination Analysis for Partial Functions. In Proc. 3rd SAS, Aachen, Ger-

many, LNCS 1145, 1996. Extended version appeared as Technical Report IBN 96/33, TU Darmstadt,

Germany.

[4] F. Bronsard, U. S. Reddy, & R. W. Hasker. Induction Using Term Orders. Journal of Automated

Reasoning, 16:3-37, 1996.

[5] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, & A. Smaill. Rippling: A Heuristic for Guiding

Inductive Proofs. Arti�cial Intelligence, 62:185-253, 1993.

[6] M. Dauchet. Simulation of Turing Machines by a Left-Linear Rewrite Rule. In Proc. RTA '89, Chapel

Hill, NC, LNCS 355, 1989.

[7] J. Giesl. Termination Analysis for Functional Programs using Term Orderings. In Proc. 2nd SAS, Glas-

gow, Scotland, LNCS 983, 1995.

[8] J. Giesl. Termination of Nested and Mutually Recursive Algorithms. Journal of Automated Reasoning,

19:1-29, 1997.

[9] J. Giesl. Induction Proofs with Partial Functions. Technical Report IBN 98/48, TU Darmstadt, Ger-

many, 1998.

[10] G. Huet. Conuent Reductions: Abstract Properties and Applications to Term Rewriting Systems.

Journal of the ACM 27(4):797-821, 1980.

92

[11] D. Kapur & D. R. Musser. Proof by Consistency. Arti�cial Intelligence, 31:125-157, 1987.

[12] D. Kapur & M. Subramaniam. New Uses of Linear Arithmetic in Automated Theorem Proving by

Induction. Journal of Automated Reasoning, 16:39-78, 1996.

[13] D. Kapur & M. Subramaniam. Automating Induction over Mutually Recursive Functions. In Proc. 5th

AMAST, Munich, Germany, LNCS 1101, 1996.

[14] D. E. Knuth & P. B. Bendix. Simple Word Problems in Universal Algebras. In J. Leech (ed.), Compu-

tational Problems in Abstract Algebra, pp. 263-297, Pergamon Press, Oxford, 1970.

[15] Z. Manna & R. Waldinger. Deductive Synthesis of the Uni�cation Algorithm. Science of Computer

Programming, 1:5-48, 1981.

[16] T. Nipkow. More Church-Rosser Proofs (in isabelle/hol). In Proc. CADE-13, New Brunswick, NJ,

LNAI 1104, 1996.

[17] L. C. Paulson. Verifying the Uni�cation Algorithm in lcf. Science of Computer Programming, 5:143-

169, 1985.

[18] J. A. Robinson. A Machine Oriented Logic Based on the Resolution Principle. Journal of the ACM,

12:23-41, 1965.

[19] N. Shankar. A Mechanical Proof of the Church-Rosser Theorem, Journal of the ACM, 35(3):475-522,

1988.

[20] C. Walther. Mathematical Induction. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson (eds.),

Handbook of Logic in Arti�cial Intelligence and Logic Programming, vol. 2, Oxford University Press,

1994.

[21] H. Zhang, D. Kapur, & M. S. Krishnamoorthy. A Mechanizable Induction Principle for Equational

Speci�cations. In Proc. CADE-9, Argonne, IL, LNCS 310, 1988.

Contents

1 Introduction 1

2 Data Types 2

3 Algorithms 3

3.1 Basic Algorithms on bool, nat, and term . 3

3.1.1 Negation on bool . 3

3.1.2 Predecessor on nat . 3

3.1.3 Equality on nat . 3

3.1.4 Greater-Equal on nat . 4

3.1.5 Greater on nat . 4

3.1.6 Addition on nat . 4

3.1.7 Equality on term . 4

3.1.8 First Element of term . 4

3.1.9 Tail of term . 4

3.1.10 Second Element of term . 4

3.1.11 Tail of Tail of term . 5

3.1.12 Length of a Termlist . 5

3.1.13 Number of Symbols in a Termlist . 5

3.1.14 Adding a Term to a Lists of Terms . 5

3.1.15 Appending two Termlists . 5

3.1.16 Test Whether a term is Built With a Function . 5

93

3.1.17 Leading Function of a term . 5

3.1.18 Arguments of the Leading Function Symbol . 5

3.1.19 Leading Variable of a term . 6

3.1.20 Test Whether a Variable Occurs in a Termlist . 6

3.1.21 Compute the List of Variables in a Termlist . 6

3.1.22 Test Whether Two Lists of Variables are Disjoint . 6

3.1.23 Compute the Maximum of a List of Variables . 6

3.1.24 Rename all Variables in a Termlist . 6

3.1.25 Test Whether the Variables in one Termlist are a Subset of Another 6

3.1.26 Disjoint Union of Two Lists of Variables . 7

3.1.27 Test whether two Terms Occur Consecutive in a Termlist 7

3.1.28 Test whether a Pair of Terms Occurs on Even Position in a Termlist 7

3.1.29 Check Whether a List of Terms is a TRS . 7

3.2 Algorithms for Substitutions . 7

3.2.1 Check Whether a Termlist Denotes a Substitution . 7

3.2.2 Applying Substitutions to Variables . 8

3.2.3 Applying Substitutions to Termlists . 8

3.2.4 Applying Lists of Substitutions to Termlists . 8

3.2.5 Applying Substitutions to tll's . 8

3.2.6 Domain of a Substitution . 8

3.2.7 Renaming the Domain of a Substitution . 8

3.2.8 Matching Algorithm (Tests Whether a Termlist Matches Another One) 8

3.2.9 Matching Algorithm (Computes the Matcher of Two Termlists) 9

3.2.10 Uni�cation Algorithm (Tests Whether two Termlists are Uni�able) 9

3.2.11 Uni�cation Algorithm (Computes the Most General Uni�er of two Termlists) 9

3.2.12 Test Whether One Substitution is A Specialization of Another 9

3.2.13 Check Whether a Substitution Contains no Duplicates 10

3.2.14 Composition of Substitutions . 10

3.2.15 Composition of Substitutions on a Certain Domain . 10

3.2.16 Changing a Substitution in One Argument . 10

3.3 Algorithms on tll . 10

3.3.1 Appending two Lists of Termlists . 10

3.3.2 Member on tll . 11

3.3.3 Test Whether One tll is a Subset of Another . 11

3.3.4 Remove all Occurrences of an Element from a tll . 11

3.3.5 Compute the Number of Elements Contained in One tll but not in the Other 11

3.3.6 Test Whether Two tll's are Disjoint . 11

3.3.7 Test Whether a tll is Empty . 11

3.3.8 Test Whether the Length of a tll is Even . 11

3.3.9 List of all First Elements of a tll . 11

3.3.10 List of all Tails of a tll . 11

3.3.11 Applying a Function to all Termlists in a tll . 12

3.3.12 Applying a Function to Every Second Termlist in a tll 12

3.3.13 Appending a Termlist to Every Term in a tll (in the back) 12

3.3.14 Adding a Term to Every Termlist in a tll (in the front) 12

3.3.15 Computing all Combinations of two tll's . 12

3.3.16 Appending an Instantiated Termlist to Every Second Term in a tll (in the back) . . . 12

3.3.17 Appending a Termlist to Every Termlist in a tll (in the front) 12

3.3.18 Adding an Instantiated Term to Every Second Termlist in a tll (in the front) 13

3.3.19 Removing the Odd Elements from a tll . 13

3.3.20 Check Whether a Pair is a Specialization of a Pair in a Narrowlist 13

3.3.21 Adding Terms from Two tll's . 13

3.3.22 Check Whether a tll only Consists of one Element . 13

94

3.3.23 Applying a Function to Two tll's . 13

3.4 Algorithms for Rewriting . 13

3.4.1 Check Whether One Termlist Rewrites to Another With a Certain Rule in One Step . 13

3.4.2 Compute the Matcher Used in a Reduction . 14

3.4.3 Check Whether One Termlist Rewrites to Another w.r.t. a TRS in One Step 14

3.4.4 Compute the Rule Used in a Reduction . 14

3.4.5 Generate all Termlists Obtained in One Rewrite Step 14

3.4.6 Compute All Substitutions Obtainable by One Rewrite Step 15

3.4.7 Generate all Termlists Obtained in One Rewrite Step (by a Certain Rule) from a tll . 15

3.4.8 Check Whether a tll Rewrites To a Termlist in Arbitrary Many Steps 15

3.4.9 Check Whether a Termlist Rewrites To Another in Arbitrary Many Steps 15

3.4.10 Check Whether a Termlist Rewrites To All Termlists from a tll in Arbitrary Many Steps 15

3.4.11 Check Whether Every Termlist of a tll is Reachable From Another tll 16

3.4.12 Check Whether a tll Rewrites To a Termlist from Another tll in Arbitrary Many Steps 16

3.4.13 Check Whether a Termlist Rewrites To a Termlist from a tll in Arbitrary Many Steps 16

3.4.14 Check Whether a tll Rewrites To a Termlist From Another tll in Arbitrary Many Steps

via a TRS . 16

3.4.15 Generate all Termlists Obtained in One Rewrite Step from a tll 17

3.4.16 Check Whether a tll Rewrites To a Termlist w.r.t. a TRS in Arbitrary Many Steps . . 17

3.4.17 Check Whether One Termlist Rewrites To Another w.r.t. a TRS in Arbitrary Many

Steps . 17

3.5 Algorithms for Narrowing and Critical Pairs . 17

3.5.1 Check Whether a tll is a Narrowlist . 17

3.5.2 Computing Narrowings . 17

3.5.3 Critical Pairs of Two Rules . 18

3.6 Algorithms for Joinability . 18

3.6.1 Check Whether Two tll's Are Joinable . 18

3.6.2 Check Whether Two Termlists Are Joinable . 18

3.6.3 Test Whether Elements in a List are Joinable . 18

3.6.4 Check Whether all Critical Pairs of a TRS are Joinable 18

3.6.5 Check Whether all Critical Pairs of a TRS with Another One are Joinable 18

3.6.6 Check Whether all Critical Pairs of a Rule with a TRS are Joinable 19

4 Theorems about Booleans, Naturals, Termlists, and tll's 19

4.1 Totality of not, eq, ge, gt, plus, eqterm, length, appendterm, �rst is func, vars, rename, remove,

setdi�, trs . 19

4.2 De�nedness of �rst, tail, second, ttail, addterm, func name, func args 19

4.3 Totality of in . 20

4.4 Totality of occurs and subseteq . 20

4.5 Totality of append, member, subseteq list, disjoint list, is empty, hasevenlength, apply,

onlyconsistsof, applytwice . 20

4.6 Transitivity of ge (pc) . 21

4.7 Reexivity of ge (pc) . 21

4.8 ge is a Total Relation (pc) . 21

4.9 Associativity of plus (pc) . 21

4.10 Commutativity of plus (pc) . 22

4.11 plus is Injective For Fixed Second Argument (pc) . 22

4.12 Additions are Greater Than or Equal To Arguments (pc) . 22

4.13 :̂ is Conjunction . 22

4.14 eqterm Computes Equality (pc) . 23

4.15 �rst is Idempotent (pc) . 23

4.16 Tail of First Element is Empty (pc) . 23

4.17 Correctness of addterm, tail, and �rst (pc) . 23

95

4.18 De�nedness of addterm and Length . 23

4.19 �rst and tail for Length 1 (pc) . 23

4.20 Properties of Added Terms (pc) . 24

4.21 Correctness of func args (pc) . 24

4.22 Terms in a Termlist Have Length 1 (pc) . 24

4.23 Connection Between in and membereven (pc) . 24

4.24 Associativity of appendterm (pc) . 24

4.25 Appending Empty Lists (pc) . 24

4.26 First and Second Element of Appended Lists (pc) . 25

4.27 Length of Appended Lists (pc) . 25

4.28 Decomposing Appended Lists With Equal Length (pc) . 25

4.29 Empty Number of Symbols (pc) . 25

4.30 Number of Symbols in Appended Lists (pc) . 25

4.31 Distributivity of vars over appendterm (pc) . 25

4.32 vars is Idempotent (pc) . 26

4.33 vars on Appended Variable Lists (pc) . 26

4.34 Subsets of Empty Lists are Empty (pc) . 26

4.35 Appending the Left Arguments of subseteq (pc) . 26

4.36 Stability of subseteq under var (pc) . 26

4.37 Stability of subseteq under func on Arguments (pc) . 27

4.38 Stability of subseteq under func on Tail (pc) . 27

4.39 Reexivity of subseteq (pc) . 28

4.40 Stability of occurs under Subsets (pc) . 28

4.41 Transitivity of subseteq (pc) . 28

4.42 Appending the Right Arguments of subseteq (Version 1) (pc) 28

4.43 Appending the Right Arguments of subseteq (Version 2) (pc) 28

4.44 Appending Both Arguments of subseteq (pc) . 29

4.45 Arguments and Tails are Subsets of Function Applications (pc) 29

4.46 Variables in Arguments also Occur in the Termlist (pc) . 29

4.47 Variables in Heads also Occur in the Termlist (pc) . 29

4.48 Removing the Head of a Superlist (pc) . 29

4.49 Lists are Subsets of Disjoint Unions (Version 1) (pc) . 30

4.50 Lists are Subsets of Disjoint Unions (Version 2) (pc) . 30

4.51 Occurrence of Variables in Unions of Lists (pc) . 30

4.52 Occurrence of Variables in Appended Termlists (pc) . 30

4.53 Commutation of appendterm (pc) . 31

4.54 Application of disjoint to Empty Termlist (pc) . 31

4.55 Application of disjoint list to Empty tll (pc) . 31

4.56 Lists with Equal Elements are Not Disjoint (pc) . 31

4.57 Disjointness of Appended Lists (pc) . 31

4.58 Stability of disjoint under Subsets (pc) . 31

4.59 Commutativity of disjoint (pc) . 32

4.60 Commutativity of disjoint list (pc) . 32

4.61 Reexivity of disjoint list (pc) . 32

4.62 Maximal Variable is Greater than or Equal to the Head (pc) 33

4.63 Variables that do not Occur in Termlists (pc) . 33

4.64 Exchanging tail and rename (pc) . 33

4.65 Distributivity of rename over appendterm (pc) . 33

4.66 Length of Renamed Termlists (pc) . 33

4.67 Stability of subseteq under rename (pc) . 34

4.68 Renamed Termlists Have Disjoint Variables (pc) . 34

4.69 Stability of subseteq list under remove (pc) . 34

4.70 Stability of :subseteq list under remove (pc) . 34

96

4.71 Removing Non-Contained Elements From Lists (pc) . 35

4.72 Lists with the Same Elements (Version 1) (pc) . 35

4.73 Lists with the Same Elements (Version 2) (pc) . 35

4.74 Connection Between subseteq list and setdi� (pc) . 35

4.75 Distributivity of tail list over append (pc) . 36

4.76 Stability of member under tail list(pc) . 36

4.77 Stability of subseteq list under tail list (pc) . 36

4.78 Disjointness of tll's from Disjointness of Their Tails or Heads (pc) 36

4.79 Adding Empty Termlists (pc) . 36

4.80 Application of �rst list to addtail (pc) . 36

4.81 member and apply (pc) . 37

4.82 Stability of subseteq list Under apply (pc) . 37

4.83 Stability of disjoint list under apply (pc) . 37

4.84 Distributivity of addtail over append (pc) . 37

4.85 member for addtail (pc) . 37

4.86 Stability of subseteq list under addtail (pc) . 38

4.87 back narrowlist has Even Length (pc) . 38

4.88 append list lifts appendterm to tll's (pc) . 38

4.89 Stability of subseteq list under append list (pc) . 38

4.90 tail list when Appending Terms of Length 1 (pc) . 38

4.91 Elements of append list (pc) . 38

4.92 tail list of addtail (pc) . 38

4.93 Variables in Rules of TRSs (pc) . 39

4.94 Rules of TRSs are Built With Functions (pc) . 39

5 Theorems about Substitutions 39

5.1 Totality of is subst . 39

5.2 De�nedness of apply subst var, apply subst, dom, apply subst tll, special subst,

compose, replace . 39

5.3 Totality of matches . 39

5.4 De�nedness of matcher and mgu . 40

5.5 Substitutions do not change Variables Outside Their Domain (pc) 40

5.6 Stability of is subst Under appendterm (pc) . 40

5.7 Distributivity of Substitutions Over addterm (pc) . 40

5.8 Distributivity of Substitutions Over appendterm (pc) . 41

5.9 Applying �rst to apply subst (pc) . 41

5.10 addterm and apply subst (pc) . 41

5.11 appendterm and apply subst var (pc) . 41

5.12 Substitutions Preserve Length (pc) . 41

5.13 Length of Termlists Unifying With Variables (pc) . 41

5.14 Equality of Substitutions on Termlists (pc) . 42

5.15 Equality of a Substitution and an Appended Substitution (pc) 42

5.16 Variables in the Result of Substitutions (pc) . 42

5.17 Elimination of Variables (pc) . 42

5.18 Variables in Substituted Termlists (Version 1) (pc) . 42

5.19 Variables in Substituted Termlists (Version 2) (pc) . 43

5.20 Symbols in Substituted Termlists (Version 1) (pc) . 43

5.21 Symbols in Substituted Termlists (Version 2) (pc) . 43

5.22 Occur Failure (pc) . 43

5.23 Application of an Unnecessary Pair (pc) . 43

5.24 Correctness of apply subst list (pc) . 44

5.25 apply subst list and �rst (pc) . 44

5.26 Decomposing the Application of Substitution Lists for Functions (pc) 44

97

5.27 Decomposing the Application of Substitution Lists by �rst and tail (pc) 44

5.28 Distributivity of apply subst list over append (pc) . 44

5.29 apply subst list and append list (Version 1) (pc) . 45

5.30 apply subst list and append list (Version 2) (pc) . 45

5.31 onlyconsistsof and append list (Version 1) (pc) . 45

5.32 onlyconsistsof and append list (Version 2) (pc) . 45

5.33 Connection Between apply subst tll and append list (pc) . 45

5.34 Distributivity of apply subst tll over append (pc) . 46

5.35 Connection Between apply subst and apply subst tll (pc) . 46

5.36 Disjointness of Instantiated Lists (pc) . 46

5.37 Substitution Outside of Domain (pc) . 46

5.38 Distributivity of dom over appendterm (pc) . 46

5.39 Appending Substitutions (Version 1) (pc) . 47

5.40 Appending Substitutions (Version 2) (pc) . 47

5.41 Appending Substitutions (Version 3) (pc) . 47

5.42 Appending Substitutions on Disjoint Domains (Version 1) (pc) 47

5.43 Appending Substitutions on Disjoint Domains (Version 2) (pc) 47

5.44 Domain of Renamed Substitutions (pc) . 47

5.45 Applying Renamed Substitutions (pc) . 48

5.46 matcher computes Substitutions (pc) . 48

5.47 Domain of matcher (pc) . 48

5.48 Already Computed Matcher is not Changed (pc) . 48

5.49 Correctness of matcher (pc) . 48

5.50 Correctness of matches (pc) . 49

5.51 Renaming for matches (pc) . 49

5.52 Renaming for matcher (pc) . 49

5.53 Matcher is Most General (Version 1) (pc) . 50

5.54 Matcher is Most General (Version 2) (pc) . 50

5.55 Adding New Elements Produces no Duplicates (pc) . 50

5.56 Matcher Contains no Duplicates (pc) . 50

5.57 Correctness of uni�es (pc) . 50

5.58 Relation between Matching and Uni�cation (pc) . 51

5.59 mgu generates Substitutions (pc) . 51

5.60 Domain of mgu (pc) . 51

5.61 De�nedness of special subst and of apply subst . 51

5.62 Correctness of special subst (pc) . 52

5.63 Correctness of compose (pc) . 52

5.64 Relation between compose and special subst (pc) . 54

5.65 Removing Unnecessary Variables when Composing With Empty Substitution (pc) 54

5.66 Composition with Empty Substitution (pc) . 54

5.67 Removing Unnecessary Pairs from a Composition (pc) . 54

5.68 Elimination of Variables in Compositions (pc) . 55

5.69 mgu is Most General (pc) . 55

5.70 replace generates Substitutions (pc) . 56

6 Theorems about Rewriting 56

6.1 De�nedness of rewrites rule, rewrites matcher, rewrites, rule . 56

6.2 De�nedness of rewrite rule, rewrite rule list, rewrite list . 57

6.3 De�nedness of rewrites rule implies Non-Emptiness . 57

6.4 Decomposing rewrites rule with addterm (Version 1) (pc) . 57

6.5 Decomposing rewrites rule with addterm (Version 2) (pc) . 57

6.6 Composing rewrites rule with addterm (pc) . 58

6.7 Length Preservation Under Rewriting (pc) . 58

98

6.8 rewrites rule under Contexts (pc) . 58

6.9 Rewriting with Renamed Rules (pc) . 58

6.10 Rewriting of Instantiated Rules (pc) . 58

6.11 Correctness of rule (pc) . 58

6.12 rule only Generates Rules from the TRS (pc) . 59

6.13 rewrites matcher Generates Substitutions (pc) . 59

6.14 Domain of rewrites matcher (pc) . 59

6.15 apply and rewrite rule (pc) . 59

6.16 addtail and rewrite rule (pc) . 59

6.17 tail list and rewrite rule (pc) . 59

6.18 tail list and rewrite rule (Version 2) (pc) . 59

6.19 Exchanging rewrite rule list and append (pc) . 60

6.20 rewrites rule implies rewrite rule (pc) . 60

6.21 rewrite rule implies rewrite rule list (pc) . 60

6.22 Correctness of replace (pc) . 60

6.23 Connection between rewrite rule list and rewrite list (pc) . 60

6.24 Connection between rewrite rule and rewrite rule list (pc) . 60

6.25 Stability of subseteq list under rewrite rule list (pc) . 61

6.26 Stability of subseteq list under rewrite list (pc) . 61

6.27 Exchanging rewrite rule list and apply (pc) . 61

6.28 Exchanging rewrite list and apply (pc) . 61

6.29 subseteq list of rewrite rule list with apply (pc) . 61

6.30 subseteq list of rewrite list with apply (pc) . 61

6.31 Exchanging rewrite rule list and addtail (pc) . 62

6.32 Exchanging rewrite list and addtail (pc) . 62

6.33 subseteq list of rewrite rule list with addtail (pc) . 62

6.34 subseteq list of rewrite list with addtail (pc) . 62

6.35 Exchanging rewrite rule list and tail list (pc) . 62

6.36 Exchanging rewrite list and tail list (pc) . 63

6.37 subseteq list of rewrite rule list with tail list (pc) . 63

6.38 subseteq list of rewrite list with �rst list and tail list (pc) . 63

6.39 subseteq list of rewrite rule list with tail list (Version 1) (pc) 63

6.40 subseteq list of rewrite list with tail list (Version 2) (pc) . 64

6.41 Instantiated Left-Hand Sides are Replaced by Instantiated Right-Hand sides by rewrite rule list

(pc) . 64

6.42 disjoint list of rewrite rule list and apply subst list (pc) . 64

6.43 disjoint list of rewrite list and apply subst list (pc) . 64

6.44 Exchanging apply subst tll and rewrite list (pc) . 65

6.45 Monotonicity of rewrite list (pc) . 65

6.46 Stability of rewrites list* exists under Subsets . 66

6.47 rewrites rule list* exists implies rewrites list* exists . 66

6.48 Stability of rewrites rule list* under Subsets . 66

6.49 Stability of rewrites list* under Subsets . 67

6.50 Stability of rewrites* and rewrites list* under Substitutions . 67

6.51 Splitting Appended Lists when using rewrites rule list* . 68

6.52 Connection between rewrites rule list* and add�rst . 68

6.53 Connection between rewrites rule list* and addtail . 68

6.54 Decomposing rewrites rule list* with all combinations . 69

6.55 Decomposing rewrites rule* with �rst and tail . 69

6.56 Applying appendterm in the Arguments of rewrites rule* . 69

6.57 Decomposing rewrites rule list* with apply . 69

6.58 Decomposing rewrites rule* with Contexts . 69

6.59 Connection between rewrite

�

all and append list . 70

99

6.60 Stability of rewrites list* all under Subsets . 70

6.61 Stability of rewrites list* exists under Rule Application . 70

6.62 rewrite rule list implies rewrites rule list* exists . 70

6.63 rewrites rule implies rewrites rule list* exists . 70

6.64 rewrites rule implies rewrites list* exists . 71

6.65 rewrites rule implies rewrites list* all . 71

6.66 rewrite

�

all implies rewrites list* all . 71

6.67 rewrites list* all implies rewrites rule list* . 71

6.68 rewrites rule list* implies rewrites rule list* exists . 71

6.69 rewrites rule* implies rewrite

�

exists . 71

6.70 rewrites list* all implies rewrites rule list* exists for Non-Disjoint Lists 72

6.71 Splitting rewrites rule list* exists (pc) . 72

6.72 rewrite

�

exists for First Elements and Tails of Termlists . 72

6.73 rewrite

�

exists for Contexts . 72

6.74 Correctness of rewrite rule (pc) . 73

6.75 rewrites rule implies rewrites rule* (pc) . 73

6.76 Correctness of rewrite

�

all (pc) . 73

6.77 Splitting rewrite

�

all using addterm and addtermtwice (pc) . 73

6.78 Splitting rewrite

�

all using append (pc) . 73

6.79 Splitting rewrite

�

all using applytwice (pc) . 73

6.80 Splitting rewrite

�

all using apply (pc) . 74

6.81 rewrites rule* implies rewrite

�

all if a List only Contains one Element (pc) 74

6.82 Connection between rewrite

�

all and rewrite rule (pc) . 74

6.83 Rewriting via Substitutions Carries Over To Terms (pc) . 75

7 Theorems about Narrowing 76

7.1 De�nedness of is narrowlist, add narrowlist, apply narrowlist, back narrowlist,

remove subst . 76

7.2 Preservation of is narrowlist under add narrowlist, apply narrowlist, back narrowlist (pc) 76

7.3 narrow generates Lists Representing Narrowings (pc) . 77

7.4 De�nedness of special . 77

7.5 Relation between special and append (on the First Argument) (pc) 77

7.6 Relation between special and append (on the Second Argument) (pc) 77

7.7 Relation between special, back narrowlist, and if (Version 1) (pc) 78

7.8 Relation between special, back narrowlist, and if (Version 2) (pc) 78

7.9 Monotonicity of special w.r.t. addterm (pc) . 78

7.10 Monotonicity of special w.r.t. Function Context (pc) . 79

7.11 Using special for the Critical Pair Approach (pc) . 79

7.12 Soundness of special (pc) . 80

8 Theorems about Joinability 80

8.1 Reexivity of joinable . 80

8.2 Commutativity of Joinability (pc) . 80

8.3 Monotonicity of joinable list . 80

8.4 Joinability from Joinability of Tails (pc) . 81

8.5 Joinability from Joinability of First Elements (pc) . 81

8.6 Stability of joinable under Contexts . 81

8.7 Stability of joinable under Substitutions (pc) . 82

8.8 Rewriting implies Joinability (pc) . 82

8.9 Stability of joinable pairs under Substitutions (pc) . 83

8.10 rewrites list* exists implies joinable list (pc) . 83

8.11 Connection between rewrite

�

exists, rewrite

�

all, and joinable list (pc) 83

8.12 Connection between rewrite

�

exists, all reductions, and joinable (pc) 84

8.13 Joinability for Rules from a TRS (pc) . 84

100

8.14 Correctness of jcp . 84

9 The Critical Pair Lemma 85

9.1 Every Non-Joinable Local Divergence is an Instantiation of a Critical Pair (pc) 85

9.2 Critical Pair Lemma (pc) . 89

101

