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Abstract. This paper deals with automated termination analysis for

partial functional programs, i.e. for functional programs which do not

terminate for each input. We present a method to determine their do-

mains (resp. non-trivial subsets of their domains) automatically. More

precisely, for each functional program a termination predicate algorithm

is synthesized, which only returns true for inputs where the program is

terminating. To ease subsequent reasoning about the generated termina-

tion predicates we also present a procedure for their simpli�cation.

1 Introduction

Termination of algorithms is a central problem in software development and

formal methods for termination analysis are essential for program veri�cation.

While most work on the automation of termination proofs has been done in

the areas of term rewriting systems (for surveys see e.g. [Der87, Ste95]) and of

logic programs (e.g. [UV88, Pl�u90, SD94]), in this paper we focus on functional

programs.

Up to now all methods for automated termination analysis of functional

programs (e.g. [BM79, Wal88, Hol91, Wal94b, NN95, Gie95b, Gie95c]) aim to

prove that a program terminates for each input. However, if the termination

proof fails then these methods provide no means to �nd a (sub-)domain where

termination is provable. Therefore these methods cannot be used to analyze the

termination behaviour of partial functional programs, i.e. of programs which do

not terminate for all inputs [BM88].

In this paper we automate Manna's approach for termination analysis of

\partial programs" [Man74]: For every algorithm de�ning a function f there has

to be a termination predicate
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�

f

which speci�es the \admissible input" of f

(i.e. evaluation of f must terminate for each input admitted by the termination

predicate). But while in [Man74] termination predicates have to be provided by

the user, in this paper we present a technique to synthesize them automatically.
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Instead of \termination predicates" Manna uses the notion of \input predicates".



In Section 2 we introduce our functional programming language and sketch

the basic approach for proving termination of algorithms. Then in Section 3 we

show the requirements termination predicates have to satisfy and based on these

requirements we present a procedure for the automated synthesis of termination

predicates
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in Section 4. The generated termination predicates can be used both

for further automated and interactive program analysis. To ease the handling

of these termination predicates we have developed a procedure for their sim-

pli�cation which is introduced in Section 5. Finally, we give a summary of our

method (Section 6) and we end up with an appendix which contains a collection

of examples to illustrate the power of our method.

2 Termination of Algorithms

In this paper we regard an eager �rst-order functional language with (free) al-

gebraic data types. To simplify the presentation we restrict ourselves to non-

parameterized types and to functions without mutual recursion (see the conclu-

sion for a discussion of possible extensions of our method).

As an example consider the algebraic data type nat for natural numbers. Its

objects are built with the constructors 0 and succ and we use a selector pred as

an inverse function to succ (with pred(succ(x)) = x and pred(0) = 0, i.e. pred

is a total function). To ease readability we often write \1" instead of \succ(0)"

etc. For each data type s there must be a pre-de�ned equality function \="

: s � s! bool. Then the following algorithm de�nes the subtraction function:

function minus(x; y : nat) : nat (

if x = y then 0

else succ(minus(pred(x); y)).

In our language, the body q of an algorithm \function f(x

1

: s

1

; : : : ; x

n

: s

n

) :

s ( q" is a term built from the variables x

1

; : : : ; x

n

, constructors, selectors,

equality function symbols, function symbols de�ned by algorithms, and condi-

tionals (where we write \if t

1

then t

2

else t

3

" instead of \if (t

1

; t

2

; t

3

)"). These

conditionals are the only functions with non-eager semantics, i.e. when evaluat-

ing \if t

1

then t

2

else t

3

", the (boolean) term t

1

is evaluated �rst and depending

on the result of its evaluation either t

2

or t

3

is evaluated afterwards.

To prove termination of an algorithm one has to show that in each recursive

call a given measure is decreased. For that purpose a measure function j:j is used

which maps a tuple of data objects t

1

; : : : ; t

n

to a natural number jt

1

; : : : ; t

n

j. In

the following we often abbreviate tuples t

1

; : : : t

n

by t

�

.

For example, one might attempt to prove termination of minus with the size

measure j:j

#

, where the size of an object of type nat is the number it represents

(i.e. the number of succ's it contains). So we have j0j

#

= 0, jsucc(0)j

#

= 1 etc. As

minus is a binary function, for its termination proof we need a measure function

2

Strictly speaking, we synthesize algorithms which compute termination predicates.

For the sake of brevity sometimes we also refer to these algorithms as \termination

predicates".
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on pairs of data objects. Therefore we extend the size measure function to pairs

by measuring a pair by the size of the �rst object, i.e. jt

1

; t

2

j

#

= jt

1

j

#

. Hence,

to prove termination of minus we now have to verify the following inequality for

all instantiations of x and y where x 6= y holds

3

:

jpred(x); yj

#

< jx; yj

#

: (1)

But the algorithm for minus does not terminate for all inputs, i.e. minus is a par-

tial function (in fact, minus(x; y) only terminates if the number x is not smaller

than the number y). For instance, the call minus(0; 2) leads to the recursive call

minus(pred(0); 2). As pred(0) is evaluated to 0, this results in calling minus(0; 2)

again. Hence, evaluation of minus(0; 2) is not terminating. Consequently, our ter-

mination proof for minus must fail. For example, (1) is not satis�ed if x is 0 and

y is 2.

Instead of proving that an algorithm terminates for all inputs (absolute ter-

mination), in the following we are interested in �nding subsets of inputs where

the algorithms are terminating. Hence, for each algorithm de�ning a function f

we want to generate a termination predicate algorithm �

f

where evaluation of

�

f

always terminates and if �

f

returns true for some input t

�

then evaluation of

f(t

�

) terminates, too.

De�nition1. Let f : s

1

�: : :�s

n

! s be de�ned by a (possibly non-terminating)

algorithm. A total function �

f

: s

1

� : : :�s

n

! bool is a termination predicate

for f i� for all tuples t

�

of data objects, �

f

(t

�

) = true implies that the evaluation

of f(t

�

) is terminating.

Of course the problem of determining the exact domains of functions is unde-

cidable. As we want to generate termination predicates automatically we there-

fore only demand that a termination predicate �

f

represents a su�cient criterion

for the termination of f's algorithm. So in general, a function f may have an in-

�nite number of termination predicates and false is a termination predicate for

each function. But of course our aim is to synthesize weaker termination predi-

cates, i.e. termination predicates which return true as often as possible.

3 Requirements for Termination Predicates

In this section we introduce two requirements that are su�cient for termination

predicates, i.e. if a (terminating) algorithm satis�es these requirements then it

de�nes a termination predicate for the function under consideration. A procedure

for the automated synthesis of such algorithms will be presented in Section 4.

First, we consider simple partial functions like minus (Section 3.1) and sub-

sequently we will also examine algorithms which call other partial functions

(Section 3.2).
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We often use \t 6= r" as an abbreviation for :(t = r), where the boolean function :

is de�ned by an (obvious) algorithm.
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3.1 Termination Predicates for Simple Partial Functions

We resume our example and generate a termination predicate �

minus

such that

evaluation of minus(x; y) terminates if �

minus

(x; y) is true. Recall that for proving

absolute termination one has to show that a certain measure is decreased in

each recursive call. But as we illustrated, the algorithm for minus is not always

terminating and therefore inequality (1) does not hold for all instantiations of x

and y which lead to a recursive call. Hence, the central idea for the construction

of a termination predicate �

minus

is to let �

minus

return true only for those inputs

x and y where the measure of x and y is greater than the measure of the corre-

sponding recursive call and to return false for all other inputs. So if evaluation

of minus(x; y) leads to a recursive call (i.e. if x 6= y holds), then �

minus

(x; y) may

only return true if the measure jpred(x); yj

#

is smaller than jx; yj

#

. This yields

the following requirement for a termination predicate �

minus

:

�

minus

(x; y) ^ x 6= y ! jpred(x); yj

#

< jx; yj

#

: (2)

For example, the function de�ned by the following algorithm satis�es (2):

function �

minus

(x; y : nat) : bool (

if x = y then true

else jpred(x); yj

#

< jx; yj

#

.

This algorithm for �

minus

uses the same case analysis as minus. Since minus

terminates in its non-recursive case (i.e. if x = y), the corresponding result of

�

minus

is true. For the recursive case (if x 6= y), �

minus

returns true i� jpred(x); y)j

#

< jx; yj

#

is true. We assume that each measure function j:j is de�ned by a

(terminating) algorithm. Hence, in the result of the second case �

minus

calls the

algorithm for the computation of the size measure j:j

#

and it also calls a (ter-

minating) algorithm to compute the less-than relation \<" on natural numbers.

So in general, given an algorithm for f we demand the following requirement

for termination predicates �

f

(where j:j is an arbitrary measure function):

If evaluation of f(t

�

) leads to a recursive call f(r

�

),

then �

f

(t

�

) may only return true if jr

�

j < jt

�

j holds.

(Req1)

However, (Req1) is not a su�cient requirement for termination predicates.

For instance, the function �

minus

de�ned above is not a termination predicate

for minus although it satis�es requirement (Req1). The reason is that �

minus

(1; 2)

returns true (as jpred(1); 2j

#

< j1; 2j

#

holds). But evaluation of minus(1; 2) is

not terminating because its evaluation leads to the (non-terminating) recursive

call minus(0; 2).

This non-termination is not recognized by �

minus

because �

minus

(1; 2) only

checks if the arguments (0; 2) of the next recursive call of minus are smaller

than the input (1; 2). But it is not guaranteed that subsequent recursive calls are

also measure decreasing. For example, the next recursive call with the arguments

(0; 2) will lead to a subsequent recursive call of minus with the same arguments,

i.e. in the subsequent recursive call the measure of the arguments remains the
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same. For that reason �

minus

(1; 2) evaluates to true, but application of �

minus

to

the arguments (0; 2) of the following recursive call yields false.

Therefore in addition to (Req1) we must demand that a termination predi-

cate �

f

remains valid for each recursive call in f's algorithm. This ensures that

subsequent recursive calls are also measure decreasing:

If evaluation of f(t

�

) leads to a recursive call f(r

�

),

then �

f

(t

�

) may only return true if �

f

(r

�

) is also true.

(3)

In our example, to satisfy the requirements (Req1) and (3) we modify the

result of �

minus

's second case by demanding that �

minus

also holds for the following

recursive call of minus:

function �

minus

(x; y : nat) : bool (

if x = y then true

else jpred(x); yj

#

< jx; yj

#

^ �

minus

(pred(x); y).

In this algorithm we use the boolean function symbol ^ to ease readability,

where '

1

^'

2

abbreviates \if '

1

then '

2

else false". Hence, the semantics of the

function ^ are not eager. So terms in a conjunction are evaluated from left to

right, i.e. given a conjunction '

1

^ '

2

of boolean terms (which we also refer

to as \formulas"), '

1

is evaluated �rst. If the value of '

1

is false, then false is

returned, otherwise '

2

is evaluated and its value is returned. Note that we need

a lazy conjunction function ^ to ensure termination of �

minus

. It guarantees that

evaluation of �

minus

(x; y) can only lead to a recursive call �

minus

(pred(x); y) if the

measure of the recursive arguments jpred(x); yj

#

is smaller than the measure of

the inputs jx; yj

#

.

The above algorithm really de�nes a termination predicate for minus, i.e.

�

minus

is a total function and the truth of �

minus

is su�cient for the termination of

minus. This algorithm for �

minus

was constructed in order to obtain an algorithm

satisfying the requirements (Req1) and (3). In Section 4 we will show that this

construction can easily be automated. A closer look at �

minus

reveals that we

have synthesized an algorithm which computes the usual greater-equal relation

\�" on natural numbers. As minus(x; y) is only terminating if x is greater than

or equal to y, in this example we have even generated the weakest possible

termination predicate, i.e. �

minus

returns true not only for a subset but for all

elements of the domain of minus.

3.2 Algorithms Calling Other Partial Functions

In general (Req1) and (3) are not su�cient criteria for termination predicates.

These requirements can only be used for algorithms like minus which (apart from

recursive calls) only call other total functions (like =, succ, and pred).

In this section we will examine algorithms which call other partial functions.

As an example consider the algorithm for list minus(l; y) which subtracts the

number y from all elements of a list l. Objects of the data type list are built

with the constructors empty and add, where add(x; k) represents the insertion of
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the number x into the list k. We also use the selectors head and tail, where head

returns the �rst element of a list and tail returns a list without its �rst element

(i.e. head(add(x; k)) = x, head(empty) = 0, tail(add(x; k)) = k, tail(empty) =

empty).

function list minus(l : list; y : nat) : list (

if l = empty then empty

else add(minus(head(l); y); list minus(tail(l); y)).

We construct the following algorithm for �

list minus

by measuring pairs jl; yj

#

by the size of the �rst object jlj

#

again, where the size of a list is its length.

function �

list minus

(l : list; y : nat) : bool (

if l = empty then true

else jtail(l); yj

#

< jl; yj

#

^ �

list minus

(tail(l); y).

But although this algorithm de�nes a function which satis�es (Req1) and (3),

it is not a termination predicate for list minus. The reason is that �

list minus

(add(0;

empty); 2) evaluates to true because the size of the empty list is smaller than

the size of add(0; empty). But evaluation of list minus(add(0; empty); 2) is not

terminating as it leads to the (non-terminating) evaluation of minus(0; 2).

The problem is that �

list minus

only checks if recursive calls of list minus are

measure decreasing but it does not guarantee the termination of other algo-

rithms called. Therefore we have to demand that �

list minus

ensures termination

of the subsequent call of minus, i.e. in the second case �

list minus

(l; y) must imply

�

minus

(head(l); y).

So we replace (3) by a requirement that guarantees the truth of �

g

(r

�

) for all

function calls g(r

�

) in f's algorithm (i.e. also for functions g di�erent from f):

If evaluation of f(t

�

) leads to a function call g(r

�

),

then �

f

(t

�

) may only return true if �

g

(r

�

) is also true.

(Req2)

Note that (Req2) must also be demanded for non-recursive cases. The func-

tion �

list minus

de�ned by the following algorithm satis�es (Req1) and the extended

requirement (Req2):

function �

list minus

(l : list; y : nat) : bool (

if l = empty then true

else �

minus

(head(l); y) ^ jtail(l); yj

#

< jl; yj

#

^ �

list minus

(tail(l); y).

The above algorithm in fact de�nes a termination predicate for list minus.

Analyzing the algorithm one notices that �

list minus

(l; y) returns true i� all ele-

ments of l are greater than or equal to y. As evaluation of list minus(l; y) only

terminates for such inputs, we have synthesized the weakest possible termination

predicate again.

Note that algorithms may also call partial functions in their conditions. For

example consider the algorithm for half which calls minus in its conditions:
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function half(x : nat) : nat (

if minus(x; 2) = 0 then 1

else succ(half(minus(x; 2))).

This algorithm does not terminate for the inputs 0 or 1, since in the con-

ditions the term minus(x; 2) must be evaluated. Therefore due to (Req2), �

half

must ensure that all calls of the partial function minus in the conditions are

terminating, i.e. �

half

(x) must imply �

minus

(x; 2). The following algorithm for �

half

satis�es both requirements (Req1) and (Req2):

function �

half

(x : nat) : bool (

�

minus

(x; 2) ^ ( if minus(x; 2) = 0

then true

else �

minus

(x; 2) ^ jminus(x;2)j

#

< jxj

#

^ �

half

(minus(x; 2)) ):

The above algorithm �rst checks if the call of the algorithm minus in the

conditions of half is terminating. If the corresponding termination predicate

�

minus

(x; 2) is false, then �

half

also returns false. Otherwise, evaluation of �

half

continues as usual.

This algorithm really de�nes a termination predicate for half. Analysis of �

half

reveals that we have synthesized the \even"-algorithm (for numbers greater than

0) which again is the weakest possible termination predicate for half.

The following lemma states that the two requirements we have derived are

in fact su�cient for termination predicates.

Lemma2. If a total function �

f

satis�es the requirements (Req1) and (Req2)

then �

f

is a termination predicate for f.

Proof. Suppose that there exist data objects t

�

such that �

f

(t

�

) returns true but

evaluation of f(t

�

) does not terminate. Then let t

�

be the smallest such data

objects, i.e. for all objects r

�

with a measure jr

�

j smaller than jt

�

j the truth of

�

f

(r

�

) implies termination of f(r

�

).

As we have excluded mutual recursion we may assume that for all other func-

tions g (which are called by f) the predicate �

g

really is a termination predicate.

Hence, requirement (Req2) ensures that evaluation of f(t

�

) can only lead to

terminating calls of other functions g. Therefore the non-termination of f(t

�

)

cannot be caused by another function g.

So evaluation of f(t

�

) must lead to recursive calls f(r

�

). But because of re-

quirement (Req1), r

�

has a smaller measure than t

�

. Hence, due to the minimal-

ity of t

�

, f(r

�

) must be terminating (as (Req2) ensures that �

f

(r

�

) also returns

true). So the recursive calls of f cannot cause non-termination either. Therefore

evaluation of f(t

�

) must also be terminating. 2

4 Automated Generation of Termination Predicates

In this section we show how algorithms de�ning termination predicates can be

synthesized automatically. Given a functional program f, we present a technique
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to generate a (terminating) algorithm for �

f

satisfying the requirements (Req1)

and (Req2). Then due to Lemma 2 this algorithm de�nes a termination predicate

for f.

Requirement (Req2) demands that �

f

may only return true if evaluation of

all terms in the conditions and results of f is terminating. Therefore we extend

the idea of termination predicates from algorithms to arbitrary terms.

Hence, for each term t we construct a boolean term �(t) (a termination

formula for t) such that evaluation of �(t) is terminating and �(t) = true

implies that evaluation of t is also terminating

4

. For example, a termination

formula for half(minus(x; 2)) is �

minus

(x; 2) ^ �

half

(minus(x; 2)), because due to the

eager nature of our functional language in this term minus is evaluated before

evaluating half. So termination formulas have to guarantee that a subterm g(r

�

)

is only evaluated if �

g

(r

�

) holds. In general, termination formulas are constructed

by the following rules:

�(x) :� true; for variables x, (i)

�(g(r

1

; : : : ; r

n

)) :� �(r

1

) ^ : : : ^ �(r

n

) ^ �

g

(r

1

; : : : ; r

n

); for functions g, (ii)

�(if r

1

then r

2

else r

3

):� �(r

1

) ^ if r

1

then �(r

2

) else �(r

3

): (iii)

Note that in rule (ii), if g is a constructor, a selector, or an equality function,

then we have �

g

(x

�

) = true, because those functions are total.

To satisfy requirement (Req2) �

f

must ensure that evaluation of all terms

in the body of an algorithm f terminates. So if f is de�ned by the algorithm

\function f(x

1

: s

1

; : : : ; x

n

: s

n

) : s ( q", then �

f

has to check whether the

termination formula �(q) of f's body is true.

But the body of f can also contain recursive calls f(r

�

). To satisfy requirement

(Req1) we must additionally ensure that the measure jr

�

j of recursive calls is

smaller than the measure of the inputs jx

�

j. Therefore for recursive calls f(r

�

)

we have to change the de�nition of termination formulas as follows:

�(f(r

1

; : : : ; r

n

)) :� �(r

1

) ^ : : : ^�(r

n

) ^ jr

1

; : : : ; r

n

j < jx

1

; : : : ; x

n

j ^ �

f

(r

1

; : : : ; r

n

) (iv)

In this way we obtain the following procedure for the generation of termina-

tion predicates.

Theorem3. Given an algorithm \function f(x

1

: s

1

; : : : ; x

n

: s

n

) : s ( q", we

de�ne the algorithm \function �

f

(x

1

: s

1

; : : : ; x

n

: s

n

) : bool ( �(q)", where the

termination formula �(q) is constructed by the rules (i) - (iv). Then this algo-

rithm de�nes a termination predicate �

f

for f (i.e. this algorithm is terminating

and if �

f

(t

�

) returns true, then evaluation of f(t

�

) is also terminating).

Proof. By the de�nition of termination formulas, algorithms generated according

to Theorem 3 are terminating, because evaluation of �

f

(t

�

) can only lead to a

4

More precisely, this implication holds for each substitution � of t's variables by data

objects: For all such �, evaluation of �(�(t) ) is terminating and �(�(t) ) = true

implies that the evaluation of �(t) is also terminating.
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recursive call �

f

(r

�

) if the measure jr

�

j is smaller than jt

�

j and because calls of

other functions g(s

�

) can only be evaluated if �

g

(s

�

) holds.

Moreover, by construction the generated algorithm de�nes a function �

f

which

satis�es the requirements (Req1) and (Req2) we presented in Section 3. Due to

Lemma 2 this implies that �

f

must be a termination predicate for f, i.e. it is total

and it is su�cient for termination of f. 2

The construction of algorithms for termination predicates according to The-

orem 3 can be directly automated. So by this theorem we have developed a

procedure for the automated generation of termination predicates. For instance,

the termination predicate algorithms for minus, list minus, and half in the last

section were built according to Theorem 3 (where for the sake of brevity we

omitted termination predicates for total functions because such predicates al-

ways return true). As demonstrated, the generated termination predicates often

are as weak as possible, i.e. they often describe the whole domain of the partial

function under consideration (instead of just a sub-domain).

5 Simpli�cation of Termination Predicates

In the last section we presented a method for the automated generation of al-

gorithms which de�ne termination predicates. But sometimes the synthesized

algorithms are unnecessarily complex. To ease subsequent reasoning about ter-

mination predicates in the following sections we introduce a procedure to simplify

the generated termination predicate algorithms which consists of four steps.

5.1 Application of Induction Lemmata

First, the well-known induction lemma method by R. S. Boyer and J S. Moore

[BM79] is used to eliminate (some of) the inequalities jr

�

j < jx

�

j (which ensure

that recursive calls are measure decreasing) from the termination predicate algo-

rithms. Elimination of these inequalities simpli�es the algorithms considerably

and often enables the execution of subsequent simpli�cation steps.

An induction lemma points out that under a certain hypothesis � some op-

eration drives some measure down, i.e. induction lemmata have the form

� ! jr

�

j < jx

�

j:

In the system of Boyer and Moore induction lemmata have to be provided by

the user. However, C. Walther presented a method to generate a certain class

of induction lemmata for the size measure function j:j

#

automatically [Wal94b]

and we recently generalized his approach towards measure functions based on

arbitrary polynomial norms [Gie95b]. For instance, the induction lemma needed

in the following example can be synthesized by Walther's and our method.

While Boyer and Moore use induction lemmata for absolute termination

proofs, we will now illustrate their use for the simpli�cation of termination pred-

icate algorithms. As an example consider the following algorithm:

9



function quotient(x; y : nat) : nat (

if x < y then 0

else succ(quotient(minus(x; y); y)).

Using the procedure of Theorem 3 the following termination predicate algo-

rithm is generated. In this algorithm we again neglect the call of the termination

predicate �

<

as \<" is de�ned by an (absolutely) terminating algorithm and

therefore �

<

always returns true.

function �

quotient

(x; y : nat) : bool (

if x < y then true

else �

minus

(x; y) ^ jminus(x; y); yj

#

< jx; yj

#

^ �

quotient

(minus(x;y); y).

We know that in the result of �

quotient

the term minus(x; y) will only be eval-

uated if this evaluation is terminating, i.e. if �

minus

(x; y) holds. So in order to

eliminate the inequality occurring in the result of �

quotient

's second case, we look

for an induction lemma which states that provided minus is terminating the mea-

sure of jminus(x; y); yj

#

is smaller than jx; yj

#

under some hypothesis �. Hence,

we search for an induction lemma of the form

�

minus

(x; y) ^ � ! jminus(x; y); yj

#

< jx; yj

#

:

For instance, we can use the following induction lemma which states that

(provided minus(x; y) terminates) the result of minus(x; y) is smaller than its

�rst argument x, if both x and y are not 0:

�

minus

(x; y) ^ x 6= 0 ^ y 6= 0 ! jminus(x; y); yj

#

< jx; yj

#

:

As in the result of �

quotient

the truth of �

minus

(x; y) is guaranteed before evalu-

ating the inequality jminus(x; y); yj

#

< jx; yj

#

we can now replace this inequality

by x 6= 0 ^ y 6= 0 which yields the following simpli�ed algorithm:

function �

quotient

(x; y : nat) : bool (

if x < y then true

else �

minus

(x; y) ^ x 6= 0 ^ y 6= 0 ^ �

quotient

(minus(x; y); y).

So in general, if the body of an algorithm contains an inequality jr

�

j < jx

�

j

which will only be evaluated under the condition  , then our simpli�cation

procedure looks for an induction lemma of the form

 ^ � ! jr

�

j < jx

�

j:

If such an induction lemma is known (or can be synthesized) then the inequality

jr

�

j < jx

�

j is replaced by �.

10



5.2 Subsumption Elimination

In the next simpli�cation step redundant terms are eliminated from the termina-

tion predicate algorithms. Recall that �

minus

computes the greater-equal relation

\�" on natural numbers. Hence the condition of �

quotient

's second case implies

the truth of �

minus

(x; y), i.e. we can verify

x 6< y ! �

minus

(x; y): (4)

For that reason the subsumed term �

minus

(x; y) may be eliminated from the

second case of �

quotient

which yields

if x < y then true

else x 6= 0 ^ y 6= 0 ^ �

quotient

(minus(x; y); y).

Note that evaluation of the terms x 6= 0 and y 6= 0 is always terminating

(i.e. their termination formulas �(x 6= 0) and �(y 6= 0) are both true). Hence,

the order of the terms x 6= 0 and y 6= 0 can be changed without a�ecting the

semantics of �

quotient

. Then in the result of �

quotient

's second case the term x 6= 0

will only be evaluated under the condition x 6< y ^ y 6= 0. But this condition

again implies the truth of x 6= 0, i.e. we can easily verify

x 6< y ^ y 6= 0 ! x 6= 0: (5)

Hence, the subsumed term x 6= 0 can also be eliminated which results in the

following algorithm for �

quotient

:

function �

quotient

(x; y : nat) : bool (

if x < y then true

else y 6= 0 ^ �

quotient

(minus(x; y); y).

According to [Wal94b] we call formulas like (4) and (5) subsumption formulas.

So in general, if a term  

2

will only be evaluated under the condition  

1

and if the

subsumption formula  

1

!  

2

can be veri�ed, then our simpli�cation procedure

replaces the term  

2

by true. (Subsequently of course, in a conjunction the term

true may be eliminated.)

For the automated veri�cation of subsumption formulas an induction theorem

proving system is used (e.g. one of those described in [BM79, Bi

+

86, Bu

+

90,

Wal94a]). For instance, the subsumption formula (4) can be veri�ed by an easy

induction proof and subsumption formula (5) can already be proved by case

analysis and propositional reasoning only.

5.3 Recursion Elimination

To apply the following simpli�cation step recall that '

1

^'

2

is an abbreviation

for \if '

1

then '

2

else false". Hence, the algorithm for �

quotient

in fact reads as

follows:

11



function �

quotient

(x; y : nat) : bool (

if x < y then true

else ( if y 6= 0 then �

quotient

(minus(x; y); y)

else false ).

So this algorithm has three cases, where the �rst case has the result true

which is only evaluated under the condition x < y, the second case has the

result �

quotient

(minus(x; y); y) and the corresponding condition x 6< y^ y 6= 0, and

the third case has the result false and the condition x 6< y ^ y = 0.

Now we eliminate the recursive call of �

quotient

according to the recursion

elimination technique of Walther [Wal94b]. If we can verify that evaluation of a

recursive call �

f

(r

�

) always yields the same result (i.e. it always yields true or it

always yields false) then we can replace the recursive call �

f

(r

�

) by this result.

In this way it is possible to replace the recursive call of �

quotient

by the value true.

The reason is that each recursive call �

quotient

(minus(x; y); y) evaluates to true.

More precisely, the parameters (minus(x; y); y) of the recursive call either

satisfy the condition of �

quotient

's �rst case (i.e. minus(x; y) < y) or they satisfy

the condition of �

quotient

's second case (i.e. minus(x; y) 6< y ^ y 6= 0). This property

is expressed by the following formula:

x 6< y ^ y 6= 0 ! minus(x; y) < y _ (minus(x; y) 6< y ^ y 6= 0): (6)

As the arguments of recursive calls always satisfy the condition of the �rst

(non-recursive) or the second (recursive) case, due to the termination of �

quotient

after a �nite number of recursive calls �

quotient

will be called with arguments

that satisfy the condition of the �rst non-recursive case. Hence, the result of the

evaluation is true. Therefore the recursive call of �

quotient

can in fact be replaced

by true which yields the following non-recursive version of �

quotient

:

function �

quotient

(x;y : nat) : bool ( resp.

if x < y then true

else ( if y 6= 0 then true

else false )

function �

quotient

(x; y : nat) : bool (

if x < y then true

else y 6= 0.

In general, let R be a set of recursive �

f

-cases with results of the form �

f

(r

�

)

and let b be a boolean value (either true or false). Our simpli�cation procedure

replaces the recursive calls in the R-cases by the boolean value b, if for each case

in R evaluation of the result �

f

(r

�

) either leads to a non-recursive case with the

result b or to a recursive case from R.

Let 	 be the set of all conditions from non-recursive cases with the result b

and of all conditions from R-cases. Then one has to show that the arguments r

�

satisfy one of the conditions ' 2 	 , i.e. '[x

�

=r

�

] must be valid (where [x

�

=r

�

]

denotes the substitution of the formal parameters x

�

by the terms r

�

). Hence, for

each case in R with the condition  the following recursion elimination formula

has to be veri�ed:

 !

_

'2	

'[x

�

=r

�

]:
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Again, for the automated veri�cation of such formulas an (induction) theorem

prover is used. For instance, formula (6) can already be veri�ed by propositional

reasoning only.

5.4 Case Elimination

In the last simpli�cation step one tries to replace conditionals by their results.

More precisely, regard a conditional of the form \if '

1

then true else '

2

" which

will only be evaluated under a condition  . Now the simpli�cation procedure

tries to replace this conditional by the result '

2

. For that purpose the procedure

has to check whether '

2

also holds in the then-case of the conditional, i.e. it

tries to verify the case elimination formula

 ^ '

1

! '

2

:

If this implication can be proved (and if the condition :'

1

is not necessary

to ensure termination of '

2

's evaluation, i.e. if  ! �('

2

)), then the conditional

is replaced by '

2

. Of course, conditionals of the form \if '

1

then '

2

else true"

can be simpli�ed in a similar way.

In our example, the case elimination formula x < y ! y 6= 0 can be veri�ed.

Moreover, as evaluation of y 6= 0 is always terminating (i.e. �(y 6= 0) is true),

the condition x 6< y is not necessary to ensure termination of that evaluation.

Therefore the conditional in the body of �

quotient

's algorithm is now replaced by

y 6= 0. In this way we obtain the �nal version of �

quotient

:

function �

quotient

(x; y : nat) : bool ( y 6= 0:

Using the above techniques this simple algorithm for �

quotient

has been con-

structed which states that evaluation of quotient(x; y) terminates if y is not 0.

This example demonstrates that our simpli�cation procedure eases further auto-

mated reasoning about termination predicates signi�cantly and it also enhances

the readability of the termination predicate algorithms.

Summing up, the procedure for simpli�cation of termination predicate algo-

rithms works as follows: First, induction lemmata are used to replace inequalities

by simpler formulas. Then the procedure eliminates subsumed terms and recur-

sive calls. Finally, cases are eliminated by replacing conditionals by their results

if possible.

This simpli�cation procedure for termination predicates works automatically.

It is based on a method for the synthesis of induction lemmata [Wal94b, Gie95b]

and it uses an induction theorem prover to verify the subsumption, recursion

elimination, and case elimination formulas (which often is a simple task).

6 Conclusion

We have presented a method to determine the domains (resp. non-trivial sub-

domains) of partial functions automatically. For that purpose we have automated

13



the approach for termination analysis suggested by Manna [Man74]. Our analy-

sis uses termination predicates which represent conditions that are su�cient

for the termination of the algorithm under consideration. Based on su�cient

requirements for termination predicates we have developed a procedure for the

automated synthesis of termination predicate algorithms. Subsequently we intro-

duced a procedure for the simpli�cation of these generated termination predicate

algorithms which also works automatically.

The presented approach can be used for polymorphic types, too, and an

extension to mutual recursion is possible in the same way as suggested in [Gie96]

for absolute termination proofs. Termination analysis can also be extended to

higher-order functions by inspecting the decrease of their �rst-order arguments,

cf. [NN95]. To determine non-trivial subdomains of higher-order functions which

are not always terminating, in general one does not only need a termination

predicate for each function f but one also has to generate termination predicates

for the (higher-order) results of each function.

Our method proved successful on numerous examples (see Table 1 for some

examples to illustrate its power). For each function f in this table the correspond-

ing termination predicate �

f

could be synthesized automatically. Moreover, for

all these examples the synthesized termination predicate is not only su�cient

for termination, but it even describes the exact domain of the functions.

These examples demonstrate that the procedure of Theorem 3 is able to

synthesize sophisticated termination predicate algorithms (e.g. for a quotient

algorithm it synthesizes the termination predicate \divides", for a logarithm al-

gorithm it synthesizes a termination predicate which checks if one number is

a power of another number, for an algorithm which deletes an element from a

list a termination predicate for list membership is synthesized etc.). By subse-

quent application of our simpli�cation procedure one usually obtains very simple

formulations of the synthesized termination predicate algorithms.

Termination of those algorithms marked with

�

can be proved by methods

for absolute termination proofs, too. But the termination behaviour of all other

algorithms in Table 1 could not be analyzed with any other automatic method.

Although those functions without

�

which have the termination predicate true

are also total, their totality cannot be veri�ed by the existing methods for ab-

solute termination proofs. The reason is that their algorithms call other non-

terminating algorithms. A detailed description of our experiments can be found

in the appendix.

The presented procedure for the generation of termination predicates works

for any given measure function j:j. Therefore the procedure can also be combined

with methods for the automated generation of suitable measure functions (e.g.

the one we presented in [Gie95a, Gie95c]). For example, by using the measures

suggested by this method, for all

5

82 algorithms from the database of [BM79]

our procedure synthesizes termination predicates which always return true (i.e. in

this way (absolute) termination of all these algorithms is proved automatically).

Furthermore, with our approach it is also possible to perform termination

5

As mentioned in [Wal94b] one algorithm (greatest.factor) must be slightly modi�ed.
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analysis for imperative programs: When translating an imperative program into

a functional one, usually each while-loop is transformed into a partial function,

cf. [Hen80]. Now the termination predicates for these partial \loop functions"

can be used to prove termination of the whole imperative program.

Acknowledgements.We would like to thank Christoph Walther and the ref-

erees for helpful comments.
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No Function f �

f

1 minus(x; y) x � y

2 half1(x) even(x)

3 half2(x) even(x) ^ x 6= 0

4 half3

�

(x) true

5 double

�

(x) true

6 even

�

(x) true

7 plus

�

(x; y) true

8 times(x; y) true

9 exp(x; y) true

10 lt

�

(x; y) true

11 quotient1(x; y) y 6= 0

12 mod(x; y) y 6= 0

13 quotient2(x; y) yjx

14 gcd(x; y) x = 0 ^ y = 0 _ x 6= 0 ^ y 6= 0

15 lcm(x; y) x 6= 0 ^ y 6= 0

16 dual log1(x) x 6= 0

17 dual log2(x) x = 2

n

18 log1(x; y) x = 1 _ x 6= 0 ^ y 6= 0 ^ y 6= 1

19 log2(x; y) x = 1 _ x = y

n

^ x 6= 0 ^ y 6= 1

20 list minus(l; y)

V

i

l

i

� y

21 last(l) l 6= empty

22 but last(l) l 6= empty

23 reverse(l) true

24 minimum

�

(x; y) true

25 list min(l) l 6= empty

26 length

�

(l) true

27 last x(l; x) length(l) � x

28 index(x; l) x = 0 _member(x; l)

29 delete(x; l) x = 0 _member(x; l)

30 sum lists(l; k) length(l) = length(k)

31 nat to bin(x; y) y = 2

n

32 bin vec(x) x 6= 0

Table 1. Termination predicates synthesized by our method.
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A Examples

This appendix contains 32 examples to illustrate the power of our method (cf.

Table 1). Algorithms marked with

�

are (absolutely) terminating and only call

terminating algorithms (they are required as auxiliary algorithms for the other

examples). Hence their termination can also be proved with known techniques

for absolute termination proofs. For all other algorithms in this appendix an

automated termination analysis is not possible with methods for absolute ter-

mination proofs. Note that in all following examples the termination predicates

generated by our method are the weakest possible ones (i.e. they return true i�

the algorithm under consideration terminates).

For each algorithm we �rst describe its intended semantics. Then we mention

the termination predicate algorithm synthesized by our procedure (and the used

measure function). Subsequently we show the results of applying the simpli�ca-

tion procedure to the termination predicate. This procedure always consists of

the four steps:

(a) Induction Lemma,

(b) Subsumption Elimination,

(c) Recursion Elimination,

(d) Case Elimination.

After each of these four steps, we mention the intermediate version of the ter-

mination predicate algorithm, where we omit steps that are not applicable in

the particular example (and hence, do not change the termination predicate

algorithm). In the end we describe the semantics of the resulting termination

predicate.

The data structures used in the examples are nat (with the constructors 0

and succ and the selector pred) and list (with the constructors empty and add

and the selectors head and tail). We omit termination predicates for constructors,

selectors, and equality, because these predicates always return true.

1 minus

function minus(x; y : nat) : nat (

if x = y then 0

else succ(minus(pred(x); y))

Intended Semantics: x� y

Synthesis

Measure: m(x; y) = jxj

#

(i.e. the number of succ-applications in the �rst argu-

ment)
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function �

minus

(x; y : nat) : bool (

if x = y then true

else jpred(x)j

#

< jxj

#

^ �

minus

(pred(x); y)

Simpli�cation

(a) Induction Lemma

x 6= 0! jpred(x)j

#

< jxj

#

function �

minus

(x; y : nat) : bool (

if x = y then true

else x 6= 0 ^ �

minus

(pred(x); y)

Semantics: x � y

2 half1

function half1(x : nat) : nat (

if x = 0 then 0

else succ(half1(minus(x; 2)))

Intended Semantics: x=2

Synthesis

Measure: m(x) = jxj

#

function �

half1

(x : nat) : bool (

if x = 0 then true

else �

minus

(x; 2) ^ jminus(x; 2)j

#

< jxj

#

^ �

half 1

(minus(x; 2))

Simpli�cation

(a) Induction Lemma

�

minus

(x; 2)! jminus(x; 2)j

#

< jxj

#

function �

half 1

(x : nat) : bool (

if x = 0 then true

else �

minus

(x; 2)^ �

half1

(minus(x; 2))

Semantics: true i� x is even
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3 half2

function half2(x : nat) : nat (

if minus(x; 2) = 0 then 1

else succ(half2(minus(x; 2)))

Intended Semantics: x=2

Synthesis

Measure: m(x) = jxj

#

function �

half2

(x : nat) : bool (

�

minus

(x; 2) ^ ( if minus(x; 2) = 0

then true

else �

minus

(x; 2) ^ jminus(x; 2)j

#

< jxj

#

^ �

half2

(minus(x; 2)) )

Simpli�cation

(a) Induction Lemma

�

minus

(x; 2)! jminus(x; 2)j

#

< jxj

#

function �

half2

(x : nat) : bool (

�

minus

(x; 2) ^ ( if minus(x; 2) = 0

then true

else �

minus

(x; 2)^ �

half2

(minus(x; 2)) )

(b) Subsumption Elimination

�

minus

(x; 2)! �

minus

(x; 2)

function �

half2

(x : nat) : bool (

�

minus

(x; 2) ^ ( if minus(x; 2) = 0

then true

else �

half2

(minus(x; 2)) )

Semantics: true i� x 6= 0 and x is even

4 half3

�

function half3(x : nat) : nat (

if x 6= 0 ^ x 6= succ(0) then succ(half3(pred(pred(x))))

else 0

Intended Semantics: x=2
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Synthesis

Measure: m(x) = jxj

#

function �

half3

(x : nat) : bool (

if x 6= 0 ^ x 6= succ(0) then jpred(pred(x))j

#

< jxj

#

^ �

half3

(pred(pred(x)))

else true

Simpli�cation

(a) Induction Lemma

x 6= 0 ^ x 6= succ(0)! jpred(pred(x))j

#

< jxj

#

function �

half 3

(x : nat) : bool (

if x 6= 0^ x 6= succ(0) then �

half3

(pred(pred(x)))

else true

(c) Recursion Elimination

x 6= 0^x 6= succ(0)! pred(pred(x)) 6= 0 ^ pred(pred(x)) 6= succ(0) _

:(pred(pred(x)) 6= 0 ^ pred(pred(x)) 6= succ(0))

function �

half 3

(x : nat) : bool (

if x 6= 0^ x 6= succ(0) then true

else true

(d) Case Elimination

: : : ! true

function �

half 3

(x : nat) : bool ( true

Semantics: true

5 double

�

function double(x : nat) : nat (

if x = 0 then 0

else succ(succ(double(pred(x))))

Intended Semantics: 2x
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Synthesis

Measure: m(x) = jxj

#

function �

double

(x : nat) : bool (

if x = 0 then true

else jpred(x)j

#

< jxj

#

^ �

double

(pred(x))

Simpli�cation

(a) Induction Lemma

x 6= 0 ! jpred(x)j < jxj

#

function �

double

(x : nat) : bool (

if x = 0 then true

else �

double

(pred(x))

(c) Recursion Elimination

x 6= 0 ! pred(x) = 0 _ pred(x) 6= 0

function �

double

(x : nat) : bool (

if x = 0 then true

else true

(d) Case Elimination

: : : ! true

function �

double

(x : nat) : bool ( true

Semantics: true

6 even

�

function even(x : nat) : bool (

if x = 0 then true

else ( if x = succ(0) then false

else even(pred(pred(x))) )

Intended Semantics: true i� x is even
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Synthesis

Measure: m(x) = jxj

#

function �

even

(x : nat) : bool (

if x = 0 then true

else ( if x = succ(0) then true

else jpred(pred(x))j

#

< jxj

#

^

�

even

(pred(pred(x))) )

Simpli�cation

Analogously to �

half3

Semantics: true

7 plus

�

function plus(x; y : nat) : nat (

if x = 0 then y

else succ(plus(pred(x); y))

Intended Semantics: x+ y

Synthesis

Measure: m(x; y) = jxj

#

function �

plus

(x; y : nat) : bool (

if x = 0 then true

else jpred(x)j

#

< jxj

#

^ �

plus

(pred(x); y)

Simpli�cation

Analogously to �

double

Semantics: true

8 times

function times(x; y : nat) : nat (

if x = 0 then 0

else ( if even(x)

then times(half1(x); double(y))

else plus(y; times(half1(pred(x)); double(y))) )
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Intended Semantics: x � y

Synthesis

Measure: m(x; y) = jxj

#

function �

times

(x; y : nat) : bool (

if x = 0 then true

else �

even

(x) ^ ( if even(x)

then �

half 1

(x) ^ �

double

(y) ^

jhalf1(x)j

#

< jxj

#

^

�

times

(half1(x); double(y))

else �

half 1

(pred(x)) ^ �

double

(y) ^

jhalf1(pred(x))j

#

< jxj

#

^

�

times

(half1(pred(x)); double(y)) ^

�

plus

(y; times(half1(pred(x)); double(y))) )

Simpli�cation

(a) Induction Lemmata

�

half 1

(x) ^ x 6= 0 ! jhalf1(x)j

#

< jxj

#

�

half 1

(pred(x)) ^ x 6= 0! jhalf1(pred(x))j

#

< jxj

#

function �

times

(x; y : nat) : bool (

if x = 0 then true

else �

even

(x) ^ ( if even(x)

then �

half1

(x) ^ �

double

(y) ^ x 6= 0 ^

�

times

(half1(x); double(y))

else �

half1

(pred(x)) ^ �

double

(y) ^ x 6= 0 ^

�

times

(half1(pred(x)); double(y)) ^

�

plus

(y; times(half1(pred(x)); double(y))) )

(b) Subsumption Elimination

: : : ! �

even

(x)

x 6= 0 ^ even(x)! �

half1

(x) ^ �

double

(y) ^ x 6= 0

x 6= 0 ^ :even(x)! �

half1

(pred(x)) ^ �

double

(y) ^ x 6= 0

: : : ! �

plus

(y; times(half1(pred(x)); double(y)))

function �

times

(x; y : nat) : bool (

if x = 0 then true

else ( if even(x) then �

times

(half1(x); double(y))

else �

times

(half1(pred(x)); double(y)) )
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(c) Recursion Elimination

x 6= 0^ even(x)! half1(x) = 0 _ half1(x) 6= 0 ^ even(half1(x)) _

half1(x) 6= 0 ^ :even(half1(x))

x 6= 0^:even(x)! half1(pred(x)) = 0 _

half1(pred(x)) 6= 0 ^ even(half1(pred(x))) _

half1(pred(x)) 6= 0 ^ :even(half1(pred(x)))

function �

times

(x; y : nat) : bool (

if x = 0 then true

else ( if even(x) then true

else true )

(d) Case Elimination

: : : ! true

function �

times

(x; y : nat) : bool ( true

Semantics: true

9 exp

function exp(x; y : nat) : nat (

if y = 0 then succ(0)

else ( if even(y)

then exp(times(x; x); half1(y))

else times(x; exp(times(x; x); half1(pred(y)))) )

Intended Semantics: x

y

Synthesis

Measure: m(x; y) = jyj

#

function �

exp

(x; y : nat) : bool (

if y = 0 then true

else �

even

(y) ^ ( if even(y)

then �

times

(x; x)^ �

half1

(y) ^

jhalf1(y)j

#

< jyj

#

^

�

exp

(times(x; x); half1(y))

else �

times

(x; x)^ �

half1

(pred(y)) ^

jhalf1(pred(y))j

#

< jyj

#

^

�

exp

(times(x; x); half1(pred(y))) ^

�

times

(x; exp(times(x; x); half1(pred(y)))) )
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Simpli�cation

Analogously to �

times

Semantics: true

10 lt

�

function lt(x; y : nat) : bool (

if y = 0 then false

else ( if x = 0 then true

else lt(pred(x); pred(y)) )

Intended Semantics: x < y

Synthesis

Measure: m(x; y) = jxj

#

function �

lt

(x; y : nat) : bool (

if y = 0 then true

else ( if x = 0 then true

else jpred(x)j

#

< jxj

#

^ �

lt

(pred(x); pred(y)) )

Simpli�cation

Analogously to �

double

Semantics: true

11 quotient1

function quotient1(x; y : nat) : nat (

if lt(x; y) then 0

else succ(quotient1(minus(x; y); y))

Intended Semantics: bx=yc

Synthesis

Measure: m(x; y) = jxj

#
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function �

quotient1

(x; y : nat) : bool (

�

lt

(x; y) ^ ( if lt(x; y) then true

else �

minus

(x; y) ^ jminus(x; y)j

#

< jxj

#

^

�

quotient1

(minus(x; y); y) )

Simpli�cation

(a) Induction Lemma

�

minus

(x; y) ^ x 6= 0 ^ y 6= 0 ! jminus(x; y)j

#

< jxj

#

function �

quotient1

(x; y : nat) : bool (

�

lt

(x; y) ^ ( if lt(x; y) then true

else �

minus

(x; y) ^ x 6= 0 ^ y 6= 0 ^

�

quotient1

(minus(x; y); y) )

(b) Subsumption Elimination

: : : ! �

lt

(x; y)

:lt(x; y) ! �

minus

(x; y)

:lt(x; y) ^ y 6= 0 ! x 6= 0

function �

quotient1

(x; y : nat) : bool (

if lt(x; y) then true

else y 6= 0 ^ �

quotient1

(minus(x; y); y)

(c) Recursion Elimination

:lt(x; y) ^ y 6= 0! lt(minus(x; y); y) _ :lt(minus(x; y); y) ^ y 6= 0

function �

quotient1

(x; y : nat) : bool (

if lt(x; y) then true

else y 6= 0

(d) Case Elimination

lt(x; y)! y 6= 0

function �

quotient1

(x; y : nat) : bool ( y 6= 0

Semantics: y 6= 0

12 mod

function mod(x; y : nat) : nat (

if lt(x; y) then x

else mod(minus(x; y); y)

Intended Semantics: Remainder of x w.r.t. y
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Synthesis

Measure: m(x; y) = jxj

#

function �

mod

(x; y : nat) : bool (

�

lt

(x; y) ^ ( if lt(x; y) then true

else �

minus

(x; y) ^ jminus(x; y)j

#

< jxj

#

^

�

mod

(minus(x; y); y) )

Simpli�cation

Analogously to �

quotient1

Semantics: y 6= 0

13 quotient2

function quotient2(x; y : nat) : nat (

if x = 0 then 0

else succ(quotient2(minus(x; y); y))

Intended Semantics: bx=yc

Synthesis

Measure: m(x; y) = jxj

#

function �

quotient2

(x; y : nat) : bool (

if x = 0 then true

else �

minus

(x; y) ^ jminus(x; y)j

#

< jxj

#

^

�

quotient2

(minus(x; y); y)

Simpli�cation

(a) Induction Lemma

�

minus

(x; y) ^ x 6= 0 ^ y 6= 0! jminus(x; y)j

#

< jxj

#

function �

quotient2

(x; y : nat) : bool (

if x = 0 then true

else �

minus

(x; y) ^ y 6= 0 ^ �

quotient2

(minus(x; y); y)

Semantics: true i� y divides x
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14 gcd

function gcd(x; y : nat) : nat (

if x = y then x

else ( if lt(x; y) then gcd(x;minus(y; x))

else gcd(minus(x; y); y) )

Intended Semantics: Greatest common divisor of x and y (this algorithm is from

[Manna74])

Synthesis

Measure: m(x; y) = jxj

#

+ jyj

#

function �

gcd

(x; y : nat) : bool (

if x = y then true

else �

lt

(x; y) ^ ( if lt(x; y)

then �

minus

(y; x)^

jxj

#

+ jminus(y; x)j

#

< jxj

#

+ jyj

#

^

�

gcd

(x;minus(y; x))

else �

minus

(x; y)^

jminus(x; y)j

#

+ jyj

#

< jxj

#

+ jyj

#

^

�

gcd

(minus(x; y); y) )

Simpli�cation

(a) Induction Lemma

�

minus

(v; w) ^ v 6= 0 ^ w 6= 0! jminus(v; w)j

#

+ jwj

#

< jvj

#

+ jwj

#

function �

gcd

(x; y : nat) : bool (

if x = y then true

else �

lt

(x; y) ^ ( if lt(x; y)

then �

minus

(y; x) ^ y 6= 0 ^ x 6= 0^

�

gcd

(x;minus(y; x))

else �

minus

(x; y) ^ x 6= 0 ^ y 6= 0^

�

gcd

(minus(x; y); y) )

(b) Subsumption Elimination

: : : ! �

lt

(x; y)

x 6= y ^ lt(x; y)! �

minus

(y; x) ^ y 6= 0

x 6= y ^ :lt(x; y)! �

minus

(x; y) ^ x 6= 0

function �

gcd

(x; y : nat) : bool (

if x = y then true

else ( if lt(x; y) then x 6= 0 ^ �

gcd

(x;minus(y; x))

else y 6= 0 ^ �

gcd

(minus(x; y); y) )
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(c) Recursion Elimination

x 6= y^ lt(x; y)^x 6= 0 ! x = minus(y; x) _

x 6= minus(y; x) ^ lt(x;minus(y; x)) ^ x 6= 0 _

x 6= minus(y; x) ^ :lt(x;minus(y; x)) ^minus(y; x) 6= 0

x 6= y^:lt(x; y)^y 6= 0! minus(x; y) = y _

minus(x; y) 6= y ^ lt(minus(x; y); y) ^minus(x; y) 6= 0 _

minus(x; y) 6= y ^:lt(minus(x; y); y) ^ y 6= 0

function �

gcd

(x; y : nat) : bool (

if x = y then true

else ( if lt(x; y) then x 6= 0

else y 6= 0 )

Semantics: Either both, x and y, are zero or both are non-zero

15 lcm

function lcm(x; y : nat) : nat ( times(x; quotient1(y; gcd(x; y)))

Intended Semantics: The least common multiple of x and y

Synthesis

function �

lcm

(x; y : nat) : bool ( �

gcd

(x; y) ^ �

quotient1

(y; gcd(x; y))^

�

times

(x; quotient1(y; gcd(x; y)))

Simpli�cation

(b) Subsumption Elimination

�

gcd

(x; y) ^ �

quotient1

(y; gcd(x; y))! �

times

(x; quotient1(y; gcd(x; y)))

function �

lcm

(x; y : nat) : bool ( �

gcd

(x; y) ^ �

quotient1

(y; gcd(x; y))

Semantics: Both, x and y, are non-zero (as gcd(0; 0) = 0)

16 dual log1

function dual log1(x : nat) : nat (

if x = succ(0) then 0

else succ(dual log1(half3(x)))

Intended Semantics: The dual logarithm of x
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Synthesis

Measure: m(x) = jxj

#

function �

dual log1

(x : nat) : bool (

if x = succ(0) then true

else �

half3

(x) ^ jhalf3(x)j

#

< jxj

#

^ �

dual log1

(half3(x))

Simpli�cation

(a) Induction Lemma

�

half3

(x) ^ x 6= 0! jhalf3(x)j

#

< jxj

#

function �

dual log1

(x : nat) : bool (

if x = succ(0) then true

else �

half3

(x) ^ x 6= 0 ^ �

dual log1

(half3(x))

(b) Subsumption Elimination

: : : ! �

half3

(x)

function �

dual log1

(x : nat) : bool (

if x = succ(0) then true

else x 6= 0 ^ �

dual log1

(half3(x))

(c) Recursion Elimination

x 6= succ(0) ^ x 6= 0!

half3(x) = succ(0) _ half3(x) 6= succ(0) ^ half3(x) 6= 0

function �

dual log1

(x : nat) : bool (

if x = succ(0) then true

else x 6= 0

(d) Case Elimination

x = succ(0)! x 6= 0

function �

dual log1

(x : nat) : bool ( x 6= 0

Semantics: x 6= 0

17 dual log2

function dual log2(x : nat) : nat (

if x = succ(0) then 0

else succ(dual log2(half1(x)))

Intended Semantics: The dual logarithm of x
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Synthesis

Measure: m(x) = jxj

#

function �

dual log2

(x : nat) : bool (

if x = succ(0) then true

else �

half 1

(x) ^ jhalf1(x)j

#

< jxj

#

^ �

dual log2

(half1(x))

Simpli�cation

(a) Induction Lemma

�

half 1

(x) ^ x 6= 0 ! jhalf1(x)j

#

< jxj

#

function �

dual log2

(x : nat) : bool (

if x = succ(0) then true

else �

half1

(x) ^ x 6= 0 ^ �

dual log2

(half1(x))

Semantics: x = 2

n

(for some n 2 IN)

18 log1

function log1(x; y : nat) : nat (

if x = succ(0) then 0

else succ(log1(quotient1(x; y); y))

Intended Semantics: The logarithm of x w.r.t. y

Synthesis

Measure: m(x; y) = jxj

#

function �

log1

(x; y : nat) : bool (

if x = succ(0) then true

else �

quotient1

(x; y) ^ jquotient1(x; y)j

#

< jxj

#

^

�

log1

(quotient1(x; y); y)

Simpli�cation

(a) Induction Lemma

�

quotient1

(x; y) ^ x 6= 0 ^ y 6= succ(0)! jquotient1(x; y)j

#

< jxj

#

function �

log1

(x; y : nat) : bool (

if x = succ(0) then true

else �

quotient1

(x; y) ^ x 6= 0 ^ y 6= succ(0) ^

�

log1

(quotient1(x; y); y)
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(c) Recursion Elimination

x 6= succ(0) ^ �

quotient1

(x; y) ^ x 6= 0 ^ y 6= succ(0)!

quotient1(x; y) = succ(0) _

quotient1(x; y) 6= succ(0) ^

�

quotient1

(quotient1(x; y); y) ^

quotient1(x; y) 6= 0 ^ y 6= succ(0)

function �

log1

(x; y : nat) : bool (

if x = succ(0) then true

else �

quotient1

(x; y) ^ x 6= 0 ^ y 6= succ(0)

Semantics: x = 1 _ x 6= 0 ^ y 6= 0 ^ y 6= 1

19 log2

function log2(x; y : nat) : nat (

if x = succ(0) then 0

else succ(log2(quotient2(x; y); y))

Intended Semantics: The logarithm of x w.r.t. y

Synthesis

Measure: m(x; y) = jxj

#

function �

log2

(x; y : nat) : bool (

if x = succ(0) then true

else �

quotient2

(x; y) ^ jquotient2(x; y)j

#

< jxj

#

^

�

log2

(quotient2(x; y); y)

Simpli�cation

(a) Induction Lemma

�

quotient2

(x; y) ^ x 6= 0 ^ y 6= succ(0)! jquotient2(x; y)j

#

< jxj

#

function �

log2

(x; y : nat) : bool (

if x = succ(0) then true

else �

quotient2

(x; y) ^ x 6= 0 ^ y 6= succ(0) ^

�

log2

(quotient2(x; y); y)

Semantics: x = 1 _ x = y

n

^ x 6= 0 ^ y 6= 1 (for some n 2 IN)
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20 list minus

function list minus(l : list; y : nat) : list (

if l = empty then empty

else add(minus(head(l); y); list minus(tail(l); y))

Intended Semantics: Subtracts y from each element of l

Synthesis

Measure: m(l; y) = jlj

#

(i.e. the length of the list l)

function �

list minus

(l : list; y : nat) : bool (

if l = empty then true

else �

minus

(head(l); y) ^ jtail(l)j

#

< jlj

#

^ �

list minus

(tail(l); y)

Simpli�cation

(a) Induction Lemma

l 6= empty ! jtail(l)j

#

< jlj

#

function �

list minus

(l : list; y : nat) : bool (

if l = empty then true

else �

minus

(head(l); y) ^ �

list minus

(tail(l); y)

Semantics: Each element of l is greater than or equal to y

21 last

function last(l : list) : nat (

if l = add(head(l); empty) then head(l)

else last(tail(l))

Intended Semantics: The last element of l

Synthesis

Measure: m(l) = jlj

#

function �

last

(l : list) : bool (

if l = add(head(l); empty) then true

else jtail(l)j

#

< jlj

#

^ �

last

(tail(l))
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Simpli�cation

(a) Induction Lemma

l 6= empty ! jtail(l)j

#

< jlj

#

function �

last

(l : list) : bool (

if l = add(head(l); empty) then true

else l 6= empty ^ �

last

(tail(l))

(c) Recursion Elimination

l 6= add(head(l); empty) ^ l 6= empty !

tail(l) = add(head(tail(l)); empty)_

tail(l) 6= add(head(tail(l)); empty) ^ tail(l) 6= empty

function �

last

(l : list) : bool (

if l = add(head(l); empty) then true

else l 6= empty

(d) Case Elimination

l = add(head(l); empty)! l 6= empty

function �

last

(l : list) : bool ( l 6= empty

Semantics: l 6= empty

22 but last

function but last(l : list) : list (

if l = add(head(l); empty) then empty

else add(head(l); but last(tail(l)))

Intended Semantics: A copy of l with all elements but the last

Synthesis

Measure: m(l) = jlj

#

function �

but last

(l : list) : bool (

if l = add(head(l); empty) then true

else jtail(l)j

#

< jlj

#

^ �

but last

(tail(l))
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Simpli�cation

Analogously to �

last

Semantics: l 6= empty

23 reverse

function reverse(l : list) : list (

if l = empty then empty

else add(last(l); reverse(but last(l)))

Intended Semantics: Reverses l

Synthesis

Measure: m(l) = jlj

#

function �

reverse

(l : list) : bool (

if l = empty then true

else �

last

(l) ^ �

but last

(l) ^ jbut last(l)j

#

< jlj

#

^

�

reverse

(but last(l))

Simpli�cation

(a) Induction Lemma

�

but last

(l)! jbut last(l)j

#

< jlj

#

function �

reverse

(l : list) : bool (

if l = empty then true

else �

last

(l) ^ �

but last

(l) ^ �

reverse

(but last(l))

(b) Subsumption Elimination

l 6= empty ! �

last

(l) ^ �

but last

(l)

function �

reverse

(l : list) : bool (

if l = empty then true

else �

reverse

(but last(l))

(c) Recursion Elimination

l 6= empty ! but last(l) = empty _ but last(l) 6= empty

function �

reverse

(l : list) : bool (

if l = empty then true

else true
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(d) Case Elimination

: : : ! true

function �

reverse

(l : list) : bool ( true

Semantics: true

24 minimum

�

function minimum(x; y : nat) : nat (

if lt(x; y) then x

else y

Intended Semantics: The minimum of x and y

Synthesis

function �

minimum

(x; y : nat) : bool (

�

lt

(x; y) ^ ( if lt(x; y) then true

else true )

Simpli�cation

(b) Subsumption Elimination

: : : ! �

lt

(x; y)

function �

minimum

(x; y : nat) : bool (

if lt(x; y) then true

else true

(d) Case Elimination

: : : ! true

function �

minimum

(x; y : nat) : bool ( true

Semantics: true

25 list min

function list min(l : list) : nat (

if l = add(head(l); empty) then head(l)

else minimum(head(l); list min(tail(l)))

Intended Semantics: The minimum among the elements of l
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Synthesis

Measure: m(l) = jlj

#

function �

list min

(l : list) : bool (

if l = add(head(l); empty) then true

else jtail(l)j

#

< jlj

#

^ �

list min

(tail(l)) ^

�

minimum

(head(l); list min(tail(l)))

Simpli�cation

Analogously to �

last

Semantics: l 6= empty

26 length

�

function length(l : list) : nat (

if l = empty then 0

else succ(length(tail(l)))

Intended Semantics: Length of l

Synthesis

Measure: m(l) = jlj

#

function �

length

(l : list) : bool (

if l = empty then true

else jtail(l)j

#

< jlj

#

^ �

length

(tail(l))

Simpli�cation

(a) Induction Lemma

l 6= empty ! jtail(l)j

#

< jlj

#

function �

length

(l : list) : bool (

if l = empty then true

else �

length

(tail(l))

(c) Recursion Elimination

l 6= empty ! tail(l) = empty _ tail(l) 6= empty
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function �

length

(l : list) : bool (

if l = empty then true

else true

(d) Case Elimination

: : : ! true

function �

length

(l : list) : bool ( true

Semantics: true

27 last x

function last x(l : list; x : nat) : list (

if length(l) = x then l

else last x(tail(l); x)

Intended Semantics: The list of the last x elements of l

Synthesis

Measure: m(l; x) = jlj

#

function �

last x

(l : list; x : nat) : bool (

�

length

(l) ^ ( if length(l) = x then true

else jtail(l)j

#

< jlj

#

^ �

last x

(tail(l); x) )

Simpli�cation

(a) Induction Lemma

l 6= empty ! jtail(l)j

#

< jlj

#

function �

last x

(l : list; x : nat) : bool (

�

length

(l) ^ ( if length(l) = x then true

else l 6= empty ^ �

last x

(tail(l); x) )

(b) Subsumption Elimination

: : : ! �

length

(l)

function �

last x

(l : list; x : nat) : bool (

if length(l) = x then true

else l 6= empty ^ �

last x

(tail(l); x)
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Semantics: length(l) � x

28 index

function index(x : nat; l : list) : nat (

if x = head(l) then succ(0)

else succ(index(x; tail(l)))

Intended Semantics: The position of the �rst occurrence of x in l (beginning

with 1)

Synthesis

Measure: m(x; l) = jlj

#

function �

index

(x : nat; l : list) : bool (

if x = head(l) then true

else jtail(l)j

#

< jlj

#

^ �

index

(x; tail(l))

Simpli�cation

(a) Induction Lemma

l 6= empty ! jtail(l)j

#

< jlj

#

function �

index

(x : nat; l : list) : bool (

if x = head(l) then true

else l 6= empty ^ �

index

(x; tail(l))

Semantics: x = 0 or x occurs in l

29 delete

function delete(x : nat; l : list) : list (

if x = head(l) then tail(l)

else add(head(l); delete(x; tail(l)))

Intended Semantics: Removes the �rst occurrence of x from l

Synthesis

Measure: m(x; l) = jlj

#

function �

delete

(x : nat; l : list) : bool (

if x = head(l) then true

else jtail(l)j

#

< jlj

#

^ �

delete

(x; tail(l))
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Simpli�cation

Analogously to �

index

Semantics: x = 0 or x occurs in l

30 sum lists

function sum lists(l; k : list) : list (

if l = add(head(l); empty)^

k = add(head(k); empty) then add(plus(head(l); head(k)); empty)

else add(plus(head(l); head(k));

sum lists(tail(l); tail(k)))

Intended Semantics: Computes the list whose elements are the sums of the cor-

responding elements of l and k

Synthesis

Measure: m(l; k) = jlj

#

function �

sum lists

(l; k : list) : bool (

if l = add(head(l); empty)^

k = add(head(k); empty) then �

plus

(head(l); head(k))

else �

plus

(head(l); head(k)) ^

jtail(l)j

#

< jlj

#

^

�

sum lists

(tail(l); tail(k))

Simpli�cation

(a) Induction Lemma

l 6= empty ! jtail(l)j

#

< jlj

#

function �

sum lists

(l; k : list) : bool (

if l = add(head(l); empty)^

k = add(head(k); empty) then �

plus

(head(l); head(k))

else �

plus

(head(l); head(k)) ^

l 6= empty ^

�

sum lists

(tail(l); tail(k))

(b) Subsumption Elimination

: : : ! �

plus

(head(l); head(k))
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function �

sum lists

(l; k : list) : bool (

if l = add(head(l); empty)^

k = add(head(k); empty) then true

else l 6= empty ^

�

sum lists

(tail(l); tail(k))

Semantics: l and k are not empty and have the same length

31 nat to bin

function nat to bin(x; y : nat) : list (

if y = 1 then ( if x = 0 then add(0; empty)

else add(1; empty) )

else ( if lt(x; y) then add(0; nat to bin(x; half1(y)))

else add(1; nat to bin(minus(x; y); half1(y))) )

Intended Semantics: The binary representation of x is computed, if y = 2

n

� x,

n maximal (or if y = 1 and x = 0).

Synthesis

Measure: m(x; y) = jyj

#

function �

nat to bin

(x; y : nat) : bool (

if y = 1 then ( if x = 0 then true

else true )

else �

lt

(x; y) ^ ( if lt(x; y) then �

half1

(y) ^ jhalf1(y)j

#

< jyj

#

^

�

nat to bin

(x; half1(y))

else �

minus

(x; y) ^ �

half1

(y) ^

jhalf1(y)j

#

< jyj

#

^

�

nat to bin

(minus(x; y); half1(y)) )

Simpli�cation

(a) Induction Lemma

�

half 1

(y) ^ y 6= 0! jhalf1(y)j

#

< jyj

#

function �

nat to bin

(x; y : nat) : bool (

if y = 1 then ( if x = 0 then true

else true )

else �

lt

(x; y) ^ ( if lt(x; y) then �

half 1

(y) ^ y 6= 0 ^

�

nat to bin

(x; half1(y))

else �

minus

(x; y) ^ �

half 1

(y) ^

y 6= 0 ^

�

nat to bin

(minus(x; y); half1(y)) )
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(b) Subsumption Elimination

: : : ! �

lt

(x; y)

:lt(x; y)! �

minus

(x; y)

function �

nat to bin

(x; y : nat) : bool (

if y = 1 then ( if x = 0 then true

else true )

else ( if lt(x; y) then �

half1

(y) ^ y 6= 0 ^

�

nat to bin

(x; half1(y))

else �

half1

(y) ^ y 6= 0 ^

�

nat to bin

(minus(x; y); half1(y)) )

(d) Case Elimination

: : : ! true

function �

nat to bin

(x; y : nat) : bool (

if y = 1 then true

else ( if lt(x; y) then �

half 1

(y) ^ y 6= 0 ^

�

nat to bin

(x; half1(y))

else �

half 1

(y) ^ y 6= 0 ^

�

nat to bin

(minus(x; y); half1(y)) )

Semantics: y = 2

n

(for some n 2 IN)

32 bin vec

function bin vec(x : nat) : list ( nat to bin(x; exp(2; dual log1(x)))

Intended Semantics: The binary representation of x

Synthesis

function �

bin vec

(x : nat) : bool ( �

dual log1

(x) ^ �

exp

(2; dual log1(x)) ^

�

nat to bin

(x; exp(2; dual log1(x)))

Simpli�cation

(b) Subsumption Elimination

�

dual log1

(x)! �

exp

(2; dual log1(x)) ^ �

nat to bin

(x; exp(2; dual log1(x)))

function �

bin vec

(x : nat) : bool ( �

dual log1

(x)

Semantics: x 6= 0
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