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Abstract. We present a method to prove termination of constructor sys-

tems automatically. Our approach takes advantage of the special form of

these rewrite systems because for constructor systems instead of left- and

right-hand sides of rules it is su�cient to compare so-called dependency

pairs [Art96]. Unfortunately, standard techniques for the generation of

well-founded orderings cannot be directly used for the automation of the

dependency pair approach. To solve this problem we have developed a

transformation technique which enables the application of known synthe-

sis methods for well-founded orderings to prove that dependency pairs

are decreasing. In this way termination of many (also non-simply termi-

nating) constructor systems can be proved fully automatically.

1 Introduction

One of the most interesting properties of a term rewriting system is termina-

tion, cf. e.g. [DJ90]. While in general this problem is undecidable [HL78], sev-

eral methods for proving termination have been developed (e.g. path orderings

[Pla78, Der82, Ges94, DH95, Ste95b], Knuth-Bendix orderings [KB70, Mar87],

semantic interpretations [MN70, Lan79, BCL87, BL93, Ste94, Zan94, Gie95b],

transformation orderings [BD86, BL90, Ste95a], semantic labelling [Zan95] etc.

| for surveys see e.g. [Der87, Ste95b]).

In this paper we are concerned with the automation of termination proofs

for constructor systems (CS for short). Due to the special form of these rewrite

systems it is possible to use a di�erent approach for CSs than is necessary for

termination of general rewrite systems. Therefore, in this paper we focus on a

technique specially tailored for CSs, viz. the so-called dependency pair approach

[Art96]. With this approach it is also possible to prove termination of systems

where all simpli�cation orderings fail. In Sect. 2 we describe which steps have to

be performed (automatically) to verify termination of CSs using this approach.

Although the dependency pair approach may be used for arbitrary CSs, in this

paper we focus on special hierarchical combinations of CSs ensuring that all steps

can be performed automatically.
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The main task in this approach is to prove that all dependency pairs are de-

creasing w.r.t. a well-founded ordering. Up to now only some heuristics existed to

perform this step automatically. On the other hand, several techniques have been

developed to synthesize suitable well-founded orderings for termination proofs of

term rewriting systems. Hence, one would like to apply these techniques for the

automation of the dependency pair approach. Unfortunately, as we will show in

Sect. 3, this is not directly possible.

Therefore in Sect. 4 we suggest a new technique to enable the application

of standard methods for the generation of well-founded orderings to prove that

dependency pairs are decreasing. For that purpose we transfer a variant of the

estimation method [Wal94, Gie95c, Gie95d], which was originally developed for

termination proofs of functional programs, to rewrite systems.

By the combination of the dependency pair approach and the estimation

method we obtain a very powerful technique for automated termination proofs

of CSs which can prove termination of numerous CSs whose termination could

not be proved automatically before, cf. the appendix.

2 Dependency Pairs

A constructor system (D; C;R) is a term rewriting system with a set of rules

R and with a signature that can be partitioned into two disjoint sets D and C

such that for every left-hand side f(t

1

; : : : ; t

n

) of a rewrite rule of R the root

symbol f is from D and the terms t

1

; : : : ; t

n

only contain function symbols from

C. Function symbols from D are called de�ned symbols and function symbols from

C are called constructors. As an example consider the following CS:

minus(x; 0)! x;

minus(succ(x); succ(y)) ! minus(x; y);

quot(0; succ(y)) ! 0;

quot(succ(x); succ(y)) ! succ(quot(minus(x; y); succ(y))):

Most methods for automated termination proofs of term rewriting systems

are restricted to simpli�cation orderings [Der79, Ste95b]. These methods can-

not prove termination of the above CS, because no simpli�cation ordering can

orient the fourth rule if y is instantiated to succ(x). The reason is that simpli�-

cation orderings � are monotonic and satisfy the subterm property and this im-

plies succ(quot(minus(x; succ(x)); succ(succ(x)))) � quot(succ(x); succ(succ(x))).

All other known techniques for automated termination proofs of non-simply ter-

minating systems [Zan94, Ste95a, Ken95, FZ95] fail with this example, too.

However, with the dependency pair approach an automated termination proof

of the above CS is possible. The idea of this approach is to use an interpretation

on terms which assigns for every rewrite rule of the CS the same value to the

left-hand side as to the right-hand side. Then for termination of the CS it is

su�cient if there exists a well-founded ordering such that the interpretations of

the arguments of all de�ned symbols are decreasing in each recursive occurrence.
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To represent the interpretation another CS E is used which is ground-conver-

gent (i.e. ground-con
uent and terminating) and in which the CS R is contained,

i.e. (l�) #

E

= (r�) #

E

holds for all rewrite rules l ! r of R and all ground sub-

stitutions � (where we always assume that there exist ground terms, i.e. there

must be a constant in the signature D [ C). Then for any ground term t the

interpretation is t#

E

.

If a term f(t

1

; : : : ; t

n

) rewrites to another term C[g(s

1

; : : : ; s

m

)] (where f and

g are de�ned symbols and C denotes some context), then we will try to show

that the interpretation of the tuple t

1

; : : : ; t

n

is greater than the interpretation

of the tuple s

1

; : : : ; s

m

. In order to avoid the comparison of tuples we extend our

signature by a tuple function symbol F for each f 2 D and compare the terms

F (t

1

; : : : ; t

n

) and G(s

1

; : : : ; s

m

) instead. To ease readability we assume that D[C

consists of lower case function symbols only and denote the tuple functions by

the corresponding upper case symbols. Pairs of terms that have to be compared

are called dependency pairs.

De�nition1. Let (D; C;R) be a CS. If f(t

1

; : : : ; t

n

) ! C[g(s

1

; : : : ; s

m

)] is a

rewrite rule of R and f; g 2 D, then hF (t

1

; : : : ; t

n

); G(s

1

; : : : ; s

m

)i is called a

dependency pair (of R).

In our example we obtain the following set of dependency pairs (where M and

Q denote the tuple function symbols for minus and quot):

hM(succ(x); succ(y));M(x; y)i; (1)

hQ(succ(x); succ(y));M(x; y)i; (2)

hQ(succ(x); succ(y));Q(minus(x; y); succ(y))i : (3)

The following theorem states that if the interpretations of the dependency

pairs are decreasing, then the CS is terminating.

Theorem2. Let (D; C;R) be a CS and let (D; C; E) be a ground-convergent CS

such that R is contained in E . If there exists a well-founded ordering � on ground

terms such that (s�) #

E

� (t�) #

E

holds for all

1

dependency pairs hs; ti and all

ground substitutions �, then R is terminating.

The proofs of all theorems of this section are based on semantic labelling [Zan95]

and can be found in [Art96].

Hence, to prove termination of a CSR with the dependency pair technique two

tasks have to be performed: �rst, one has to �nd a ground-convergent CS E such

that R is contained in E and second, one has to prove that the E-interpretations

of the dependency pairs are decreasing w.r.t. a well-founded ordering.

For the �rst task, in [Art96] a method is presented to generate suitable CSs E

for a subclass of CSs R automatically. This subclass consists of non-overlapping

2

hierarchical combinations [KR95] (a CS is a hierarchical combination of two CSs

1

In many examples it is su�cient if only certain dependency pairs are decreasing and

several methods to determine those dependency pairs have been suggested in [Art96].

2

This requirement can even be weakened to overlay systems with joinable critical pairs.
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if de�ned symbols of the �rst CS occur as constructors in the second CS, but not

vice versa) without nested de�ned symbols in the second CS (i.e. the rules do

not contain subterms of the form f(: : : g : : :), where f; g are de�ned symbols of

R

1

). We remark that the hierarchical combinations that we focus on, di�er from

the proper-extensions de�ned by Krishna Rao [KR95].

If R is such a hierarchical combination of R

0

with R

1

and R

0

is terminating,

then it su�ces if just the subsystem R

0

is contained in E and hence, one can

simply de�ne E to be R

0

. Moreover, one does not have to consider all depen-

dency pairs of R, but it is su�cient to examine only those dependency pairs

hF (: : :); G(: : :)i where f and g are de�ned symbols of R

1

. In this way it is pos-

sible to prove termination of hierarchical combinations by successively proving

termination of each subsystem and by de�ning E to consist of those subsystems

whose termination has already been proved before. Thus, we recursively apply

the following theorem.

Theorem3. Let (D; C;R) be a non-overlapping hierarchical combination of

(D

0

; C;R

0

) with (D

1

; C [D

0

;R

1

) such that R

0

is terminating and such that sym-

bols from D

1

do not occur nested in the rules. If there exists a well-founded or-

dering � on ground terms such that (s�)#

R

0

� (t�)#

R

0

holds for all dependency

pairs hs; ti of R

1

and all ground substitutions �, then R is terminating.

For instance, our example is a hierarchical combination of the minus-subsys-

tem with the quot-subsystem. Hence, if we already proved termination of the �rst

two minus-rules

3

, then we now only have to prove termination of the quot-rules

and let E consist of the two minus-rules. Now the only dependency pair we have

to consider is (3).

Hence, the main problem with automated termination proofs using depen-

dency pairs is the second task, i.e. to �nd a well-founded ordering such that the

interpretations of dependency pairs are decreasing.

3 Using Well-Founded Orderings

Numerous methods for the automated generation of suitable well-founded order-

ings have been developed to prove termination of term rewriting systems. Hence,

for the automation of the dependency pair approach we would like to use these

standard methods to prove that dependency pairs are decreasing.

However, we will illustrate in Sect. 3.1 that, unfortunately, the direct applica-

tion of standard methods for this purpose is unsound. The reason is that arbitrary

orderings do not respect the equalities induced by E .

3

This can for instance be done with standard techniques like e.g. the recursive path

ordering [Der82] or again by the dependency pair approach. Then, E can be chosen to

be any ground-convergent CS (even the empty one), because in the CS consisting of

the two minus-rules de�ned symbols do not occur nested and this CS may be regarded

as a hierarchical combination where R

0

is empty.
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In Sect. 3.2 we show that the straightforward solution of restricting ourselves

to orderings that respect the equalities induced by E results in a method which

is not powerful enough.

But in Sect. 3.3 we prove that as long as the dependency pairs do not contain

de�ned symbols, the direct approach of Sect. 3.1 is sound. Therefore our aim will

be to eliminate all de�ned symbols in the dependency pairs. A transformation

procedure for the elimination of de�ned symbols will be presented in Sect. 4.

3.1 Direct Application of Well-Founded Orderings

Let DP be a set of inequalities which represent the constraints that left-hand

sides of dependency pairs have to be greater than right-hand sides, i.e. DP =

fs � tjhs; ti dependency pairg. Now one could use standard methods to generate

a well-founded ordering � satisfying the constraints DP. But unfortunately, this

approach is unsound, i.e. it is not su�cient for the termination of the CS R under

consideration. As an example let R be the CS

double(0)! 0;

double(succ(x))! succ(succ(double(x)));

f(succ(x))! f(double(x)):

Assume that we have already proved termination of the double-subsystem. Hence

by Thm. 3, we can de�ne E to consist of the �rst two rules of R and we only

have to examine the dependency pair hF(succ(x));F(double(x))i. The constraint

DP = fF(succ(x)) � F(double(x))g

is for instance satis�ed by the recursive path ordering �

rpo

, cf. [Der82]. Never-

theless, R is not terminating (e.g. f(succ(succ(0))) starts an in�nite reduction).

This direct application of orderings is not possible because the constraints in

DP only compare the terms s and t but not their E-interpretations. However,

s �

rpo

t is not su�cient for (s�)#

E

�

rpo

(t�)#

E

, because �

rpo

does not respect the

equalities induced by E . For instance, F(succ(succ(0))) �

rpo

F(double(succ(0))),

but F(succ(succ(0)))#

E

6�

rpo

F(double(succ(0)))#

E

= F(succ(succ(0))).

So we have to ensure that whenever s#

E

= t#

E

holds for two ground terms s

and t, these terms must also be \equivalent" w.r.t. the used ordering. To formalize

the notion of \equivalence" we will now regard quasi-orderings.

3.2 Quasi-Orderings Respecting E

A quasi-ordering % is a re
exive and transitive relation. For every quasi-ordering

% , let � denote the associated equivalence relation (i.e. s � t i� s % t and t % s)

and let � denote the strict part of the quasi-ordering (i.e. s � t i� s % t, but

not t % s). We say % is well-founded i� the strict part � is well-founded. In

this paper we restrict ourselves to relations on ground terms and (for notational

convenience) we extend every quasi-ordering % to arbitrary terms by de�ning
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s % t i� s� % t� holds for all ground substitutions �. Analogously, s � t (resp.

s � t) is de�ned as s� � t� (resp. s� � t�) for all ground substitutions �.

A straightforward solution for the problem discussed in the preceding section

would be to try to �nd a well-founded quasi-ordering which satis�es both DP

and EQ, where EQ = fs � tj s; t ground terms with s #

E

= t #

E

g. Obviously the

existence of such a quasi-ordering is su�cient for the termination of the CS R.

Lemma4. If there exists a well-founded quasi-ordering satisfying the constraints

DP [ EQ, then R is terminating.

Proof. If % satis�es DP, then we have s� � t� for each dependency pair hs; ti

and each ground substitution �. If % also satis�es EQ, then (s�) #

E

� s� �

t� � (t�)#

E

. Hence, the lemma follows from Thm. 2 (resp. Thm. 3). �

But unfortunately, standard techniques usually cannot be used to �nd a well-

founded quasi-ordering % satisfying the constraints DP [ EQ. As an example

regard the CS for minus and quot again. Assume that we have already proved

termination of the minus-subsystem and let us now prove termination of the quot-

rules. According to Thm. 3, we can de�ne E to consist of the two minus-rules and

we obtain the constraint

DP = fQ(succ(x); succ(y)) � Q(minus(x; y); succ(y))g: (4)

None of the well-founded quasi-orderings that can be generated automatically

by the usual techniques satis�es DP [ EQ: Virtually all of those quasi-orderings

are quasi-simpli�cation-orderings

4

[Der82]. Hence, if % is a quasi-simpli�cation-

ordering satisfying EQ, then we have

Q(minus(x; y); succ(y)) � Q(minus(succ(x); succ(y)); succ(y))

(as minus(x; y) � minus(succ(x); succ(y)) holds and as quasi-simpli�cation-or-

derings are (weakly) monotonic). Moreover, we have

Q(minus(succ(x); succ(y)); succ(y)) % Q(succ(x); succ(y))

(as quasi-simpli�cation-orderings satisfy the (weak) subterm property). Hence,

Q(minus(x; y); succ(y)) % Q(succ(x); succ(y)) which is a contradiction to (4).

So the standard techniques for the automated generation of well-founded

quasi-orderings fail here (and the same problem appears with most other exam-

ples). Hence, demanding DP[EQ is too strong, i.e. in this way most termination

proofs will not succeed.

4

DP [ EQ is not satis�ed by polynomial orderings [Lan79] either (which do not have

to be quasi-simpli�cation-orderings).
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3.3 Constraints Without De�ned Symbols

In Sect. 3.1 we showed that the existence of a well-founded quasi-ordering %

satisfying DP is in general not su�cient for the termination of R, because %

does not necessarily respect the equalities induced by E (i.e. the equalities EQ).

Nevertheless, if DP contains no de�ned symbols (from D) then it is su�cient

to �nd a well-founded quasi-ordering satisfying DP. The reason is that any such

quasi-ordering can be transformed into a well-founded quasi-ordering satisfying

both DP and EQ:

Lemma5. Let (D; C; E) be a ground-convergent CS, let DP be a set of inequal-

ities containing no de�ned symbols. If there exists a well-founded quasi-ordering

% satisfying DP, then there also exists a well-founded quasi-ordering %

0

satisfy-

ing both DP and EQ.

Proof. For two ground terms s; t let s %

0

t i� s #

E

% t #

E

. Since % is a well-

founded quasi-ordering, %

0

is a well-founded quasi-ordering and obviously, %

0

satis�es EQ.

We will now show that %

0

satis�es DP: Let s and t be terms without de�ned

symbols. As % satis�es DP, it is su�cient to prove that s % t implies s %

0

t. Note

that for terms without de�ned symbols we have (s�)#

E

= s(�#

E

) for each ground

substitution � (where � #

E

denotes the substitution of x by (�(x)) #

E

for each

x 2 DOM (�)). Now s % t implies s(�#

E

) % t(�#

E

) for all ground substitutions �

or, respectively, (s�)#

E

% (t�)#

E

. Hence, s� %

0

t� holds for all � and therefore

s % t implies s %

0

t. Similarly it can be proved that s � t implies s �

0

t. �

As an example consider the CS which only consists of the two rules for minus.

Here, DP contains only the inequality M(succ(x); succ(y)) � M(x; y) in which no

de�ned symbol occurs. Of course there exist well-founded quasi-orderings satis-

fying this constraint (e.g. %

rpo

). For any ground-convergent E (cf. Footnote 3),

%

rpo

can be transformed into a well-founded quasi-ordering %

0

(as in the proof

of Lemma 5) where s %

0

t holds i� s #

E

%

rpo

t #

E

. This quasi-ordering satis�es

both DP and EQ. Hence, termination of this CS is proved.

So if DP does not contain de�ned symbols we can just use standard techniques

to generate a well-founded quasi-ordering satisfying DP. By the two Lemmata 4

and 5 this is su�cient for the termination of R.

To conclude, we have shown that the direct use of well-founded quasi-or-

derings is unsound (except if DP does not contain de�ned symbols) and we have

illustrated that the straightforward solution (i.e. the restriction to quasi-orderings

which also satisfy EQ) imposes too strong requirements such that termination

proofs often fail. In the next section we present a di�erent, powerful approach to

deal with CSs where DP does contain de�ned symbols. (This always happens if

de�ned symbols occur within the arguments of a recursive call in R.)

4 Elimination of De�ned Symbols

If we want to prove termination of the quot-subsystem then we have to show that

there exists a well-founded quasi-ordering satisfying both EQ (where E consists
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of the �rst two minus-rules) and the constraint

DP = fQ(succ(x); succ(y)) � Q(minus(x; y); succ(y))g: (4)

As demonstrated in Sect. 3 the application of methods for the synthesis of

well-founded quasi-orderings is only possible if the constraints in DP do not

contain de�ned symbols (like minus). Therefore our aim is to transform the con-

straint (4) into new constraints DP

0

without de�ned symbols. The invariant of this

transformation will be that every quasi-ordering satisfying EQ and the resulting

constraints DP

0

also satis�es the original constraints DP . (In fact, this soundness

result for our transformation only holds for a certain (slightly restricted) class of

quasi-orderings, cf. Sect. 4.2.)

The constraints DP

0

resulting from the transformation contain no de�ned

symbols any more. Hence, if we �nd a well-founded quasi-ordering which satis-

�es just DP

0

(by application of standard methods for the automated generation

of such quasi-orderings), then by Lemma 5 there exists a well-founded quasi-

ordering satisfying DP

0

[EQ. Hence, this quasi-ordering also satis�es DP. Thus

by Lemma 4, termination is proved. So, existence of a well-founded quasi-ordering

satisfying the constraints DP

0

su�ces for the termination of the CS.

In Sect. 4.1 we introduce the central idea of our transformation, viz. the es-

timation technique. To apply the estimation technique we need so-called estima-

tion inequalities and Sect. 4.2 shows how they are computed. This section also

contains the soundness theorem for our transformation. For the transformation

we have to make a slight restriction on the used quasi-orderings. We present a

generalized version of Lemma 5 in Sect. 4.3 which shows how to use methods

for the automated generation of well-founded quasi-orderings to synthesize the

quasi-orderings we need.

4.1 Estimation

The constraint (4) contains the de�ned symbol minus. The central idea of our

transformation procedure is the estimation of de�ned symbols by new non-de�ned

function symbols. For that purpose we extend our signature by a new estimation

function

�

f for each f 2 D. Now minus is replaced by the new non-de�ned symbol

minus and we demand that the result of minus is always greater or equal than the

result of minus, i.e. we demand

minus(x; y) % minus(x; y): (5)

In contrast to minus the semantics of the non-de�ned symbol minus are not

determined by the equalities in EQ. Our method transforms constraints like (4)

into inequalities which contain non-de�ned symbols like minus, but no de�ned

symbols like minus. If these resulting inequalities are satis�ed by a well-founded

quasi-ordering, then termination of the CS is proved.

Assume for the moment that we know a set of so-called estimation inequalities

IN

minus % minus

(without de�ned symbols) such that every quasi-ordering satisfying

8



IN

minus % minus

and EQ also satis�es (5). Moreover, let us restrict ourselves to quasi-

orderings that are weakly monotonic on non-de�ned symbols (i.e. s % t implies

f(: : : s : : :) % f(: : : t : : :) for all f 62 D). Then IN

minus % minus

and EQ do not only

imply minus(x; y) % minus(x; y), but they also ensure

Q(minus(x; y); succ(y)) % Q(minus(x; y); succ(y)):

Now

Q(succ(x); succ(y)) � Q(minus(x; y); succ(y)) (6)

and IN

minus % minus

are su�cient for the original constraint (4), i.e. every quasi-

ordering which satis�es (6), IN

minus % minus

and EQ (and is weakly monotonic on

non-de�ned symbols) also satis�es (4).

The restriction to quasi-orderings that are weakly monotonic on non-de�ned

symbols allows to estimate function symbols within a term (i.e. function sym-

bols that are not the root symbol of the term). If such a quasi-ordering satis�es

IN

�

f
% f

, then it also satis�es C[

�

f(: : :)] % C[f(: : :)] for all contexts C with no

de�ned symbols above f .

In this way every inequality can be transformed into inequalities without de-

�ned symbols: we replace every de�ned symbol f by the new non-de�ned symbol

�

f and add the estimation inequalities IN

�

f
% f

to the constraints.

De�nition6. For every term t we de�ne its estimation by

est(f(t

1

; : : : ; t

n

)) =

�

�

f (est(t

1

); : : : ; est(t

n

)) if f 2 D

f(est(t

1

); : : : ; est(t

n

)) if f 62 D:

Let DP be a set of inequalities. Then we de�ne

DP

0

= fs � est(t)js � t 2 DPg [

[

f 2 D occurs in DP

IN

�

f
% f

:

In our example, minus is estimated by minus and hence, the resulting set of

constraints DP

0

consists of (6) and IN

minus % minus

.

4.2 Estimation Inequalities

In this section we show how to compute estimation inequalities IN

�

f
% f

which

are needed for the estimation technique of Sect. 4.1 and we prove the soundness

of our transformation. The estimation inequalities IN

minus % minus

have to guarantee

that minus really is an upper bound for minus. To compute IN

minus % minus

we consider

each minus-rule of E separately. Instead of minus(x; y) % minus(x; y) we therefore

demand

minus(x; 0) % x; (7)

minus(succ(x); succ(y)) % minus(x; y): (8)

We cannot de�ne IN

minus % minus

= f(7); (8)g because inequality (8) still contains

the de�ned symbol minus. De�ned symbols occurring in such formulas have to

be eliminated by estimation again.
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But the problem here is that minus itself appears in inequality (8). We cannot

use the transformation of De�nition 6 for the estimation of minus, because we do

not know the estimation inequalities IN

minus % minus

yet.

We solve this problem by constructing IN

minus % minus

inductively with respect to

the computation ordering of E . The computation ordering >

E

of a rewrite system

E is a relation on ground terms where s >

E

t i� s !

+

E

C[t] holds for some (pos-

sibly empty) context C. Obviously (as E is ground-convergent) its computation

ordering is well-founded, i.e. inductions w.r.t. such orderings are sound.

The �rst case of our inductive construction of IN

minus % minus

corresponds to the

non-recursive �rst minus-rule. Inequality (7) ensures that for pairs of terms of the

form (t; 0), minus is an upper bound for minus.

For the second minus-rule we have to ensure that inequality (8) holds, i.e.

for terms of the form (succ(t

1

); succ(t

2

)), the result of minus must be greater or

equal than the result of minus. As induction hypothesis we can now use that

this estimation is already correct for (t

1

; t

2

), because minus(succ(t

1

); succ(t

2

)) >

E

minus(t

1

; t

2

). Hence when regarding minus(succ(x); succ(y)), we can use the in-

duction hypothesis minus(x; y) % minus(x; y). Then it is su�cient for (8) if

minus(succ(x); succ(y)) % minus(x; y) (9)

is true. Therefore we can replace (8) by inequality (9) which does not contain

de�ned symbols.

Note that to eliminate the de�ned symbol minus from (8) due to an inductive

argument we could again use the estimation technique. Now we have �nished our

inductive construction of IN

minus % minus

and obtain

IN

minus % minus

= fminus(x; 0) % x; (7)

minus(succ(x); succ(y)) % minus(x; y)g: (9)

De�nition7. Let (D; C; E) be a ground-convergent CS. For each f 2 D we de�ne

the set of estimation inequalities IN

�

f % f

as follows (here, s

�

abbreviates a tuple

of terms s

1

; : : : ; s

n

):

IN

�

f
% f

= f

�

f(s

�

) % est(t)j s

�

; t are terms, f(s

�

)! t 2 Eg [

[

g 2 D occurs in the

f-rules of E and g 6= f

IN

�g% g

:

But IN

minus % minus

is not yet su�cient for minus(x; y) % minus(x; y). The rea-

son is that for the construction of IN

minus % minus

we only considered minus(s

1

; s

2

)

for terms s

1

; s

2

of the form (t; 0) or (succ(t

1

); succ(t

2

)) (i.e. we only considered

terms where minus(s

1

; s

2

) is E-reducible

5

). But for instance, IN

minus % minus

does not

guarantee minus(0; succ(0)) % minus(0; succ(0)).

5

While in the original estimation method for functional programs [Gie95d] functions

had to be completely de�ned, here we have to extend the estimation method to

incompletely de�ned functions. This allows to prove termination of CSs that are not

su�ciently complete [Pla85], too.

10



Therefore we additionally have to demand that irreducible ground terms with

a de�ned root symbol are minimal, i.e. we also demand the constraints

MIN = ft % f(r

�

)jf 2 D; t; r

�

are ground terms; f(r

�

) is E-normal formg:

IfMIN is also satis�ed, then irreducible terms like minus(0; succ(0)) are minimal,

and hence minus(0; succ(0)) % minus(0; succ(0)) obviously holds. Now we can prove

the soundness of our transformation:

Theorem8. Let (D; C; E) be a ground-convergent CS, let DP be a set of inequal-

ities. Then every quasi-ordering % which is weakly monotonic on non-de�ned

symbols and which satis�es DP

0

[ EQ [ MIN also satis�es DP.

Proof.

(a) We �rst prove that all IN

�

f % f

for f 2 D are sound. More precisely, if %

satis�es IN

�

f
% f

, then

�

f(r

�

) % f(r

�

) holds for all ground terms r

�

. The proof

is done by induction w.r.t. the computation ordering >

E

of E .

If f(r

�

) is irreducible then the statement follows from the fact that % satis�es

MIN . Otherwise there must be a rule f(s

�

) ! t where r

�

= s

�

� for some

�. Hence, IN

�

f
% f

contains

�

f (s

�

) % est(t) and the inequalities IN

�g% g

for all

g 2 D occurring in t.

Note that est(t) is obtained from t by successively replacing each subterm

g(u

�

) of t with a de�ned root symbol g 2 D by �g(u

�

). As the estimation

starts with the outermost de�ned symbol, only such subterms g(u

�

) are es-

timated which have no de�ned symbol above them any more. Therefore, if

�g(u

�

) % g(u

�

) holds for all these subterms, then est(t) % t must obviously be

true. Analogously, the instantiation est(t)� is obtained from t� by replac-

ing subterms g(u

�

)� by �g(u

�

)�. Hence, if �g(u

�

)� % g(u

�

)� holds for all these

subterms, then this implies est(t)� % t�.

All subterms g(u

�

)� in t� are >

E

-smaller than f(r

�

). If g is a de�ned symbol

(g = f is possible) then IN

�

f
% f

must contain IN

�g% g

and by the induc-

tion hypothesis IN

�g% g

implies �g(u

�

)� % g(u

�

)�. Hence, we have est(t)� % t�

and (as

�

f(s

�

) % est(t) is in IN

�

f
% f

and as % is closed under substitutions),

�

f (r

�

) % est(t)� % t�. As t� � f(r

�

) 2 EQ, this implies

�

f (r

�

) % f(r

�

).

(b) Now we can show that % satis�es DP. Let IN

�

f % f

hold for all de�ned

symbols f occurring in a term t. Due to (a), this implies

�

f (r

�

) % f(r

�

) for all

subterms f(r

�

) of t which have a de�ned root symbol. As illustrated in (a),

we therefore can conclude est(t) % t. Hence, s � est(t) implies s � t. As %

satis�es DP

0

, it must also satisfy DP. �

4.3 Automated Generation of Suitable Quasi-Orderings

Thm. 8 states that if we restrict ourselves to quasi-orderings that are weakly

monotonic on non-de�ned symbols and that satisfy EQ and MIN , then our

transformation is sound, i.e. by application of the estimation technique to DP

we obtain a set of inequalities DP

0

without de�ned symbols, such that every

quasi-ordering (as above) satisfying DP

0

also satis�es DP.

11



Recall that the reason for eliminating de�ned symbols was that we wanted to

apply standard techniques to generate well-founded quasi-orderings that satisfy

a given set of constraints. If these constraints contain no de�ned symbols, then

by Lemma 5 every such quasi-ordering can be extended to a well-founded quasi-

ordering satisfying also the equalities EQ.

To use our transformation procedure we had to restrict ourselves to quasi-

orderings which have a certain monotonicity property and which satisfy MIN .

Therefore we now have to prove a stronger version of Lemma 5. It must state

that if we have a well-founded quasi-ordering of this restricted form which satis�es

some constraints DP

0

without de�ned symbols, then we can transform it into one

of the same restricted form which additionally satis�es EQ. (Then, by Thm. 8

this quasi-ordering also satis�es DP and therefore (by Lemma 4) termination of

the CS under consideration is proved.)

So with this lemma it would be su�cient to synthesize a well-founded quasi-

ordering which is weakly monotonic on non-de�ned symbols and which satis�es

MIN and DP

0

. Standard techniques can easily be used to generate suitable

quasi-orderings that satisfy the required monotonicity condition, but an auto-

mated generation of quasi-orderings satisfying the (in�nitely many) constraints

in MIN seems to be hard at �rst sight.

Here, instead of demanding the constraints MIN the solution will be to

restrict ourselves to quasi-orderings which have a minimal element, i.e. there

must be a term m such that t % m holds for all ground terms t. Such quasi-

orderings can easily be generated automatically (e.g. one could add a constraint

of the form x % m).

We will now prove a variant of Lemma 5 which states that if there is a

well-founded quasi-ordering which is weakly monotonic on non-de�ned symbols,

has a minimal element, and satis�es DP

0

, then there also exists a well-founded

quasi-ordering which is weakly monotonic on non-de�ned symbols and satis�es all

DP

0

, EQ andMIN . Hence, for termination it is su�cient to �nd a well-founded

quasi-ordering which is weakly monotonic on non-de�ned symbols, has a minimal

element and satis�es DP

0

. Such quasi-orderings can be generated automatically

by standard techniques.

Lemma9. Let (D; C; E) be a ground-convergent CS, let DP

0

be a set of inequal-

ities containing no de�ned symbols. If there exists a well-founded quasi-ordering

% which is weakly monotonic on non-de�ned symbols, has a minimal element,

and satis�es DP

0

, then there also exists a well-founded quasi-ordering %

0

which

is weakly monotonic on non-de�ned symbols and satis�es DP

0

[ EQ [MIN .

Proof. Let m be the minimal element of % . For each ground term we de�ne

[[f(t

1

; : : : ; t

n

)]] =

8

<

:

f([[t

1

]]; : : : ; [[t

n

]]) if f 62 D

m if f 2 D; f(t

1

; : : : ; t

n

) is E-normal form

[[f(t

1

; : : : ; t

n

)#

E

]] otherwise.

For two ground terms s; t let s %

0

t i� [[s]] % [[t]]. Since % is a well-founded

quasi-ordering, %

0

is also a well-founded quasi-ordering and obviously, %

0

satis�es

MIN and EQ (as [[t]] = [[t#

E

]] holds for all ground terms t).

12



The quasi-ordering %

0

is weakly monotonic on every non-de�ned symbol f ,

because s %

0

t implies [[s�]] % [[t�]] for all ground substitutions �, which in turn

implies f([[: : :]][[s�]][[: : :]]) % f([[: : :]][[t�]][[: : :]]) as % is weakly monotonic. Note that

for f 62 D we have f([[: : :]][[s�]][[: : :]]) = [[f(: : : (s�) : : :)]]. Hence, [[f(: : : (s�) : : :)]] %

[[f(: : : (t�) : : :)]], resp. [[f(: : : s : : :)�]] % [[f(: : : t : : :)�]] holds for all ground substi-

tutions � and therefore f(: : : s : : :) %

0

f(: : : t : : :).

That %

0

also satis�es DP

0

can be shown like in the proof of Lemma 5. �

The following �nal theorem summarizes our approach for termination proofs of

constructor systems.

Theorem10. If there exists a well-founded quasi-ordering which is weakly mon-

otonic on non-de�ned symbols, has a minimal element, and satis�es DP

0

, then

R is terminating.

Proof. By Lemma 9 every such quasi-ordering can be extended to a well-founded

weakly monotonic quasi-ordering which also satis�es EQ andMIN and by Thm.

8 this quasi-ordering must also satisfy the original constraints DP. Hence, by

Lemma 4 the CS R is terminating. �

So in our example, it is su�cient to �nd a well-founded weakly monotonic

quasi-ordering which has a minimal element and satis�es the computed con-

straints (6) and IN

minus % minus

= f(7); (9)g. For instance, we can use a polynomial

ordering [Lan79] where the function symbol 0 is mapped to the number 0, succ(x)

is mapped to x + 1 and Q(x; y) and minus(x; y) are both mapped to the polyno-

mial x. Methods for the automated generation of such polynomial orderings have

for instance been developed in [Ste94, Gie95b]. In this way termination of the CS

for minus and quot can be proved fully automatically.

5 Conclusion and Further Work

We have developed a method for automated termination proofs of constructor

systems which uses an estimation technique to automate the analysis of depen-

dency pairs. Our method works as follows:

{ For a CS R a ground-convergent CS E is synthesized in which R is contained.

(For CSs that are hierarchical combinations of a certain type, a suitable E

can be immediately obtained automatically, cf. [Art96].)

{ Let DP be the set of inequalities which ensure that all dependency pairs

are decreasing. Then by application of the estimation technique DP is trans-

formed into a new set of inequalities DP

0

without de�ned symbols.

{ Standard methods are used to generate a well-founded weakly monotonic

quasi-ordering which has a minimal element and satis�es DP

0

. If there exists

such a quasi-ordering, then the CS R is terminating.

The presented method utilizes the special structure of hierarchical combina-

tions of constructor systems. Therefore in this way termination of many CSs

13



can be proved automatically where all other known techniques fail. Apart from

that, with our approach one can still prove termination of all CSs satisfying

the requirements of Thm. 3 that, by any other method, can be oriented by a

simpli�cation ordering with a minimal element. Our method has been tested

on numerous practically relevant CSs from di�erent areas of computer science

(using a system for the automated generation of polynomial orderings [Gie95b])

and proved successful. A collection of examples which demonstrate the power of

our method (including arithmetical operations such as gcd and logarithm, several

sorting algorithms such as quicksort or selection sort as well as functions on trees

and graphs (e.g. a reachability algorithm)) can be found in the appendix.

Our approach fails if a well-founded quasi-ordering satisfying the generated

constraints DP

0

cannot be found automatically. Therefore apart from the esti-

mation technique we plan to examine alternative possibilities to derive suitable

constraints DP

0

, which may be advantageous for further sophisticated termina-

tion proofs (cf. [BM79, BL93, Wal94, Gie95d]). For that purpose, future work will

include an investigation on possible combinations of our method with induction

theorem proving systems (e.g. [BM79, BHHW86, KZ89, BHHS90, BKR92]).
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Appendix

This appendix contains a collection of examples which demonstrate the power

of the described method. Several of these examples are not simply terminating.

Thus all methods based on simpli�cation orderings fail in proving termination of

these (non-simply terminating) constructor systems.

All CSs in this appendix are non-overlapping, hierarchical combinations of

constructor systems without nested recursion. Therefore, Thm. 3 can be used to

prove termination of the CSs.

Theorem 3. Let (D; C;R) be a non-overlapping hierarchical combination of

(D

0

; C;R

0

) with (D

1

; C;R

1

) such that R

0

is terminating and such that symbols

from D

1

do not occur nested in the rules. If there exists a well-founded ordering

� on ground terms such that (s�)#

R

0

� (t�)#

R

0

holds for all dependency pairs

hs; ti of R

1

and all ground substitutions �, then R is terminating.

Thus, proving termination of R is done as follows:

1. prove termination of R

0

,

2. prove that there exists a well-founded ordering � on ground terms, such

that (s�)#

R

0

� (t�)#

R

0

for all dependency pairs hs; ti of R

1

and all ground

substitutions �.

For proving termination of R

0

we may recursively use Thm. 3, since R

0

is

non-overlapping and may again be a hierarchical combination. (If de�ned symbols
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of R

0

do not occur nested, then R

0

can be regarded as a hierarchical combination

with the empty CS (no rules).) But also other methods, like the recursive path

ordering, may be used to prove termination of R

0

.

For proving that there exists a well-founded ordering � on ground terms,

such that (s�)#

R

0

� (t�)#

R

0

for all dependency pairs hs; ti of R

1

and all ground

substitutions �, we use the estimation method as described in Sect. 4. The esti-

mation method transforms the dependency pairs of R

1

into a set of inequalities,

denoted by DP

0

, where R

0

is used to construct DP

0

. This set of inequalities

together with Thm. 10 is used to conclude termination of the CS.

Theorem 10. If there exists a well-founded quasi-ordering which is weakly mon-

otonic on non-de�ned symbols, has a minimal element, and satis�es DP

0

, then

R is terminating.

The set of inequalities DP

0

is easily constructed and standard methods are

used to �nd a well-founded quasi-ordering that is weakly monotonic on non-

de�ned symbols, has a minimal element, and satis�es DP

0

.

An algebra equipped with a well-founded ordering can easily be extended to

a well-founded ordering on ground terms by choosing suitable homomorphisms

(or interpretations). In all examples, we use the algebra consisting of the natural

numbers with the normal ordering on natural numbers. Suitable interpretations

of the function symbols lift these orderings to orderings on ground terms. The

use, in particular, of polynomial interpretations that map terms into the natural

numbers was developed by Lankford [Lan79]. These orderings trivially always

have a minimal element and the ordering is weakly monotonic as long as the

interpreted functions are weakly monotonic. Several techniques exist to derive

the interpretations automatically [Gie95b, Ste94].

To easy readability the CSs are presented as two sets of rewrite rules separated

by some vertical space. The upper system will always denote R

0

, whereas the

bottom rules will denote R

1

.

For every CS, a set of dependency pairs is given. Note that not all dependency

pairs are given. Only those dependency pairs that are relevant are listed. For more

information about which dependency pairs are relevant and which are not, we

refer to [Art96].

1 Division, Version 1

This is the running example of this report. It obviously is not simply terminating.

minus(x; 0)! x

minus(succ(x); succ(y)) ! minus(x; y)

quot(0; succ(y)) ! 0

quot(succ(x); succ(y)) ! succ(quot(minus(x; y); succ(y)))

15



The relevant dependency pairs of this CS are

hM(succ(x); succ(y));M(x; y)i

hQ(succ(x); succ(y));Q(minus(x; y); succ(y))i

The CS R

0

(with the minus rules) is terminating, since for the only depen-

dency pair of this CS, viz. hM(succ(x); succ(y));M(x; y)i, we have

M(succ(x); succ(y)) � M(x; y)

by the embedding ordering. The set of inequalities DP

0

is given by

Q(succ(x); succ(y)) � Q(minus(x; y); succ(y))

minus(x; 0) % x

minus(succ(x); succ(y)) % minus(x; y)

A suitable quasi-ordering satisfying DP

0

is automatically found. The normal

ordering on the natural numbers together with the following interpretation of the

function symbols satis�es DP

0

: the function symbol 0 is mapped to the number

0, succ(x) is mapped to x+ 1 and Q(x; y) and minus(x; y) are mapped to x.

2 Division, Version 2

This CS for division uses di�erent minus-rules. Again, it is not simply terminating.

pred(succ(x))! x

minus(x; 0)! x

minus(x; succ(y)) ! pred(minus(x; y))

quot(0; succ(y)) ! 0

quot(succ(x); succ(y)) ! succ(quot(minus(x; y); succ(y)))

The relevant dependency pairs of this CS are given by

hM(x; succ(y));M(x; y)i

hQ(succ(x); succ(y));Q(minus(x; y); succ(y))i

The CS R

0

is terminating. This can be proved by the recursive path ordering,

but also by splitting the system in two CSs and �nding a suitable well-founded

ordering such that

M(x; succ(y)) � M(x; y)

This can be done automatically.
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The set of inequalities DP

0

di�ers from the one in the previous example and

is given by

Q(succ(x); succ(y)) � Q(minus(x; y); succ(y))

pred(succ(x)) % x

minus(x; 0) % x

minus(x; succ(y)) % pred(minus(x; y))

A suitable quasi-ordering satisfying DP

0

is the normal ordering on natural

numbers, with an interpretation where the function symbol 0 is mapped to the

number 0, succ(x) is mapped to x+1 and Q(x; y), minus(x; y) and pred(x) are all

mapped to x.

3 Division, Version 3

This CS for division uses again di�erent minus-rules. Similar to the preceding

examples it is not simply terminating. We always use functions like if

minus

to

encode conditions and to ensure that conditions are evaluated �rst (to true or to

false) and that the corresponding result is evaluated afterwards. Hence, the �rst

argument of if

minus

is the condition that has to be tested and the other arguments

are the original arguments of minus. Further evaluation is only possible after the

condition has been reduced to true or to false.

le(0; succ(y)) ! true

le(0; 0)! true

le(succ(x); 0)! false

le(succ(x); succ(y)) ! le(x; y)

minus(0; y)! 0

minus(succ(x); y)! if

minus

(le(succ(x); y); succ(x); y)

if

minus

(true; succ(x); y)! 0

if

minus

(false; succ(x); y)! succ(minus(x; y))

quot(0; succ(y)) ! 0

quot(succ(x); succ(y)) ! succ(quot(minus(x; y); succ(y)))

The relevant dependency pairs of this CS are given by

hLE(succ(x); succ(y)); LE(x; y)i

hM(succ(x); y); IF

minus

(le(succ(x); y); succ(x); y)i

hIF

minus

(false; x; y);M(x; y)i

hQ(succ(x); succ(y));Q(minus(x; y); succ(y))i

The CSR

0

is terminating, this can be proved by a variant of the lexicographic

path ordering or by using the dependency pair technique. In the latter proof we

split R

0

and use the techniques recursively.
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The set of inequalities DP

0

is given by

Q(succ(x); succ(y)) � Q(minus(x; y); succ(y))

le(0; succ(y)) % true

le(0; 0) % true

le(succ(x); 0) % false

le(succ(x); succ(y)) % le(x; y)

minus(0; y) % 0

minus(succ(x); y) % if

minus

(le(succ(x); y); succ(x); y)

if

minus

(true; succ(x); y) % 0

if

minus

(false; succ(x); y) % succ(minus(x; y))

Again, a suitable quasi-ordering satisfying DP

0

is the normal ordering on nat-

ural numbers with an interpretation on the function symbols, where the function

symbol 0 is mapped to the number 0, succ(x) is mapped to x + 1, and Q(x; y),

minus(x; y) and if

minus

(b; x; y) are mapped to x. All other function symbols (i.e. le

true, false) are mapped to the constant 0.

4 Remainder, Version 1 - 3

Similar to the CSs for division, we also obtain three versions of the following CS

which again are not simply terminating. We only present one of them.

le(0; succ(y)) ! true

le(0; 0)! true

le(succ(x); 0)! false

le(succ(x); succ(y)) ! le(x; y)

minus(x; 0)! 0

minus(succ(x); succ(y)) ! minus(x; y)

mod(0; y)! 0

mod(succ(x); 0)! 0

mod(succ(x); succ(y)) ! if

mod

(le(y; x); succ(x); succ(y))

if

mod

(true; succ(x); succ(y)) ! mod(minus(x; y); succ(y))

if

mod

(false; succ(x); succ(y)) ! succ(x)

The relevant dependency pairs of this CS are given by

hLE(succ(x); succ(y); LE(x; y)i

hM(succ(x); succ(y));M(x; y)i

hMOD(succ(x); succ(y)); IF

mod

(le(y; x); succ(x); succ(y))i

hIF

mod

(true; succ(x); succ(y));MOD(minus(x; y); succ(y))i
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The CS R

0

is terminating. This can be proved by the recursive path ordering

or by the dependency pair technique. The set of inequalities DP

0

is given by

MOD(succ(x); succ(y)) � IF

mod

(le(y; x); succ(x); succ(y))

IF

mod

(true; succ(x); succ(y)) � MOD(minus(x; y); succ(y))

le(0; succ(y)) % true

le(0; 0) % true

le(succ(x); 0) % false

le(succ(x); succ(y)) % le(x; y)

minus(x; 0) % 0

minus(succ(x); succ(y)) % minus(x; y)

A suitable quasi-ordering satisfying DP

0

is the ordering on natural numbers,

where the function symbol 0 is mapped to the number 0, succ(x) is mapped to

x+2,MOD(x; y) is mapped to x+1, and IF

mod

(b; x; y) and minus(x; y) are mapped

to x. All other function symbols (i.e. le, true, false) are mapped to 0.

5 Greatest Common Divisor, Version 1 - 3

There are also three versions of the following CS for the computation of the gcd,

which again are not simply terminating. Again, we only present one of them.

le(0; succ(y)) ! true

le(0; 0)! true

le(succ(x); 0)! false

le(succ(x); succ(y)) ! le(x; y)

pred(succ(x))! x

minus(x; 0)! x

minus(x; succ(y)) ! pred(minus(x; y))

gcd(0; y)! 0

gcd(succ(x); 0)! 0

gcd(succ(x); succ(y)) ! if

gcd

(le(y; x); succ(x); succ(y))

if

gcd

(true; succ(x); succ(y)) ! gcd(minus(x; y); succ(y))

if

gcd

(false; succ(x); succ(y)) ! gcd(minus(y; x); succ(x))

(Of course we also could have switched the ordering of the arguments in the

right-hand side of the last rule. But this version here is even more di�cult:

Termination of the corresponding algorithm cannot be proved by the method of

[Wal94], because this method cannot deal with permutations of arguments.)
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The relevant dependency pairs of this CS are

hLE(succ(x); succ(y); LE(x; y)i

hM(x; succ(y));M(x; y)i

hGCD(succ(x); succ(y)); IF

gcd

(le(y; x); succ(x); succ(y))i

hIF

gcd

(true; succ(x); succ(y));GCD(minus(x; y); succ(y))i

hIF

gcd

(false; succ(x); succ(y));GCD(minus(y; x); succ(x))i

Termination of R

0

can be proved by the recursive path ordering or by the

dependency pair approach. The set of inequalities DP

0

is

GCD(succ(x); succ(y)) � IF

gcd

(le(y; x); succ(x); succ(y))

IF

gcd

(true; succ(x); succ(y)) � GCD(minus(x; y); succ(y))

IF

gcd

(false; succ(x); succ(y)) � GCD(minus(y; x); succ(x))

le(0; succ(y)) % true

le(0; 0) % true

le(succ(x); 0) % false

le(succ(x); succ(y)) % le(x; y)

pred(succ(x)) % x

minus(x; 0) % 0

minus(x; succ(y)) % pred(minus(x; y))

A suitable quasi-ordering satisfying DP

0

is the ordering where the function

symbol 0 is mapped to the number 0, succ(x) is mapped to x + 2, GCD(x; y) is

mapped to x+y+1, and IF

gcd

(b; x; y) is mapped to x+y. The rest of the ordering

is as in the preceding examples (i.e. pred(x) and minus(x; y) are mapped to x and

all remaining function symbols are mapped to 0).

This example was taken from [BM79] resp. [Wal91]. A variant of this example

could be proved terminating using Steinbach's method for the automated gener-

ation of transformation orderings [Ste95a], but there the rules for le and minus

were missing.

6 Logarithm, Version 1

The following CS computes the dual logarithm.

half(0)! 0

half(succ(succ(x)))! succ(half(x))

log(0)! 0

log(succ(succ(x)))! succ(log(succ(half(x))))

The relevant dependency pairs of this CS are

hHALF(succ(succ(x)));HALF(x)i

hLOG(succ(succ(x))); LOG(succ(half(x)))i
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The CS R

0

is terminating. The recursive path ordering or the dependency

pair approach directly prove this. The set of inequalities DP

0

is given by

LOG(succ(succ(x))) � LOG(succ(half(x)))

half(0) % 0

half(succ(succ(x))) % succ(half(x))

The interpretation for the function symbols, to derive the suitable quasi-

ordering is given by: 0 is mapped to the number 0, succ(x) is mapped to x + 1,

and LOG(x) and half(x) are both mapped to x.

7 Logarithm, Version 2 - 4

The following CS again computes the dual logarithm, but instead of half we now

use the function quot. Depending on which version of quot we use, we obtain

three di�erent versions of the CS (all of which are not simply terminating, since

the quot CS R

quot

already was not simply terminating).

R

quot

log(0; y)! 0

log(succ(succ(x)))! succ(log(succ(quot(x; succ(succ(0))))))

The CS R

0

, in this case R

quot

, is terminating. Termination of all three ver-

sions of this CS is proved in the earlier examples. Therefore, we only consider the

new dependency pair to be relevant

hLOG(succ(succ(x))); LOG(succ(quot(x; succ(succ(0)))))i

The set of inequalities DP

0

depends on the version ofR

quot

, but in all versions

we have the inequality

LOG(succ(succ(x))) � LOG(succ(quot(x; succ(succ(0)))))

The interpretation to derive a quasi-ordering that satis�es all three versions

of DP

0

is given by: 0 is mapped to the number 0, succ(x) is mapped to x + 1,

LOG(x) and quot(x; y) are both mapped to x, and all other function symbols are

mapped to the same function as in the example corresponding to the version of

R

quot

.

21



8 Eliminating Duplicates

The following CS eliminates duplicates from a list. To represent lists we use the

constructors empty and add, where empty represents the empty list and add(n; x)

represents the insertion of n into the list x.

eq(0; 0)! true

eq(0; succ(x))! false

eq(succ(x); 0)! false

eq(succ(x); succ(y)) ! eq(x; y)

rm(n; empty)! empty

rm(n; add(m;x))! if

rm

(eq(n;m); n; add(m;x))

if

rm

(true; n; add(m;x))! rm(n; x)

if

rm

(false; n; add(m;x))! add(m; rm(n; x))

purge(empty)! empty

purge(add(n; x))! add(n; purge(rm(n; x)))

The relevant dependency pairs are

hEQ(succ(x); succ(y));EQ(x; y)i

hRM(n; add(m;x)); IF

rm

(eq(n;m); n; add(m;x))i

hIF

rm

(true; n; add(m;x));RM(n; x)i

hIF

rm

(false; n; add(m;x));RM(n; x)i

hPURGE(add(n; x));PURGE(rm(n; x))i

Termination of R

0

can be proved with the dependency pair approach by

considering this CS as a hierarchical combination of the eq rules and the other

rules. The set of inequalities DP

0

is given by

PURGE(add(n; x)) � PURGE(rm(n; x))

eq(0; 0) % true

eq(0; succ(x)) % false

eq(succ(x); 0) % false

eq(succ(x); succ(y)) % eq(x; y)

rm(n; empty) % empty

rm(n; add(m;x)) % if

rm

(eq(n;m); n; add(m;x))

if

rm

(true; n; add(m;x)) % rm(n; x)

if

rm

(false; n; add(m;x)) % add(m; rm(n; x))

This set of inequalities is satis�ed by the normal ordering on natural numbers

together with the interpretation given by: empty is mapped to 0, add(n; x) is

mapped to x + 1, rm(x; y) and if

rm

(b; x; y) are mapped to y, and PURGE(x) is

mapped to x. All remaining function symbols are mapped to 0.
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This example comes from [Wal91] and a similar example was mentioned in

[Ste95a], but in Steinbach's version the rules for eq and if

rm

were missing.

If in the right-hand side of the last rule, add(n; purge(rm(n; x))), the n would

be replaced by a term containing add(n; x) then we would obtain a non-simply

terminating CS, but termination could still be proved with our method in the

same way.

9 Selection Sort

The CS below, from [Wal94], is obviously not simply terminating. The CS can be

used to sort a list by repeatedly replacing the minimum of the list by the head

of the list. It uses replace(n;m; x) to replace the leftmost occurrence of n in the

list x by m.

eq(0; 0)! true

eq(0; succ(x))! false

eq(succ(x); 0)! false

eq(succ(x); succ(y)) ! eq(x; y)

le(0; succ(y)) ! true

le(0; 0)! true

le(succ(x); 0)! false

le(succ(x); succ(y)) ! le(x; y)

min(add(0; empty))! 0

min(add(succ(n); empty))! succ(n)

min(add(n; add(m;x)))! if

min

(le(n;m); add(n; add(m;x)))

if

min

(true; add(n; add(m;x)))! min(add(n; x))

if

min

(false; add(n; add(m;x)))! min(add(m;x))

replace(n;m; empty)! empty

replace(n;m; add(k; x))! if

replace

(eq(n; k); n;m; add(k; x))

if

replace

(true; n;m; add(k; x))! add(m;x)

if

replace

(false; n;m; add(k; x))! add(k; replace(n;m; x))

selsort(empty)! empty

selsort(add(n; x))! if

selsort

(eq(n;min(add(n; x))); add(n; x))

if

selsort

(true; add(n; x))! add(n; selsort(x))

if

selsort

(false; add(n; x))! add(min(add(n; x))

selsort(replace(min(add(n; x)); n; x)))

The CS R

0

is terminating, as can be proved fairly easy with the dependency

pair approach.
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The set of inequalities DP

0

is

SELSORT(add(n; x)) � IF

selsort

(eq(n;min(add(n; x))); add(n; x))

IF

selsort

(true; add(n; x)) � SELSORT(x)

IF

selsort

(false; add(n; x)) � SELSORT(replace(min(add(n; x)); n; x))

eq(0; 0) % true

eq(0; succ(x)) % false

eq(succ(x); 0) % false

eq(succ(x); succ(y)) % eq(x; y)

le(0; succ(y)) % true

le(0; 0) % true

le(succ(x); 0) % false

le(succ(x); succ(y)) % le(x; y)

min(add(0; empty)) % 0

min(add(succ(n); empty)) % succ(n)

min(add(n; add(m;x))) % if

min

(le(n;m); add(n; add(m;x)))

if

min

(true; add(n; add(m;x))) % min(add(n; x))

if

min

(false; add(n; add(m;x))) % min(add(m;x))

replace(n;m; empty) % empty

replace(n;m; add(k; x)) % if

replace

(eq(n; k); n;m; add(k; x))

if

replace

(true; n;m; add(k; x)) % add(m;x)

if

replace

(false; n;m; add(k; x)) % add(k; replace(n;m; x))

The interpretation in the natural numbers is: empty is mapped to 0, add(n; x)

is mapped to x+ 2, SELSORT(x) is mapped to x+ 1, IF

selsort

(b; x) is mapped to

x, and replace(n;m; x) and if

replace

(b; n; m; x) are both mapped to x. All remaining

function symbols are mapped to the constant 0.

10 Minimum Sort

This CS can be used to sort a list x by repeatedly removing the minimum of it.

For that purpose elements of x are shifted into the second argument of minsort,

until the minimum of the list is reached. Then the function rm is used to eliminate

all occurrences of the minimum and �nally minsort is called recursively on the

remaining list. Hence, minsort does not only sort a list but it also eliminates

duplicates. (Of course, the corresponding version of minsort where duplicates are

not eliminated could also be proved terminating with our method.)

eq(0; 0)! true

eq(0; succ(x))! false

eq(succ(x); 0)! false

eq(succ(x); succ(y))! eq(x; y)

le(0; succ(y))! true

le(0; 0)! true
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le(succ(x); 0)! false

le(succ(x); succ(y))! le(x; y)

app(empty; y)! y

app(add(n; x); y)! add(n; app(x; y))

min(add(0; empty))! 0

min(add(succ(n); empty))! succ(n)

min(add(n; add(m;x)))! if

min

(le(n;m); add(n; add(m;x)))

if

min

(true; add(n; add(m;x)))! min(add(n; x))

if

min

(false; add(n; add(m;x)))! min(add(m;x))

rm(n; empty)! empty

rm(n; add(m;x))! if

rm

(eq(n;m); n; add(m;x))

if

rm

(true; n; add(m;x))! rm(n; x)

if

rm

(false; n; add(m;x))! add(m; rm(n; x))

minsort(empty; empty)! empty

minsort(add(n; x); y)! if

minsort

(eq(n;min(add(n; x))); add(n; x); y)

if

minsort

(true; add(n; x); y)! add(n;minsort(app(rm(n; x); y); empty))

if

minsort

(false; add(n; x); y)! minsort(x; add(n; y))

As in the other examples, the CS R

0

can be proved terminating by recur-

sively applying the technique of the dependency pairs approach to it. The set of

inequalities DP

0

is

MINSORT(add(n; x); y) � IF

minsort

(eq(n;min(add(n; x))); add(n; x); y)

IF

minsort

(true; add(n; x); y) � MINSORT(app(rm(n; x); y); empty)

IF

minsort

(false; add(n; x); y) � MINSORT(x; add(n; y))

eq(0; 0) % true

eq(0; succ(x)) % false

eq(succ(x); 0) % false

eq(succ(x); succ(y)) % eq(x; y)

le(0; succ(y)) % true

le(0; 0) % true

le(succ(x); 0) % false

le(succ(x); succ(y)) % le(x; y)

app(empty; y) % y

app(add(n; x); y) % add(n; app(x; y))

min(add(0; empty)) % 0

min(add(succ(n); empty)) % succ(n)

min(add(n; add(m;x))) % if

min

(le(n;m); add(n; add(m;x)))

if

min

(true; add(n; add(m;x))) % min(add(n; x))

if

min

(false; add(n; add(m;x))) % min(add(m;x))
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rm(n; empty) % empty

rm(n; add(m;x)) % if

rm

(eq(n;m); n; add(m;x))

if

rm

(true; n; add(m;x)) % rm(n; x)

if

rm

(false; n; add(m;x)) % add(m; rm(n; x))

A suitable interpretation is: empty is mapped to 0, add(n; x) is mapped to

x + 2, MINSORT(x; y) is mapped to (x + y)

2

+ 2x + y + 1, IF

minsort

(b; x; y) is

mapped to (x+ y)

2

+2x+ y, rm(n; x) and if

rm

(b; n; x) are both mapped to x, and

app(x; y) is mapped to x+ y. All remaining function symbols are mapped to the

constant 0.

This example is inspired by an algorithm from [BM79] and [Wal94]. In the

corresponding example from [Ste92] the rules for le, eq, if

rm

and if

min

were missing.

11 Quicksort

The quicksort CS is used to sort a list by the well-known quicksort-algorithm. It

uses the functions low(n; x) and high(n; x) which return the sublist of x containing

only the elements smaller or equal (resp. larger) then n.

le(0; succ(y)) ! true

le(0; 0)! true

le(succ(x); 0)! false

le(succ(x); succ(y)) ! le(x; y)

app(empty; y)! y

app(add(n; x); y)! add(n; app(x; y))

low(n; empty)! empty

low(n; add(m;x))! if

low

(le(m;n); n; add(m;x))

if

low

(true; n; add(m;x))! add(m; low(n; x))

if

low

(false; n; add(m;x))! low(n; x)

high(n; empty)! empty

high(n; add(m;x))! if

high

(le(m;n); n; add(m;x))

if

high

(true; n; add(m;x))! high(n; x)

if

high

(false; n; add(m;x))! add(m; high(n; x))

quicksort(empty)! empty

quicksort(add(n; x))! app(quicksort(low(n; x));

add(n; quicksort(high(n; x))))

The CS R

0

can be proved terminating by recursively applying the described

techniques. The set of inequalities DP

0

is given by
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QUICKSORT(add(n; x)) � QUICKSORT(low(n; x))

QUICKSORT(add(n; x)) � QUICKSORT(high(n; x))

le(0; succ(y)) % true

le(0; 0) % true

le(succ(x); 0) % false

le(succ(x); succ(y)) % le(x; y)

app(empty; y) % y

app(add(n; x); y) % add(n; app(x; y))

low(n; empty) % empty

low(n; add(m;x)) % if

low

(le(m;n); n; add(m;x))

if

low

(true; n; add(m;x)) % add(m; low(n; x))

if

low

(false; n; add(m;x)) % low(n; x)

high(n; empty) % empty

high(n; add(m;x)) % if

high

(le(m;n); n; add(m;x))

if

high

(true; n; add(m;x)) % high(n; x)

if

high

(false; n; add(m;x)) % add(m; high(n; x))

A suitable interpretation is: empty is mapped to 0, add(n; x) is mapped to

x + 1, low(n; x), if

low

(b; n; x), high(n; x), if

high

(b; n; x) and QUICKSORT(x) are all

mapped to x and app(x; y) is mapped to x + y. All remaining function symbols

are mapped to the constant 0.

Steinbach could prove termination of a corresponding example with transfor-

mation orderings [Ste95a], but in his example the rules for le, if

low

if

high

and app

were omitted.

If in the right-hand side of the last rule,

app(quicksort(low(n; x)); add(n; quicksort(high((n; x))));

one of the n's was replaced by a term containing add(n; x) then we would obtain

a non-simply terminating CS. With our method termination could still be proved

in the same way.

12 Permutation of Lists

This example is a CS from [Wal94] to compute a permutation of a list, for in-

stance, shu�e([1; 2; 3; 4; 5]) reduces to [1; 5; 2; 4; 3].

app(empty; y)! y

app(add(n; x); y)! add(n; app(x; y))

reverse(empty)! empty

reverse(add(n; x))! app(reverse(x); add(n; empty))

shu�e(empty)! empty

shu�e(add(n; x))! add(n; shu�e(reverse(x)))
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Termination of R

0

, the �rst four rules, can easily be proved by the recursive

path ordering or the dependency pair approach. The set DP

0

of inequalities is

SHUFFLE(add(n; x)) � SHUFFLE(reverse(x))

app(empty; y) % y

app(add(n; x); y) % add(n; app(x; y))

reverse(empty) % empty

reverse(add(n; x)) % app(reverse(x); add(n; empty))

A suitable interpretation of the function symbols is: empty is mapped to 0,

add(n; x) is mapped to x + 1, SHUFFLE(x) and reverse(x) are mapped to x and

app(x; y) is mapped to x+ y.

13 Reachability on Directed Graphs

To check whether there is a path from the node x to the node y in a directed

graph g, the term reach(x; y; g; �) must be reducible to true with the rules of the

CS of this example from [Gie95a]. The fourth argument of reach is used to store

edges that have already been examined but that are not included in the actual

solution path. If an edge from u to v (with x 6= u) is found, then it is rejected

at �rst. If an edge from x to v (with v 6= y) is found then one either searches

for further edges beginning in x (then one will never need the edge from x to v

again) or one tries to �nd a path from v to y and now all edges that were rejected

before have to be considered again.

The function union is used to unite two graphs. The constructor � denotes the

empty graph and edge(x; y; g) represents the graph g extended by an edge from

x to y. Nodes are labelled with natural numbers.

eq(0; 0)! true

eq(0; succ(x))! false

eq(succ(x); 0)! false

eq(succ(x); succ(y)) ! eq(x; y)

or(true; x)! true

or(false; true)! true

or(false; false)! false

union(�; h)! h

union(edge(x; y; i); h)! edge(x; y; union(i; h))

reach(x; y; �; h)! false

reach(x; y; edge(u; v; i); h)! if

reach 1

(eq(x; u); x; y; edge(u; v; i); h)

if

reach 1

(true; x; y; edge(u; v; i); h)! if

reach 2

(eq(y; v); x; y; edge(u; v; i); h)

if

reach 2

(true; x; y; edge(u; v; i); h)! true
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if

reach 2

(false; x; y; edge(u; v; i); h)! or(reach(x; y; i; h);

reach(v; y; union(i; h); �))

if

reach 1

(false; x; y; edge(u; v; i); h)! reach(x; y; i; edge(u; v; h))

The CS R

0

can be proved terminating very easy, for example by the depen-

dency pair approach. The set of inequalities DP

0

is

REACH(x; y; edge(u; v; i); h) � IF

reach 1

(eq(x; u); x; y; edge(u; v; i); h)

IF

reach 1

(true; x; y; edge(u; v; i); h) � IF

reach 2

(eq(y; v); x; y; edge(u; v; i); h)

IF

reach 2

(false; x; y; edge(u; v; i); h) � REACH(x; y; i; h)

IF

reach 2

(false; x; y; edge(u; v; i); h) � REACH(v; y; union(i; h); �)

IF

reach 1

(false; x; y; edge(u; v; i); h) � REACH(x; y; i; edge(u; v; h))

eq(0; 0) % true

eq(0; succ(x)) % false

eq(succ(x); 0) % false

eq(succ(x); succ(y)) % eq(x; y)

or(true; x) % true

or(false; true) % true

or(false; false) % false

union(�; h) % h

union(edge(x; y; i); h) % edge(x; y; union(i; h))

A suitable interpretation is: � is mapped to 0, edge(x; y; g) is mapped to g+2,

REACH(x; y; g; h) is mapped to (g+h)

2

+2g+h+2, IF

reach 1

(b; x; y; g; h) is mapped

to (g+ h)

2

+ 2g + h+ 1, IF

reach 2

(b; x; y; g; h) is mapped to (g + h)

2

+ 2g+ h and

union(g; h) is mapped to g+ h. All remaining function symbols are mapped to 0.

14 Comparison of Binary Trees

This CS is used to �nd out if one binary tree has less leafs than another one.

It uses a function concat(x; y) to replace the rightmost leaf of x by y. Here, the

constructor nil represents a leaf and cons(u; v) is used to built a new tree with

the two direct subtrees u and v.

concat(nil; y)! y

concat(cons(u; v); y)! cons(u; concat(v; y))

less leafs(x; nil)! false

less leafs(nil; cons(w; z))! true

less leafs(cons(u; v); cons(w; z))! less leafs(concat(u; v); concat(w; z))

The two rules of R

0

are easily proved terminating. The set of inequalities DP

0

is
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LESS LEAFS(cons(u; v); cons(w; z)) � LESS LEAFS(concat(u; v); concat(w; z))

concat(nil; y) % y

concat(cons(u; v); y) % cons(u; concat(v; y))

A suitable interpretation is: nil is mapped to 0, cons(u; v) is mapped to 1+u+v,

LESS LEAFS(x; y) is mapped to x, and concat(u; v) is mapped to u+ v.

If concat(w; z) in the second argument of less leafs (in the right-hand side of

the last rule) would be replaced by an appropriate argument, we would obtain a

non-simply terminating CS whose termination could be proved in the same way.
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