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Abstract. When using rewrite techniques for termination analysis of
programs, a main problem are pre-defined data types like integers. We
extend term rewriting by built-in integers and adapt the dependency pair
framework to prove termination of integer term rewriting automatically.

1 Introduction

Recently, techniques and tools from term rewriting have been successfully applied
to prove termination automatically for different programming languages, cf. e.g.
[14, 27]. The advantage of rewrite techniques is that they are very powerful for al-
gorithms on user-defined data structures, since they can automatically generate
suitable well-founded orders comparing arbitrary forms of terms. But in con-
trast to techniques for termination of imperative programs (e.g., [2–8, 24, 25]),4

the drawback of rewrite techniques is that they do not support data structures
like integer numbers which are pre-defined in almost all programming languages.
Up to now, integers have to be represented as terms, e.g., using the symbols 0 for
zero, s for the successor function, and pos and neg to convert natural to integer
numbers. Then the integers 1 and −2 are represented by the terms pos(s(0)) resp.
neg(s(s(0))) and one has to add rules for pre-defined operations like +, −, ∗, /, %
that operate on these terms. This representation leads to efficiency problems for
large numbers and it makes termination proofs difficult. Therefore up to now,
termination tools for term rewrite systems (TRSs) were not very powerful for al-
gorithms on integers, cf. Sect. 6. Hence, an extension of TRS termination tech-
niques to built-in data structures is one of the main challenges in the area [26].

To solve this challenge, we extend5 TRSs by built-in integers in Sect. 2 and
adapt the popular dependency pair (DP) framework for termination of TRSs to
integers in Sect. 3. This combines the power of TRS techniques on user-defined
data types with a powerful treatment of pre-defined integers. In Sect. 4, we im-
prove the main reduction pair processor of the adapted DP framework by consid-
ering conditions and show how to simplify the resulting conditional constraints.
Sect. 5 explains how to transform these conditional constraints into Diophantine
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4 Moreover, integers were also studied in termination analysis for logic programs [28].
5 First steps in this direction were done in [9], but [9] only integrated natural instead

of integer numbers, which is substantially easier. Moreover, [9] imposed several re-
strictions (e.g., they did not integrate multiplication and division of numbers and
disallowed conditions with mixtures of pre-defined and user-defined functions).



constraints in order to generate suitable orders for termination proofs of integer
TRSs (ITRSs). Sect. 6 evaluates our implementation in the prover AProVE [15].

2 Integer Term Rewriting

To handle integers in rewriting, we now represent each integer by a pre-defined
constant of the same name. So the signature is split into two disjoint subsets F
and Fint. Fint contains the integers Z = {0, 1,−1, 2,−2, . . .}, the Boolean values
B = {true, false}, and pre-defined operations. These operations are classified into
arithmetic operations like + which yield an integer when applied to integers,
relational operations like > which yield true or false when applied to integers,
and Boolean operations like ∧ which yield true or false when applied to Booleans.

Every ITRS implicitly contains an infinite set of pre-defined rules PD in order
to evaluate the pre-defined operations on integers and Booleans. For example,
the set PD contains the rules 2∗21 → 42, 42 > 23 → true, and true∧false → false.

These pre-defined operations can only be evaluated if both their arguments
are integers resp. Booleans. So terms like 1 + x and 1 + true are normal forms.
Moreover, “t/0” and “t% 0” are also normal forms for all terms t. As in most
programming languages, an ITRS R may not have rules ℓ→ r where ℓ contains
pre-defined operations or where ℓ ∈ Z ∪ B. The rewrite relation for an ITRS R
is defined by simply considering innermost6 rewriting with the TRS R∪ PD.

Definition 1 (ITRS). Let ArithOp = {+,−, ∗, /,%}, RelOp = {>,>, <,
6,==, ! =}, and BoolOp = {∧,⇒}.7 Moreover, Fint = Z ∪ B ∪ ArithOp ∪
RelOp∪BoolOp. An ITRS R is a (finite) TRS over F ⊎Fint where for all rules
ℓ → r, we have ℓ ∈ T (F ∪ Z ∪ B,V) and ℓ 6∈ Z ∪ B. As usual, V contains all

variables. The rewrite relation →֒R of an ITRS R is defined as
i
→R∪PD, where

PD = {n ◦m→ q | n,m, q ∈ Z, n ◦m = q, ◦ ∈ ArithOp}
∪ {n ◦m→ q | n,m ∈ Z, q ∈ B, n ◦m = q, ◦ ∈ RelOp}
∪ {n ◦m→ q | n,m, q ∈ B, n ◦m = q, ◦ ∈ BoolOp}

For example, consider the ITRSs R1 = {(1), (2), (3)} and R2 = {(4), (5), (6)}.
Here, sum(x, y) computes

∑x
i=y i and log(x, y) computes ⌊logy(x)⌋.

6 In this paper, we restrict ourselves to innermost rewriting for simplicity. This is not
a severe restriction as innermost termination is equivalent to full termination for
non-overlapping TRSs and moreover, many programming languages already have
an innermost evaluation strategy. Even for lazy languages like Haskell, with the
translation of programs to TRSs in [14], it suffices to show innermost termination.

7 Of course, one could easily include additional junctors like ∨ or ¬ in BoolOp. More-
over, one could also admit ITRSs with conditions and indeed, our implementation
also works on conditional ITRSs. This is no additional difficulty, because condi-
tional (I)TRSs can be automatically transformed into unconditional ones [23]. E.g.,
the ITRS R1 below could result from the transformation of this conditional ITRS:

sum(x, y) → y + sum(x, y + 1) | x > y →∗ true

sum(x, y) → 0 | x > y →∗ false
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sum(x, y)→ sif(x > y, x, y) (1) log(x, y)→ lif(x > y ∧ y > 1, x, y) (4)
sif(true, x, y)→ y + sum(x, y + 1) (2) lif(true, x, y)→ 1 + log(x/y, y) (5)
sif(false, x, y)→ 0 (3) lif(false, x, y)→ 0 (6)

The term sum(1, 1) can be rewritten as follows (redexes are underlined):

sum(1, 1) →֒R1 sif(1 > 1, 1, 1) →֒R1 sif(true, 1, 1) →֒R1 1 + sum(1, 1 + 1)

→֒R1 1 + sum(1, 2) →֒R1 1 + sif(1 > 2, 1, 2) →֒R1 1 + sif(false, 1, 2)

→֒R1 1 + 0 →֒R1 1

3 Integer Dependency Pair Framework

The DP framework [1, 12, 13, 16, 19] is one of the most powerful and popular
methods for automated termination analysis of TRSs and the DP technique is
implemented in almost all current TRS termination tools. Our goal is to extend
the DP framework in order to handle ITRSs. The main problem is that proving
innermost termination of R ∪ PD automatically is not straightforward, as the
TRS PD is infinite. Therefore, we will not consider the rules PD explicitly, but
integrate their handling in the different processors of the DP framework instead.

Of course, the resulting method should be as powerful as possible for term
rewriting on integers, but at the same time it should have the full power of the
original DP framework when dealing with other function symbols. In particular,
if an ITRS does not contain any symbols from Fint, then our new variant of the
DP framework coincides with the existing DP framework for ordinary TRSs.

As usual, the defined symbols D are the root symbols of left-hand sides
of rules. All other symbols are constructors. For an ITRS R, we consider all
rules in R ∪ PD to determine the defined symbols, i.e., here D also includes
ArithOp∪RelOp∪BoolOp. Nevertheless, we ignore these symbols when building
DPs, since these DPs would never be the reason for non-termination.8

Definition 2 (DP). For all f ∈ D\Fint, we introduce a fresh tuple symbol f ♯

with the same arity, where we often write F instead of f ♯. If t=f(t1, ..., tn), let t♯

= f ♯(t1, ..., tn). If ℓ→ r ∈ R for an ITRS R and t is a subterm of r with root(t)
∈ D\Fint, then ℓ♯ → t♯ is a dependency pair of R. DP(R) is the set of all DPs.

For example, we have DP(R1) = {(7), (8)} and DP(R2) = {(9), (10)}, where

SUM(x, y) → SIF(x > y, x, y) (7) LOG(x, y) → LIF(x > y ∧ y > 1, x, y) (9)
SIF(true, x, y) → SUM(x, y + 1) (8) LIF(true, x, y) → LOG(x/y, y) (10)

The main result of the DP method for innermost termination states that
a TRS R is innermost terminating iff there is no infinite innermost DP (R)-
chain. This can be adapted to ITRSs in a straightforward way. For any TRS P
and ITRS R, a P-chain is a sequence of variable renamed pairs s1 → t1, s2 →
t2, . . . from P such that there is a substitution σ (with possibly infinite domain)
where tiσ →֒∗

R
si+1σ and siσ is in normal form w.r.t. →֒R, for all i. Then we

8 Formally, they would never occur in any infinite chain and could easily be removed
by standard techniques like the so-called dependency graph [1, 12].
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immediately get the following corollary from the standard results on DPs.9

Corollary 3 (Termination Criterion for ITRSs). An ITRS R is terminat-
ing (w.r.t. →֒R) iff there is no infinite DP (R)-chain.

Termination techniques are now called DP processors and they operate on
sets of DPs (called DP problems).10 A DP processor Proc takes a DP problem as
input and returns a set of new DP problems which have to be solved instead. Proc
is sound if for all DP problems P with an infinite P-chain there is also a P ′ ∈
Proc(P) with an infinite P ′-chain. Soundness of processors is required to prove
termination and to conclude that there is no infinite P-chain if Proc(P) = ∅.

So termination proofs in the DP framework start with the initial DP prob-
lem DP (R). Then the DP problem is simplified repeatedly by sound DP proces-
sors. If all resulting DP problems have been simplified to ∅, then termination
is proved. Many processors (like the well-known (estimated) dependency graph
processor [1, 12, 13], for example) do not rely on the rules of the TRS, but just on
the DPs and on the defined symbols. Therefore, they can also be directly applied
for ITRSs, since the sets of DPs and of defined symbols are finite and one does
not have to consider the infinitely many rules in PD. One just has to take into
account that the defined symbols also include ArithOp ∪RelOp ∪ BoolOp.

But an adaption is non-trivial for one of the most important processors, the
reduction pair processor. Thus, the main contribution of the paper is to adapt
this processor to obtain a powerful automated termination method for ITRSs.

For a DP problem P , the reduction pair processor generates constraints which
should be satisfied by a suitable order on terms. In this paper, we consider orders
based on integer11 max-polynomial interpretations [11, 17]. Such interpretations
suffice for most algorithms typically occurring in practice. The set of max-poly-
nomials is the smallest set containing the integers Z, the variables, and p + q,
p ∗ q, and max(p, q) for all max-polynomials p and q. An integer max-polynomial
interpretation Pol maps every12 n-ary function symbol f to a max-polynomial
fPol over n variables x1, . . . , xn. This mapping is extended to terms by defining
[x]Pol = x for all variables x and by letting [f(t1, . . . , tn)]Pol = fPol([t1]Pol, . . . ,
[tn]Pol). One now defines s ≻Pol t (resp. s %Pol t) iff [s]Pol > [t]Pol (resp.
[s]Pol > [t]Pol) holds for all instantiations of the variables with integer numbers.

9 For Cor. 3, it suffices to consider only minimal chains where all tiσ are →֒R-termina-
ting [13]. All results of this paper also hold for minimal instead of ordinary chains.

10 To ease readability we use a simpler definition of DP problems than [13], since this
simple definition suffices for the presentation of the new results of this paper.

11 Interpretations into the integers instead of the naturals are often needed for algo-
rithms like sum that increase an argument y until it reaches a bound x. In [17], we
already presented an approach to prove termination by bounded increase. However,
[17] did not consider built-in integers and pre-defined operations on them. Instead,
[17] only handled natural numbers and all operations (like “>”) had to be defined
by rules of the TRS itself. Therefore, we now extend the approach of [17] to ITRSs.

12 This is more general than related previous classes of interpretations: In [17], there
was no “max” and only tuple symbols could be mapped to polynomials with integer
coefficients, and in [11], all ground terms had to be mapped to natural numbers.
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For example, consider the interpretation Pol where SUMPol = x1−x2, SIFPol

= x2−x3, +Pol = x1+x2, nPol = n for all n ∈ Z, and >Pol= truePol = falsePol =
0. For any term t and any position π in t, we say that t is %Pol-dependent on π
iff there exist terms u, v where t[u]π 6≈Pol t[v]π . Here, ≈Pol = %Pol ∩ -Pol. So
in our example, SIF(b, x, y) is %Pol-dependent on 2 and 3, but not on 1. We say
that a term t is %Pol-increasing on π iff u %Pol v implies t[u]π %Pol t[v]π for all
terms u, v. So clearly, if t is %Pol-independent on π, then t is also %Pol-increasing
on π. In our example, SIF(b, x, y) is %Pol-increasing on 1 and 2, but not on 3.

The constraints generated by the reduction pair processor require that all
DPs in P are strictly or weakly decreasing and all usable rules are weakly de-
creasing. Then one can delete all strictly decreasing DPs.

The usable rules [1, 16] include all rules that can reduce terms in %Pol-depen-
dent positions of P ’s right-hand sides when instantiating their variables with nor-
mal forms. Formally, for a term with f on a %Pol-dependent position, all f -rules
are usable. Moreover, if f ’s rules are usable and g occurs in the right-hand side of
an f -rule on a %Pol-dependent position, then g’s rules are usable as well. For any
symbol f with arity(f) = n, let dep(f) = {i | 1 6 i 6 n, there exists a term f(t1,
..., tn) that is %Pol-dependent on i}. So dep(SIF) = {2, 3} for the interpretation
Pol above. Moreover, as %Pol is not monotonic in general, one has to require that
defined symbols only occur on %Pol-increasing positions of right-hand sides.13

When using interpretations into the integers, then ≻Pol is not well founded.
However, ≻Pol is still “non-infinitesimal”, i.e., for any given bound, there is
no infinite ≻Pol-decreasing sequence of terms that remains greater than the
bound. Hence, the reduction pair processor transforms a DP problem into two
new problems. As mentioned before, the first problem results from removing all
strictly decreasing DPs. The second DP problem results from removing all DPs
s→ t from P that are bounded from below, i.e., DPs which satisfy the inequality
s % c for a fresh constant c. In Thm. 4, both TRSs and relations are seen as sets
of pairs of terms. Thus, “P \≻Pol” denotes {s→ t ∈ P | s 6≻Pol t}. Moreover, for
any function symbol f and any TRS S, let RlsS(f) = {ℓ→ r ∈ S | root(ℓ) = f}.

Theorem 4 (Reduction Pair Processor [17]). Let R be an ITRS, Pol be
an integer max-polynomial interpretation, c be a fresh constant, and Pbound =
{s→ t ∈ P | s %Pol c}. Then the following DP processor Proc is sound.

Proc(P)=























{P \≻Pol, P \ Pbound }, if P ⊆ %Pol∪ ≻Pol, UR∪PD(P) ⊆ %Pol,
and defined symbols only occur on
%Pol-increasing positions
in right-hand sides of P ∪ UR(P)

{P }, otherwise

13 This is needed to ensure that tσ →֒∗

R u implies tσ %Pol u whenever t’s usable rules
are weakly decreasing and σ instantiates variables by normal forms. Note that Thm. 4
is a simplified special case of the corresponding processor from [17]. In [17], we also
introduced the possibility of reversing usable rules for function symbols occurring on
decreasing positions. The approach of the present paper can also easily be extended
accordingly and, indeed, our implementation makes use of this extension.
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For any term t and TRS S, the usable rules US(t) are the smallest set with

• US(x) = ∅ for every variable x and
• US(f(t1, . . . , tn)) = RlsS(f) ∪

⋃

ℓ→r∈RlsS(f) US(r) ∪
⋃

i∈dep(f) US(ti)

For a set of dependency pairs P, its usable rules are US(P) =
⋃

s→t∈P
US(t).

For R1, by Thm. 4 we search for an interpretation Pol with s ≻Pol(∼)
t for all

s→ t ∈ DP (R1) = {(7), (8)} and ℓ %Pol r for all ℓ → r ∈ UR1∪PD(DP (R1)) =
{0+1 → 1, 1+1 → 2, −1+1 → 0, . . . , 0 > 0 → true, 1 > 2 → false, . . .}.
However, UR1∪PD(DP (R1)) is infinite and thus, this approach is not suitable
for automation. When using the interpretation with SIFPol = x2 − x3, then
the >-rules would not be usable, because > only occurs on a %Pol-independent
position in the right-hand side of the DP (7). But the desired interpretation
SUMPol = x1 − x2 cannot be used, because in DP (8), the defined symbol +
occurs in the second argument of SUM which is not a %Pol-increasing position.14

To avoid the need for considering infinitely many rules in the reduction
pair processor and in order to handle ITRSs where defined symbols like + oc-
cur on non-increasing positions, we will now restrict ourselves to so-called I-
interpretations where we fix the max-polynomials that are associated with the
pre-defined symbols from Z∪ArithOp. The definition of I-interpretations guar-
antees that we have ℓ ≈Pol r for all rules ℓ→ r ∈ PD where root(ℓ) ∈ {+,−, ∗}.
For this reason, one can now also allow occurrences of +, −, and ∗ on non-
increasing positions. Moreover, for I-interpretations we have ℓ %Pol r for all rules
ℓ → r ∈ PD where root(ℓ) ∈ {/,%}. For these latter rules, obtaining ℓ ≈Pol r
with a useful max-polynomial interpretation is impossible, since division and
modulo are no max-polynomials.15

Definition 5 (I-interpretation). An integer max-polynomial interpretation
Pol is an I-interpretation iff nPol = n for all n ∈ Z, +Pol = x1 + x2, −Pol =
x1 − x2, ∗Pol = x1 ∗ x2, %Pol = |x1|, and /Pol = |x1| − min(|x2| − 1, |x1|).
Note that for any max-polynomial p, “ |p|” is also a max-polynomial since this
is just an abbreviation for max(p,−p). Similarly, “min(p, q)” is an abbreviation
for −max(−p,−q). We say that an I-interpretation is proper for a term t if all
defined symbols except +, −, and ∗ only occur on %Pol-increasing positions of t
and if symbols from RelOp only occur on %Pol-independent positions of t.

Now [n/m]Pol is greater or equal to n/m for all n,m ∈ Z where m 6= 0 (and

14 Nevertheless, Thm. 4 is helpful for ITRSs where the termination argument is not due
to integer arithmetic. For example, consider the ITRS g(x, cons(y, ys)) → cons(x+
y, g(x, ys)). When using interpretations Pol with fPol = 0 for all f ∈ Fint, the rules
ℓ→ r ∈ PD are always weakly decreasing. Hence, then one only has to regard finitely
many usable rules when automating Thm. 4. Moreover, if all fPol have just natural
coefficients, then one does not have to generate the new DP problem P \ Pbound. In
this case, one can define s ≻Pol(∼)

t iff [s]Pol (
>

)
[t]Pol holds for all instantiations of the

variables by natural numbers. Thus, in the example above the termination proof is
trivial by using the interpretation with GPol = x2 and consPol = x2 + 1.

15 In principle, one could also permit interpretations fPol containing divisions. But exis-
ting implementations to search for interpretations cannot handle division or modulo.
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similar for [n%m]Pol).
16 Hence, one can improve the processor of Thm. 4 by

not regarding the infinitely many rules of PD anymore. The concept of proper
I-interpretations ensures that we can disregard the (infinitely many) usable rules
for the symbols from RelOp and that the symbols “/” and “%” only have to be
estimated “upwards”. Then one can now replace the usable rules w.r.t. R∪PD
in Thm. 4 by the usable rules w.r.t. R∪ BO. Here, BO are the (finitely many)
rules for the symbols ∧ and ⇒ in BoolOp, i.e., BO = RlsPD(∧) ∪RlsPD(⇒).

Theorem 6 (Reduction Pair Processor for ITRSs). Let R be an ITRS,
Pol be an I-interpretation, and Pbound be as in Thm. 4. Then Proc is sound.

Proc(P)=















{P \≻Pol, P \ Pbound }, if P ⊆ %Pol∪ ≻Pol, UR∪BO(P) ⊆ %Pol,
and Pol is proper for all right-hand
sides of P ∪ UR(P)

{P }, otherwise

Proof. We show that Thm. 6 follows from Thm. 4. In Thm. 6, we only require
that usable rules from R∪BO are weakly decreasing, whereas Thm. 4 considers
usable rules from R∪PD. For any I-interpretation Pol, we have ℓ ≈Pol r for all
ℓ → r ∈ PD with root(ℓ) ∈ {+,−, ∗}. So these rules are even equivalent w.r.t.
≈Pol. Moreover, the rules with root(ℓ) ∈ {/,%} are weakly decreasing w.r.t.
%Pol. The rules with root(ℓ) ∈ RelOp are never contained in UR∪PD(P), because
by properness of Pol, symbols from RelOp only occur on %Pol-independent
positions in right-hand sides of P ∪UR(P) and they do not occur at all in right-
hand sides of PD. Thus, UR∪PD(P) ⊆ %Pol, as required in Thm. 4.

The other difference between Thm. 6 and 4 is that in Thm. 6, +, −, and ∗
may also occur on non-%Pol-increasing positions. But as shown in [17, 20], this
is possible since the rules for these symbols are equivalent w.r.t. ≈Pol. ⊓⊔

To solve the DP problem P = {(7), (8)} of R1 with Thm. 6, we want to use
an I-interpretation Pol where SUMPol = x1 − x2 and SIFPol = x2 − x3. Now
there are no usable rules UR∪BO(P), since the +- and >-rules are not included
in R∪BO. The DP (8) is strictly decreasing, but none of the DPs (7) and (8) is
bounded, since we have neither SUM(x, y) %Pol c nor SIF(true, x, y) %Pol c for
any possible value of cPol. Thus, the reduction pair processor would return the
two DP problems {(7)} and {(7), (8)}, i.e., it would not simplify P .

4 Conditional Constraints

The solution to the problem above is to consider conditions for inequalities like
s

(
%

)
t or s % c. For example, to include the DP (7) in Pbound, we do not have to

demand SUM(x, y) % c for all instantiations of x and y. Instead, it suffices to re-
quire the inequality only for those instantiations of x and y which can be used in
chains. So we require SUM(x, y) % c only for instantiations σ where (7)’s in-
stantiated right-hand side SIF(x > y, x, y)σ reduces to an instantiated left-hand

16 Let m 6= 0. If |m| = 1 or n = 0, then we have [n/m]Pol = |n|. Otherwise, we obtain
[n/m]Pol < |n|. The latter fact is needed for ITRSs like R2 which terminate because
of divisions in their recursive arguments.
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side uσ for some DP u → v where uσ is in normal form. Here, u → v should
again be variable renamed. As our DP problem contains two DPs (7) and (8),
we get the following two conditional constraints (by considering all possibilities
u→ v ∈ {(7), (8)}). We include (7) in Pbound if both constraints are satisfied.

SIF(x > y, x, y) = SUM(x′, y′) ⇒ SUM(x, y) % c (11)
SIF(x > y, x, y) = SIF(true, x′, y′) ⇒ SUM(x, y) % c (12)

Definition 7 (Syntax and Semantics of Conditional Constraints [17]).
The set C of conditional constraints is the smallest set with17

• {TRUE , s % t, s ≻ t, s = t} ⊆ C for all terms s and t
• if {ϕ1, ϕ2} ⊆ C, then ϕ1 ∧ ϕ2 ∈ C and ϕ1 ⇒ ϕ2 ∈ C

For an I-interpretation Pol, we define which normal substitutions18 σ satisfy
a constraint ϕ ∈ C, denoted “σ |=Pol ϕ”:

• σ |=Pol TRUE for all normal substitutions σ
• σ |=Pol s % t iff sσ %Pol tσ and σ |=Pol s ≻ t iff sσ ≻Pol tσ
• σ |=Pol s = t iff sσ →֒∗

R
tσ and tσ is a normal form w.r.t. →֒R

• σ |=Pol ϕ1 ∧ ϕ2 iff σ |=Pol ϕ1 and σ |=Pol ϕ2

• σ |=Pol ϕ1 ⇒ ϕ2 iff σ 6|=Pol ϕ1 or σ |=Pol ϕ2

A constraint ϕ is valid (“ |=Polϕ”) iff σ |=Polϕ for all normal substitutions σ.

Now we refine the reduction pair processor by taking conditions into account.
To this end, we modify the definition of Pbound and introduce P% and P≻.

Theorem 8 (Conditional Reduction Pair Processor for ITRSs). Let R
be an ITRS, Pol be an I-interpretation, c be a fresh constant, and let

P% = { s→ t ∈ P | |=Pol

∧

u→v∈P
(t = u′ ⇒ s% t) }

P≻ = { s→ t ∈ P | |=Pol

∧

u→v∈P
(t = u′ ⇒ s≻ t) }

Pbound = { s→ t ∈ P | |=Pol

∧

u→v∈P
(t = u′ ⇒ s%c) }

where u′ results from u by renaming its variables. Then Proc is sound.

Proc(P) =















{P \ P≻, P \ Pbound }, if P% ∪ P≻ = P, UR∪BO(P) ⊆ %Pol,

and Pol is proper for all right-hand
sides of P ∪ UR(P)

{P }, otherwise

Proof. Thm. 8 immediately follows from Thm. 6 in the same way as [17, Thm.
11] follows from [17, Thm. 8]. ⊓⊔

To ease readability, in Thm. 8 we only consider conditions resulting from two
DPs s→ t and u→ v which may follow each other in chains. In our implemen-

17 To simplify the presentation, we neither regard conditional constraints with uni-
versally quantified subformulas nor the simplification of constraints by induction, cf.
[17]. This technique of [17] could be integrated in our approach to also handle ITRSs
where tests are not of the form “s > t” with the pre-defined symbol “>”, but of the
form “ge(s, t)”, where ge is given by user-defined rules in the ITRS. After such an
integration, our approach would subsume the corresponding technique of [17].

18 A normal substitution σ instantiates all variables by normal forms w.r.t. →֒R.
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tation, we extended this by also regarding conditions resulting from more than
two adjacent DPs and by also regarding DPs preceding s→ t in chains, cf. [17].

The question remains how to check whether conditional constraints are valid,
since this requires reasoning about reachability w.r.t. TRSs with infinitely many
rules. In [17], we introduced the rules (I)-(IV) to simplify conjunctions ϕ1∧...∧ϕn
of conditional constraints. These rules can be used to replace a conjunct ϕi by
a new formula ϕ′

i. The rules are sound, i.e., |=Pol ϕ
′
i implies |=Pol ϕi. Of course,

TRUE ∧ ϕ can always be simplified to ϕ. Eventually, we want to remove all
equalities “p = q” from the constraints.

I. Constructor and Different Function Symbol

f(s1, ..., sn) = g(t1, ..., tm) ∧ ϕ ⇒ ψ

TRUE
if f is a constructor and f 6= g

II. Same Constructors on Both Sides

f(s1, ..., sn) = f(t1, ..., tn) ∧ ϕ ⇒ ψ

s1 = t1 ∧ . . . ∧ sn = tn ∧ ϕ ⇒ ψ
if f is a constructor

III. Variable in Equation

x=q ∧ ϕ ⇒ ψ

ϕσ ⇒ ψ σ

if x ∈ V and
σ = [x/q]

q=x ∧ ϕ ⇒ ψ

ϕσ ⇒ ψ σ

if x∈ V, q has no
defined symbols,
σ=[x/q]

IV. Delete Conditions

ϕ ⇒ ψ

ϕ′ ⇒ ψ
if ϕ′ ⊆ ϕ

For example, Rule (I) detects that the premise of constraint (11) is unsat-
isfiable: there is no substitution σ with σ |=Pol SIF(x > y, x, y) = SUM(x′, y′),
since SIF is not a defined function symbol (i.e., it is a constructor) and therefore,
SIF-terms can only be reduced to SIF-terms.

Rule (II) handles conditions like SIF(x > y, x, y) = SIF(true, x′, y′) where
both terms start with the same constructor SIF. So (12) is transformed into

x > y = true ∧ x = x′ ∧ y = y′ ⇒ SUM(x, y) % c (13)

Rule (III) removes conditions of the form “x = q” or “q = x” by applying
the substitution [x/q] to the constraint. So (13) is transformed into

x > y = true ⇒ SUM(x, y) % c (14)

Rule (IV) can omit arbitrary conjuncts from the premise of an implication.
To ease notation, we regard a conjunction as a set of formulas. So their order is
irrelevant and we write ϕ′ ⊆ ϕ iff all conjuncts of ϕ′ are also conjuncts of ϕ. The
empty conjunction is TRUE (i.e., TRUE ⇒ ψ can always be simplified to ψ).

Since [17] did not handle pre-defined function symbols, we now extend the
rules (I)-(IV) from [17] by new rules to “lift” pre-defined function symbols from
RelOp like > to symbols like % that are used in conditional constraints. Similar
rules are used for the other symbols from RelOp. The idea is to replace a condi-
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tional constraint like “s > t = true” by the conditional constraint “s % t”. How-
ever, this is not necessarily sound, because s and t may contain defined symbols.
Note that σ |=Pol s > t = true means that sσ →֒∗

R n and tσ →֒∗
R m for n,m ∈ Z

with n > m. For any I-interpretation Pol, we therefore have n %Pol m, since
nPol = n andmPol = m. To guarantee that σ |=Pol s % t holds as well, we ensure
that sσ %Pol n and m %Pol tσ. To this end, we require that UR∪BO(s) ⊆ %Pol

and that t contains no defined symbols except +, −, and ∗. An analogous rule
can also be formulated for constraints of the form “s > t = false”.19

V. Lift Symbols from RelOp

s > t = true ∧ ϕ ⇒ ψ

(s % t ∧ ϕ ⇒ ψ) ∧
∧

ℓ→r∈UR∪BO(s)

ℓ % r

if t contains no defined symbols
except +, −, ∗ and Pol is proper
for s and for all right-hand sides
of UR(s)

By Rule (V), (14) is transformed into

x % y ⇒ SUM(x, y) % c (15)

Similar to the lifting of the function symbols from RelOp, it is also possible to
lift the function symbols from BoolOp. For reasons of space, we only present the
corresponding rules for lifting “∧”, but of course “⇒” can be lifted analogously.

VI. Lift Symbols from BoolOp

s∧ t = true ∧ϕ ⇒ ψ

s = true ∧ t = true ∧ϕ ⇒ ψ

s ∧ t = false ∧ ϕ ⇒ ψ

(s = false∧ϕ ⇒ ψ) ∧ (t = false∧ϕ ⇒ ψ)

To illustrate this rule, consider the constraint “(x > y ∧ y > 1) = true ⇒
LOG(x, y) % c” which results when trying to include the DP (9) of the ITRS R2

in Pbound. Here, Rule (VI) gives “x > y = true ∧ y > 1 = true ⇒ LOG(x, y) % c”
which is transformed by Rule (V) into “x % y ∧ y ≻ 1 ⇒ LOG(x, y) % c”.

Let ϕ ⊢ ϕ′ iff ϕ′ results from ϕ by repeatedly applying the above inference
rules. We can now refine the processor from Thm. 8.

Theorem 9 (Conditional Reduction Pair Processor with Inference).
Let Pol be an I-interpretation and c be a fresh constant. For all s→ t ∈ P and all
ψ ∈ { s % t, s ≻ t, s % c }, let ϕψ be a constraint with

∧

u→v∈P
(t= u′ ⇒ ψ)

⊢ ϕψ. Here, u′ results from u by renaming its variables. Then the processor
Proc from Thm. 8 is still sound if we define P% = {s → t ∈ P | |=Pol ϕs%t },
P≻ = {s→ t ∈ P | |=Pol ϕs≻t }, and Pbound = {s→ t ∈ P | |=Pol ϕs%c }.

Proof. It suffices to show the soundness of the rules (I)-(VI): If ϕ ⊢ ϕ′, then
|=Pol ϕ

′ implies |=Pol ϕ. Then Thm. 9 immediately follows from Thm. 8.
Soundness of the rules (I)-(IV) was shown in [17, Thm. 14]. For Rule (V), let

|=Pol (s % t ∧ ϕ ⇒ ψ) ∧
∧

ℓ→r∈UR∪BO(s) ℓ % r and σ |=Pol s > t = true ∧ ϕ. As

explained above, this implies σ |=Pol s % t ∧ ϕ and hence, σ |=Pol ψ, as desired.
For the first variant of (VI), σ |=Pol s ∧ t = true iff sσ →֒∗

R
true and tσ →֒∗

R

19 In addition, one can also use rules to perform narrowing and rewriting on the terms
in conditions, similar to the use of narrowing and rewriting in [16].
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true, i.e., σ |=Pol s= true∧t= true. For the second variant, σ |=Pol s∧t= false im-
plies sσ →֒∗

R
false or tσ →֒∗

R
false, i.e., σ |=Pol s = false or σ |=Pol t = false. ⊓⊔

5 Generating I-Interpretations

To automate the processor of Thm. 9, we show how to generate an I-interpreta-
tion that satisfies a given conditional constraint. This conditional constraint is a
conjunction of formulas like ϕs%t, ϕs≻t, and ϕs%c for DPs s→ t as well as ℓ % r
for usable rules ℓ → r. Moreover, one has to ensure that the I-interpretation
is chosen in such a way that Pol is proper for the right-hand sides of the DPs
and the usable rules.20 Compared to our earlier work in [11], the only additional
difficulty is that now we really consider arbitrary max-polynomial interpretations
over the integers where [t]Pol can also be negative for any ground term t.

To find I-interpretations automatically, one starts with an abstract I-inter-
pretation. It maps each function symbol to a max-polynomial with abstract co-
efficients. In other words, one has to determine the degree and the shape of
the max-polynomial, but the actual coefficients are left open. For example, for
the ITRS R1 we could use an abstract I-interpretation Pol where SUMPol =
a0 + a1 x1 + a2 x2, SIFPol = b0 + b1 x1 + b2 x2 + b3 x3, and cPol = c0. Here, ai,
bi, and c0 are abstract coefficients. Of course, the interpretation for the symbols
in Z ∪ArithOp is fixed as for any I-interpretation (i.e., +Pol = x1 + x2, etc.).

After application of the rules in Sect. 4, we have obtained a conditional
constraint without the symbol “=”. Now we transform the conditional constraint
into a so-called inequality constraint by replacing all atomic constraints “s % t”
by “[s]Pol > [t]Pol” and all atomic constraints “s ≻ t” by “[s]Pol > [t]Pol+1”. For
instance, the atomic constraint “SUM(x, y) % c” is transformed into “a0 +a1 x+
a2 y > c0”. Here, the abstract coefficients a0, a1, a2, c0 are implicitly existentially
quantified and the variables x, y ∈ V are universally quantified. In other words,
we search for values of the abstract coefficients such that the inequalities hold for
all integer numbers x and y. To make this explicit, we add universal quantifiers
for the variables from V . More precisely, if our overall inequality constraint has
the form ϕ1∧ . . .∧ϕn, then we now replace each ϕi by “∀x1 ∈ Z, . . . , xm ∈ Z ϕi”
where x1, . . . , xm are the variables from V occurring in ϕi. So the conditional
constraint (15) is transformed into the inequality constraint

∀x ∈ Z, y ∈ Z (x > y ⇒ a0 + a1 x+ a2 y > c0 ) (16)

In general, inequality constraints have the following form where Numi is Z or N.

∀x1 ∈ Num1, . . . , xm ∈ Numm p1 > q1 ∧ . . . ∧ pn > qn ⇒ p > q

Now our goal is to transform such inequality constraints further into Dio-
phantine constraints which do not contain any universally quantified variables
x1, . . . , xm anymore. Then one can apply existing methods to search for values

20 The set of usable rules and thus, the given conditional constraint depends on the I-in-
terpretation (that determines which positions are increasing or dependent). Never-
theless, we showed in [11] how to encode such search problems into a single constraint.
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of the abstract coefficients that satisfy the Diophantine constraints.
We already developed such transformation rules in [11]. But [11] was re-

stricted to the case where all universally quantified variables range over N, i.e.,
Num1 = ... = Numm = N. Moreover, [11]’s essential rule to eliminate universally
quantified variables only works if there are no conditions (i.e., n = 0), cf. Rule
(C) below. Thus, we extend the transformation rules from [11]21 by the following
rule which can be used whenever a condition can be transformed into “x > p” or
“p > x” for a polynomial p not containing x. It does not only replace a variable
ranging over Z by one over N, but it also “applies” the condition “x > p” resp.
“p > x” and removes it afterwards without increasing the number of constraints.

A. Eliminating Conditions

∀x ∈ Z, . . . (x > p ∧ ϕ ⇒ ψ)

∀z ∈ N, . . . (ϕ[x/p+ z] ⇒ ψ[x/p+ z])

∀x ∈ Z, . . . (p > x ∧ ϕ ⇒ ψ)

∀z ∈ N, . . . (ϕ[x/p− z] ⇒ ψ[x/p− z])

if x does not occur in the polynomial p

By Rule (A), the inequality constraint (16) is therefore transformed into

∀y ∈ Z, z ∈ N a0 + a1 (y + z) + a2 y > c0 (17)

To replace all remaining quantifiers over Z by quantifiers over N, we add the
following rule. It splits the remaining inequality constraint ϕ (which may have
additional universal quantifiers) into the cases where y is positive resp. negative.

B. Split
∀y ∈ Z ϕ

∀y ∈ N ϕ ∧ ∀y ∈ N ϕ[y/− y]

Thus, Rule (B) transforms (17) into the conjunction of (18) and (19).

∀y ∈ N, z ∈ N a0 + a1 (y + z) + a2 y > c0 (18)

∀y ∈ N, z ∈ N a0 + a1 (−y + z) − a2 y > c0 (19)

If ϕ still has conditions, then a split by Rule (B) often results in unsatisfiable
conditions. To detect them, we use SMT-solvers for linear integer arithmetic
and additional sufficient criteria to detect also certain non-linear unsatisfiable
conditions like x2 < 0, etc. If a condition is found to be unsatisfiable, we delete
the inequality constraint. Note that (18) can be reformulated as

∀y ∈ N, z ∈ N (a1 + a2) y + a1 z + (a0 − c0) > 0

So we now have to ensure non-negativeness of “polynomials” over variables like y
and z that range over N, where the “coefficients” are polynomials like “a1 + a2”
over the abstract variables. To this end, it suffices to require that all these
“coefficients” are > 0 [21]. In other words, now one can eliminate all universally

21 For reasons of space, we do not present the remaining transformation rules of [11],
which are applied in our implementation as well. These rules are used to delete
“max” and to eliminate arbitrary conditions, e.g., conditions that are not removed
by Rule (A). Similar transformation rules can for example also be found in [18].
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quantified variables like y, z and transform (18) into the Diophantine constraint

a1 + a2 > 0 ∧ a1 > 0 ∧ a0 − c0 > 0

C. Eliminating Universally Quantified Variables

∀x1∈N, . . . , xm∈N p1 x
e11
1
... xem1

m + ...+ pk x
e1k

1
... x

emk
m > 0

p1 > 0 ∧ . . . ∧ pk > 0

if the pi do not con-
tain variables from V

To search for values of the abstract coefficients that satisfy the resulting Dio-
phantine constraints, one fixes upper and lower bounds for these values. Then we
showed in [10] how to translate such Diophantine constraints into a satisfiability
problem for propositional logic which can be handled by SAT solvers efficiently.
The constraints resulting from the initial inequality constraint (16) are for ex-
ample satisfied by a0 = 0, a1 = 1, a2 = −1, and c0 = 0.22 With these values, the
abstract interpretation a0 +a1 x1 +a2 x2 for SUM is turned into the concrete in-
terpretation x1 −x2. With the resulting concrete I-interpretation Pol, we would
have P≻ = {(8)} and Pbound = {(7)}. The reduction pair processor of Thm. 9
would therefore transform the initial DP problem P = {(7), (8)} into the two
problems P \P≻ = {(7)} and P \Pbound = {(8)}. Both of them are easy to solve
(e.g., by using Pol′ with SUMPol′ = 1, SIFPol′ = 0 and Pol′′ with SUMPol′′ =0,
SIFPol′′ =1 or by using other processors like the dependency graph).

Our approach also directly works for ITRSs with extra variables on right-
hand sides of rules. Then the rewrite relation is defined as s →֒R t iff there is a
rule ℓ → r ∈ R ∪ PD such that s|π = ℓσ and t = s[rσ]π , ℓσ does not contain
redexes as proper subterms, and σ is a normal substitution (i.e., σ(y) is in normal
form also for variables y occurring only in r). Now we can also handle ITRSs
with non-determinism like f(true, x) → f(x > y ∧ x > 0, y). Here, the argument
x of f is replaced by an arbitrary smaller number y. Handling non-deterministic
algorithms is often necessary for termination proofs of imperative programs when
abstracting away “irrelevant” parts of the computation, cf. [4, 8, 24].

This also opens up a possibility to deal with algorithms that contain “large
constants” computed by user-defined functions. For instance, consider an ITRS
containing f(true, x) → f(ack(10, 10) > x, x+ 1) and ack-rules computing the
Ackermann function. With our approach, the ack-rules would have to be weakly
decreasing, cf. Rule (V). This implies ackPol(n,m) > Ackermann(n,m), which
does not hold for any max-polynomial ackPol. But such examples can be handled
by automatically transforming the original ITRS to an ITRS with extra variables
whose termination implies termination of the original ITRS. If s is a ground term

22 Note that the abstract coefficient c0 can only occur in atomic Diophantine constraints
of the form “p−c0 > 0” where the polynomial p does not contain c0. These constraints
are always satisfied when choosing c0 small enough. Therefore, one does not have
to consider constraints with c0 anymore and one also does not have to determine
the actual value of c0. This is advantageous for ITRSs with “large constants” like
f(true, x) → f(1000 > x, x+ 1), since current Diophantine constraint solvers like [10]
usually only consider small ranges for the abstract coefficients.
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like ack(10, 10) on the right-hand side of a rule and all usable rules of s are non-
overlapping, then one can replace s by a fresh variable y. This variable must then
be added as an additional argument. In this way, one can transform the f-rule
above into the following ones. Termination of the new ITRS is easy to show.

f(true, x) → f′(true, x, y) f′(true, x, y) → f′(y > x, x+ 1, y)

6 Experiments and Conclusion

We have adapted the DP framework in order to prove termination of ITRSs
where integers are built-in. To evaluate our approach, we implemented it in our
termination prover AProVE [15]. Of course, here we used appropriate strategies to
control the application of the transformation rules from Sect. 4 and 5, since these
are neither confluent nor equivalence-preserving. We tested our implementation
on a data base of 117 ITRSs (including also conditional ITRSs, cf. Footnote 7).
Our data base contains all 19 examples from the collection of [17] and all 29
examples from the collection23 of [9] converted to integers, all 19 examples from
the papers [2–8, 24, 25]24 on imperative programs converted to term rewriting,
and several other “typical” algorithms on integers (including also some non-
terminating ones). With a timeout of 1 minute for each example, the new version
of AProVE with the contributions of this paper can prove termination of 104
examples (i.e., of 88.9 %). In particular, AProVE succeeds on all ITRSs mentioned
in the current paper. In contrast, we also ran the previous version of AProVE

(AProVE08) and the termination tool TTT2 [22] that do not support built-in
integers on this data base. Here, we converted integers into terms constructed
with 0, s, pos, and neg and we added rules for the pre-defined operations on
integers in this representation, cf. Sect. 1.25 Although AProVE08 won the last
International Competition of Termination Provers 2008 for term rewriting26 and
TTT2 was second, both performed very poorly on the examples. AProVE08 could
only prove termination of 24 of them (20.5 %) and TTT2 proved termination
of 6 examples (5.1 %). This clearly shows the enormous benefits of built-in
integers in term rewriting. To access our collection of examples, for details on our
experimental results, and to run the new version of AProVE via a web interface,
we refer to http://aprove.informatik.rwth-aachen.de/eval/Integer/.
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