
To appear in EPTCS.

Loops under Strategies . . . Continued

René Thiemann∗ Christian Sternagel∗

University of Innsbruck
Austria

{rene.thiemann, christian.sternagel}@uibk.ac.at

Jürgen Giesl†

RWTH Aachen University
Germany

giesl@informatik.rwth-aachen.de

Peter Schneider-Kamp
University of Southern Denmark

Denmark
petersk@imada.sdu.dk

While there are many approaches for automatically proving termination of term rewrite systems,
up to now there exist only few techniques to disprove their termination automatically. Almost all
of these techniques try to find loops, where the existence of a loop implies non-termination of the
rewrite system. However, most programming languages use specific evaluation strategies, whereas
loop detection techniques usually do not take strategies into account. So even if a rewrite system has
a loop, it may still be terminating under certain strategies.

Therefore, our goal is to develop decision procedures which can determine whether a given loop
is also a loop under the respective evaluation strategy. In earlier work, such procedures were pre-
sented for the strategies of innermost, outermost, and context-sensitive evaluation. In the current
paper, we build upon this work and develop such decision procedures for important strategies like
leftmost-innermost, leftmost-outermost, (max-)parallel-innermost, (max-)parallel-outermost, and for-
bidden patterns (which generalize innermost, outermost, and context-sensitive strategies). In this
way, we obtain the first approach to disprove termination under these strategies automatically.

1 Introduction

Termination is an important property of term rewrite systems (TRSs). Therefore, much effort has been
spent on developing and automating techniques for showing termination of TRSs. However, in order
to detect bugs, it is at least as important to prove non-termination. Note that for rewriting under a
strategy, the strategy has to be taken into account when checking for non-termination. The reason is that
a TRS which is non-terminating when ignoring the strategy may still be terminating when considering
the strategy. Thus, it is important to develop automated techniques to disprove termination of TRSs under
strategies.

Most of the techniques for showing non-termination detect loops (for example, [4,7,8,9,13,20,21]).
For a TRS R, a loop is a derivation of the form t→+

R C[tµ] for some context C and some substitution
µ . To prove non-termination under a strategy S, we may use a complete transformation TS (e.g., [2,
14, 18]) where a TRS R terminates under the strategy S iff the TRS TS(R) terminates when ignoring
the strategy. After applying such a transformation, we may try to find a loop in the transformed system
TS(R). However, there are some drawbacks: The first problem is an increased search space, as loops
of R are often transformed into much longer loops in TS(R). Moreover, the complete transformations
from [2, 14, 18] translate a loop t →+

R C[tµ] into a non-looping infinite derivation in TS(R), whenever

∗These authors are supported by the FWF (Austrian Science Fund) project P22767-N13.
†This author is supported by the DFG (German Research Foundation) project GI 274/5-3.



2 Loops under Strategies . . . Continued

C /= l. These two problems were solved in [17, 19] by decision procedures which, given a loop in the
original system R, directly decide whether the loop is also a loop under the respective strategy. Here,
[17] treats the innermost strategy whereas [19] deals with the context-sensitive [10] and the outermost
strategy. Another problem is the availability of complete transformations. For the leftmost-innermost,
parallel-innermost, and max-parallel-innermost strategy we know by [15] that a TRS is terminating under
one of these strategies iff it is innermost terminating. Thus, we can use the decision procedure for
innermost loops [17] to disprove termination under these strategies.1 However, we are not aware of
any complete transformation for the strategies leftmost-outermost, parallel-outermost, and max-parallel-
outermost. Therefore, in this paper we build upon the direct methods of [17, 19] and give decision
procedures for all these strategies (i.e., these procedures again decide whether a loop is also a loop under
the strategy). Note that our decision procedures can also be extended to the context-sensitive case, e.g.,
to the leftmost-innermost context-sensitive strategy.

Finally, recently a generalization of innermost / outermost / context-sensitive rewriting has been in-
troduced: rewriting with forbidden patterns [6]. In this paper we also develop a decision procedure for
loops under forbidden patterns.

Before giving an overview on the contents of this paper, we present a motivating example.

Example 1 Consider the following TRS (computing the factorial) which is a variant of [17, Ex. 1].

factorial(y)→ fact(0,y) (1)
fact(x,y)→ if(x == y,s(0), fact(s(x),y) · s(x)) (2)

if(true,x,y)→ x (3)
if(false,x,y)→ y (4)

0+ y→ y (5)
s(x)+ y→ s(x+ y) (6)

0 · y→ 0 (7)
s(x) · y→ y+(x · y) (8)
x == y→ eq(chk(x),chk(y)) (9)
eq(x,x)→ true (10)
chk(x)→ false (11)

eq(false,y)→ false (12)

Here, the intended strategy is leftmost-outermost. Otherwise, rule (2) would directly cause non-termi-
nation. Moreover, this strategy is needed for the equality-test encoded by rules (9)–(12) (which takes at
most three reductions). Nevertheless, we obtain the following looping leftmost-outermost reduction (the
respective redexes are underlined):

t = fact(x,y)

→ if(x == y,s(0), fact(s(x),y) · s(x))
→ if(eq(chk(x),chk(y)),s(0), fact(s(x),y) · s(x))
→ if(eq(false,chk(y)),s(0), fact(s(x),y) · s(x))
→ if(false,s(0), fact(s(x),y) · s(x))
→ fact(s(x),y) · s(x)
= C[tµ]

where µ = {x/s(x)} and C =l · s(x). Applying our new decision procedure developed in this paper will
show that the above loop indeed is a leftmost-outermost loop, and hence, R does not terminate under
the leftmost-outermost strategy.

1Indeed, by [15] an innermost loop implies leftmost-innermost non-termination. Yet, this does not imply leftmost-
innermost-loopingness. As an example, consider R′ = {a→ f(nloop,a)}∪R, where nloop is a non-terminating, but non-
looping term w.r.t. R. Then R′ is innermost looping but not leftmost-innermost looping. Therefore, we also develop decision
procedures for the various innermost strategies.



René Thiemann et. al 3

The rest of the paper is structured as follows: In Section 2 we give the necessary preliminaries.
Afterwards, in Section 3, we treat the special case of leftmost loops. Next, in Section 4, we consider
parallel as well as max-parallel loops. Subsequently, we handle the more complicated case of loops
under forbidden patterns in Section 5. Finally, in Section 6, we conclude.

2 Preliminaries

We only regard finite signatures and TRSs and refer to [1] for the basics of rewriting. We use `, r, s, t,
u for terms, f , g for function symbols, x, y for variables, µ , σ for substitutions, i, j, k, n, m for natural
numbers, o, p, q for positions, and C, D for contexts. Here, contexts are terms which contain exactly one
hole l. The set of variables is denoted by V .

Throughout this paper we assume a fixed TRS R and we write t →p s if one can reduce t to s at
position p with R, i.e., t = C[`σ ] and s = C[rσ ] for some rule `→ r ∈ R, substitution σ , and con-
text C with C|p = l. In this case, the term `σ is called a redex at position p. The reduction is left-
most / innermost / outermost, written t l→p / i→p / o→p s, iff p is a leftmost / innermost / outermost posi-
tion of t where t|p is a redex. The leftmost-innermost reduction is defined as li→p = l→p∩ i→p. Similarly,
the leftmost-outermost reduction is lo→p = l→p∩ o→p. If the position is irrelevant we just write→, l→, i→,
o→, li→, and lo→, respectively.

We also consider parallel reductions. Here, t p→q1,...,qk s is a parallel reduction iff k > 0, the qi’s
are pairwise parallel positions, and t →q1 . . .→qk s. The max-parallel reduction relation is defined by
t m→q1,...,qk s iff t p→q1,...,qk s and t has no further redex at a position that is parallel to all positions q1, . . . ,qk.
The (max-)parallel-innermost reduction is defined by t mi→ / pi→q1,...,qk s iff t m→ / p→q1,...,qk s and all redexes
t|qi are innermost redexes. The (max-)parallel-outermost reductions mo→ and po→ are defined analogously.

To shortly illustrate the difference between the strategies, observe that for the TRS R of Example 1,
x == y i→∗ / li→∗ / mi→∗ / o→∗ /mo→∗ true whereas x == y /lo→∗ true. Moreover, 0 == 0 i→∗ / li→∗ / mi→∗ false
but 0 == 0 o→∗ / lo→∗ / mo→∗ false is not possible.

Next, we consider rewriting under forbidden patterns.

Definition 2 (Rewriting under forbidden patterns [6]) A forbidden pattern is a triple (`,o,λ ) for a
term `, position o ∈ Pos(`), and λ ∈ {h,a,b}. For a set Π of forbidden patterns the induced rewrite
relation Π→ is defined by t Π→p s iff t →p s and there is no pattern (`,o,λ ) ∈ Π such that there exist a
position o′ ∈ Pos(t), a substitution σ with t|o′ = `σ , and

• p = o′o, if λ = h,

• p < o′o, if λ = a, and

• p > o′o, if λ = b.

So a forbidden pattern (`,o,h) means that the redex may not be at position o in a subterm of the form
`σ . Similarly, (`,o,a) and (`,o,b) mean that the redex may not be strictly above and not strictly below
position o in a subterm of the form `σ , respectively.

Several strategies are expressible using Π→ [6]: Innermost rewriting is obtained by setting Π =
{(`,ε,a) | `→ r ∈R}, outermost rewriting by using Π = {(`,ε,b) | `→ r ∈R}, Q-restricted-rewriting
[3] by Π = {(`,ε,a) | `→ r ∈Q}, and context-sensitive-rewriting [10] w.r.t. the replacement map µ can
be expressed by Π = {( f (x1, . . . ,xn), i,λ ) | f ∈ Σ, i /∈ µ( f ),λ ∈ {h,b}}, where Σ is the set of all function
symbols of the signature.

However, even more sophisticated examples can be treated by forbidden patterns.



4 Loops under Strategies . . . Continued

Example 3 Consider the following TRS from [6, 11].

inf(x)→ x : inf(s(x))
2nd(x : (y : zs))→ y

This TRS is not weakly normalizing, but still some terms like 2nd(inf(0)) have a normal form. One
purpose of forbidden patterns is to restrict the rewrite relation in such a way that the restriction is
terminating, but that all normal forms are still being reached. Here, context-sensitive rewriting is
too restrictive, since forbidding rewriting in the second argument of “:” would not allow the reduc-
tion 2nd(inf(0))→ 2nd(0 : inf(s(0)))→ 2nd(0 : (s(0) : inf(s(s(0)))))→ s(0). However, we can use
rewriting with forbidden patterns where Π only contains the pattern (x : (y : inf(z)),2.2,h). Note that
(x : (y : inf(z)))|2.2 = inf(z). Then, Π→ is terminating, but the above reduction is still allowed.

A TRSR is non-terminating iff there is an infinite derivation t1→ t2→ ·· · . It is leftmost-innermost
/ leftmost-outermost / parallel-innermost / parallel-outermost / max-parallel-innermost / max-parallel-
outermost / forbidden pattern non-terminating iff there is such an infinite derivation using li→ / lo→ / pi→
/ po→ / mi→ / mo→ / Π→ instead of →. To describe the infinite derivation that is induced by a loop, we use
context-substitutions.

Definition 4 (Context-substitutions [19]) A context-substitution is a pair (C,µ) consisting of a context
C and a substitution µ . The n-fold application of (C,µ) to a term t, written t(C,µ)n, is defined as follows.

t(C,µ)0 = t t(C,µ)n+1 = C[t(C,µ)n
µ]

C

C

C

t
µ

µ

µ

µ

µ

µ

Figure 1: The term t(C,µ)3

For example, t(C,µ) = C[tµ], t(C,µ)2 = C[Cµ[tµ2]], etc. So
in general, in t(C,µ)n, the context C is added n-times above t
and t is instantiated by µn. Note that also the added contexts
are instantiated by µ . For the term t(C,µ)3 this is illustrated in
Figure 1. Context-substitutions have similar properties to con-
texts and substitutions.

Lemma 5 (Properties of context-substitutions [19])

(i) t(C,µ)nµ = tµ(Cµ,µ)n.

(ii) t(C,µ)m(C,µ)n = t(C,µ)m+n.

(iii) If C|p =l then t(C,µ)n|pn = tµn.

(iv) Whenever t→q s and C|p =l then t(C,µ)n→pnq s(C,µ)n.

Here, property (i) is similar to the fact that C[t]µ = Cµ[tµ], and (ii) shows that context-substitutions can
be combined just like substitutions where µmµn = µm+n. Property (iii) shows that the n-fold application
of (C,µ) to t yields a term containing the n-fold application of µ to t. Finally, stability and monotonicity
of rewriting are used to show in (iv) that rewriting is closed under context-substitutions. Using context-
substitutions we can now concisely present the infinite derivation resulting from a loop t →+ C[tµ] =
t(C,µ).

t(C,µ)0→+ t(C,µ)0(C,µ) = t(C,µ)1→+ · · · →+ t(C,µ)n→+ · · ·

So for every n, the positions of the reductions in the loop are prefixed by an additional pn where p is the
position of the hole in C, cf. Lemma 5 (iv).



René Thiemann et. al 5

Definition 6 (S-loops [19]) Let S be a strategy. A loop t1 →q1 t2 →q2 · · · →qm tm+1 = t1(C,µ) with
C|p = l is an S-loop iff the reduction ti(C,µ)n →pnqi ti+1(C,µ)n respects the strategy S for all i ≤ m
and all n ∈ N.

As a direct consequence of Definition 6, we can conclude that every S-loop of a rewrite systemR proves
non-termination of R under the strategy S. Moreover, Definition 6 also shows that being a loop is a
modular property in the following sense.

Corollary 7 (Loops of intersection strategies) Let S, S1, and S2 be strategies such that S→p = S1→p ∩
S2→p for all positions p. Then a loop is an S-loop iff it is both an S1-loop and an S2-loop.

Hence, to decide whether a loop is leftmost-innermost / leftmost-outermost, we just require a decision
procedure for leftmost loops and a decision procedure for innermost / outermost loops. As decision pro-
cedures for innermost- and outermost-loops have already been developed [17,19], it remains to construct
a decision procedure for leftmost loops (see Section 3).

For rewriting with forbidden patterns, we observe that Π→p =
⋂

(`,o,λ )∈Π

{(`,o,λ )}−−−−−→ p, and hence, by
Corollary 7 it suffices to consider loops w.r.t. single forbidden patterns which is the content of Section 5.

3 Leftmost Loops

Recall the definition of l→. A leftmost reduction of all terms t(C,µ)n at positions pnq requires that for no
n there is a redex at a position left of pnq. This is illustrated in Figure 2: The reduction of the subterm at
the black position pnq respects the leftmost strategy iff pnq is leftmost. This is the case whenever there
are no redexes at positions �.

Cp(iii)

Cp(iii)

Cp(iii)

t
q
(i)

µ(iv)

µ

µ

µ(ii)

µ(ii)

µ(ii)

µ(iv)

µ

µ(iv)

Figure 2: Leftmost redexes

We want to be able to decide whether all pnq point to leftmost redexes in the term t(C,µ)n. There are
four possibilities why pnq might not point to a leftmost redex in that term. These cases are marked with
(i)-(iv) in Figure 2.

(i) There might be a redex within tµn at a position q′ ∈ Pos(t) which is left of q. Hence, we have to
consider all finitely many subterms u = t|q′ where q′ is left of q and guarantee that uµn is no redex.



6 Loops under Strategies . . . Continued

(ii) There might be a redex within tµn at a position q′ ∈ Pos(tµn)\Pos(t) which is left of q. Hence,
this redex is of the form uµk for some k ≤ n and some subterm u E xµ where x is a variable that
occurs within some of v, vµ , vµ2, . . . for some subterm v = t|q′ where q′ is left of q. Note that
there are only finitely many such variables x and hence, again we obtain a finite set of terms where
for each of these terms u and each n we have to guarantee that uµn is not a redex.

(iii) There might be a redex where the root is within C and left of the path p. Here, we have to consider
all finitely many subterms u = C|p′ where p′ is left of p and guarantee that uµn is not a redex.

(iv) In analogy to (ii) we also have to consider redexes within µ where now the variables x are taken
from the subterms u = C|p′ where p′ is left of p.

To summarize, we generate a finite set U of terms u such that (a) and (b) are equivalent:

(a) For every n, the reduction t(C,µ)n→pnq t ′(C,µ)n is leftmost.

(b) There is no u ∈U and no number n such that uµn is a redex.

Note that the question whether uµn is a redex for some n can be formulated as the kind of matching
problem that was encountered for deciding innermost loops.

Definition 8 (Matching problems [17]) A matching problem is a pair (u m `,µ). It is solvable iff there
are n and σ such that uµn = `σ .

Thus, following the possibilities (i) - (iv) above, we can formally define a set of matching problems to
analyze leftmost reductions.

Definition 9 (Leftmost matching problems) The set of leftmost matching problems for a reduction
t→q t ′ and a context-substitution (C,µ) with C|p =l is defined as the set consisting of:

(u m `,µ) for each `→ r ∈R and q′ ∈ Pos(t) where q′ is left of q, and u = t|q′

(u m `,µ) for each `→ r ∈R and q′ ∈ Pos(t) where q′ is left of q, x ∈
⋃
i∈N
V(t|q′µ i), and uE xµ

(u m `,µ) for each `→ r ∈R and p′ ∈ Pos(C) where p′ is left of p, and u = C|p′

(u m `,µ) for each `→ r ∈R and p′ ∈ Pos(C) where p′ is left of p, x ∈
⋃
i∈N
V(C|p′µ i), and uE xµ

Note that the sets of variables in the second and fourth case are finite and can easily be computed. The
above considerations prove the following theorem.

Theorem 10 (Soundness of leftmost matching problems) Let t →q t ′ and let (C,µ) be a context-sub-
stitution such that C|p = l. All reductions t(C,µ)n →pnq t ′(C,µ)n are leftmost iff none of the leftmost
matching problems for t→q t ′ and (C,µ) is solvable.

Using Theorem 10 in combination with the decision procedures for matching problems yields the fol-
lowing corollary.

Corollary 11 (Leftmost loops are decidable) Let there be a loop t1→q1 t2→q2 · · ·→qm tm+1 = t1(C,µ)
with C|p =l. Then it is decidable whether the loop is a leftmost loop.



René Thiemann et. al 7

Combining Corollary 11 and Corollary 7 with the decision procedures for innermost and outermost loops
of [17,19] yields decision procedures which determine whether a given loop is a leftmost-innermost loop
or a leftmost-outermost loop: for each loop construct the leftmost matching problems, ensure that all
these matching problems are not satisfiable (then leftmost reductions are guaranteed), and moreover use
the decision procedures of [17, 19] to further ensure that the loop is an innermost or outermost loop.

Corollary 12 (Leftmost-innermost and leftmost-outermost loops are decidable) Let there be a loop
t1→q1 t2→q2 · · · →qm tm+1 = t1(C,µ) with C|p =l. Then the following two questions are decidable.

• Is the loop a leftmost-innermost loop?

• Is the loop a leftmost-outermost loop?

Example 13 Using Corollary 12, we can decide that the loop given in Example 1 is a leftmost loop,
since for this loop, the set of leftmost matching problems is empty (as there is never a position left of the
used redex). Moreover, by the results of [17, 19] we can decide that the loop is an outermost loop, but
not an innermost loop. Hence, the loop is a leftmost-outermost loop, but not a leftmost-innermost loop.

Example 14 We consider the following loop for the TRS of Example 1

t = fact(x,y)

→ if(x == y,s(0), fact(s(x),y) · s(x))
→ if(eq(chk(x),chk(y)),s(0), fact(s(x),y) · s(x))
→ if(eq(false,chk(y)),s(0), fact(s(x),y) · s(x))
→ if(eq(false, false),s(0), fact(s(x),y) · s(x))
→ if(false,s(0), fact(s(x),y) · s(x))
= C[tµ]

where C = if(false,s(0),l · s(x)) and µ = {x/s(x)}. We decide that this loop is a leftmost loop by
constructing the leftmost matching problems

• (falsem `,µ) for all left-hand sides ` (due to the reduction if(eq(false,chk(y)), . . .)→ . . . )

• (falsem `,µ), (0m `,µ), and (s(0)m `,µ) for all left-hand sides ` (since C = if(false,s(0),l · . . .))
and observing that none of them is solvable. This loop is also an innermost loop, but not an outermost
loop and hence, it is a leftmost-innermost loop, but not a leftmost-outermost loop.

Whereas in the previous two examples it is rather easy to see that the loops are leftmost, since the
leftmost matching problems are trivially not solvable, we now present two more examples where the
resulting matching problems are more involved.

Example 15 Consider the TRS

f(x,y,z)→ h(g(x,y), f(y,z,z))
g(x,x)→ x

and the loop t = f(x,y,z)→ h(g(x,y), f(y,z,z)) = C[tµ] for C = h(g(x,y),l) and µ = {x/y,y/z}. Here,
we construct the non-solvable leftmost matching problems (u m `,µ) for all left-hand sides ` and u ∈
{x,y,z}. But additionally we construct the leftmost matching problem (g(x,y)mg(x,x),µ) which is solv-
able, since g(x,y)µ2 = g(y,z)µ = g(z,z) = g(x,x)σ for σ = {x/z}. Hence, the loop is not a leftmost
loop.



8 Loops under Strategies . . . Continued

Example 16 Consider the TRS

f(x,y,z)→ h(g(x), f(y,z,s(x)))
g(s(s(s(x))))→ x

and the loop t = f(x,y,z)→ h(g(x), f(y,z,s(x))) = C[tµ] for C = h(g(x),l) and µ = {x/y,y/z,z/s(x)}.
Here, we construct the non-solvable leftmost matching problems (u m `,µ) for all left-hand sides ` and
u ∈ {x,y,z,s(x)}. But additionally we construct the leftmost matching problem (g(x)mg(s(s(s(x)))),µ)
which is solvable, since g(x)µ9 = g(s(s(s(x)))). Hence, the loop is not a leftmost loop.

4 Parallel and Max-Parallel Loops

For the parallel innermost / outermost strategies it suffices to use the decision procedures for innermost-
and outermost loops. The reason is that t(C,µ)n p→pnq1,...,pnqk t ′(C,µ)n is a pi→ / po→-reduction iff for every
1≤ i≤ k there is some si such that t(C,µ)n→pnqi si is an innermost / outermost reduction.

Hence, for the rest of the section we consider the max-parallel strategies mi→ and mo→. Again, the
innermost or outermost aspect can be decided by the respective decision procedures using a variant of
Corollary 7 where one allows parallel rewrite steps. It remains to consider the max-parallel aspect, i.e.,
we have to decide whether t(C,µ)n m→pnq1,...,pnqk t ′(C,µ)n for all n.

Here, we essentially proceed as in the leftmost case, where we replace the condition that some posi-
tion is left of p or q by the condition that it is parallel to p or to each qi.

Definition 17 (Max-parallel matching problems) The set of max-parallel matching problems for a re-
duction t p→q1,...,qk t ′ and a context-substitution (C,µ) with C|p =l is defined as the set consisting of:

(u m `,µ) for each `→ r ∈R and q′ ∈ Pos(t) where q′ is parallel to all positions qi, and u = t|q′

(u m `,µ) for each `→ r ∈R and q′ ∈ Pos(t) where q′ is parallel to all qi, x ∈
⋃
i∈N
V(t|q′µ i), and uE xµ

(u m `,µ) for each `→ r ∈R and p′ ∈ Pos(C) where p′ is parallel to p, and u = C|p′

(u m `,µ) for each `→ r ∈R and p′ ∈ Pos(C) where p′ is parallel to p, x ∈
⋃
i∈N
V(C|p′µ i), and uE xµ

Using this finite set of matching problems we again obtain a decision procedure.

Theorem 18 (Soundness of max-parallel matching problems) Let t p→q1,...,qk t ′ and let (C,µ) be a
context-substitution such that C|p =l. All reductions t(C,µ)n p→pnq1,...,pnqk t ′(C,µ)n are max-parallel iff
none of the max-parallel matching problems for t p→q1,...,qk t ′ and (C,µ) is solvable.

Corollary 19 (Max-parallel loops are decidable) Let t1 p→q1
1,...,q

1
k1

t2 p→q2
1,...,q

2
k2
· · · p→qm

1 ...qm
km

tm+1 be a

loop with tm+1 = t1(C,µ) and C|p =l. Then the following questions are decidable.

• Is the loop a max-parallel loop?

• Is the loop a parallel-innermost loop? Is it a max-parallel-innermost loop?

• Is the loop a parallel-outermost loop? Is it a max-parallel-outermost loop?

Note that in the corollary we did not list the question “Is the loop a parallel loop?” since every loop
is trivially also a parallel loop.



René Thiemann et. al 9

Example 20 It is easy to see that neither the loop of Example 1 nor the loop of Example 14 is a max-
parallel loop. The reason is that both loops violate the max-parallel strategy already in the second
reduction step.

However, the TRS of Example 1 is both max-parallel-outermost and -innermost looping which is
proved by the following two loops. The max-parallel-outermost loop needs two parallel reductions:

t = if(eq(false, false),1, if(eq(chk(s(x)),chk(y)),1, if(s2(x) == y,1, fact(s3(x),y) · s3(x)) · s2(x)) · s(x))
mo→ if(false,1, if(eq(false, false),1, if(eq(chk(s2(x)),chk(y)),1, if(s3(x) == y,1, fact(s4(x),y) · s4(x)) · s3(x)) · s2(x)) · s(x))
mo→ if(eq(false, false),1, if(eq(chk(s2(x)),chk(y)),1, if(s3(x) == y,1, fact(s4(x),y) · s4(x)) · s3(x)) · s2(x)) · s(x)
= C[tµ]

where C = l · s(x), µ = {x/s(x)}, and where 1 abbreviates s(0). For the max-parallel-innermost loop
one parallel reduction suffices:

t = if(eq(false, false),1, if(eq(chk(s(x)),chk(y)),1, if(s2(x) == y,1, fact(s3(x),y) · s3(x)) · s2(x)) · s(x))
mi
→ if(false,1, if(eq(false, false),1, if(eq(chk(s2(x)),chk(y)),1, if(s3(x) == y,1, fact(s4(x),y) · s4(x)) · s3(x)) · s2(x)) · s(x))
= C[tµ]

where C = if(false,1,l · s(x)) and µ = {x/s(x)}.

5 Loops for Rewriting with Forbidden Patterns

For rewriting with forbidden patterns we have to investigate for given t, t ′, C, µ with C|p =l and t→q t ′,
whether all reductions t(C,µ)n →pnq t ′(C,µ)n are allowed w.r.t. some fixed forbidden pattern (`,o,λ ).
In other words, we have to check whether

there are n, o′, and σ with t(C,µ)n|o′ = `σ and


pnq = o′o, if λ = h,
pnq < o′o, if λ = a, and
pnq > o′o, if λ = b.

(13)

In the subsections 5.1-5.3, we investigate the three cases of λ . We show that for all of them, (13) is
decidable. To this end, we reuse algorithms that have been developed to decide innermost and outermost
loops.

5.1 Deciding Loops for Forbidden Patterns of Type (·, ·,h)

We start with the easiest case where λ = h. Given p, q, and o, here we first want to figure out whether
there are n and o′ such that the condition pnq = o′o of (13) is satisfied. Then, we compute the values n0
and o′0 where n0 is the minimal value of n such that pnq = o′o is satisfied.

This can be done as follows. If p = ε , then one can set n0 = 0 and just has to determine whether q
has o as a suffix. Otherwise, one has to ensure that pnq is at least as long as o. This is done by choosing
n0 = d |o|�|q||p| e. If there is an n where pnq = o′o can be satisfied, then n0 is the minimal such number.
Here, “�” is the subtraction on natural numbers where x�y = max(x−y,0). Afterwards one just checks
whether pn0q contains o as suffix. In this case, there is obviously a unique o′0 such that pn0q = o′0o.
Otherwise, there cannot be any n and o′ which satisfy pnq = o′o. The reason is that for any solution
pnq = o′o we know that n ≥ n0 and hence, pn−n0 pn0q = pnq = o′o shows that o is a suffix of pn0q as
|pn0q| ≥ |o|.



10 Loops under Strategies . . . Continued

In this way we can compute the minimal number n0 and the corresponding o′0 such that pn0q = o′0o,
or we detect that pnq = o′o is unsatisfiable. In the latter case we are finished since we know that the
forbidden pattern will not restrict any of the desired reductions. In the former case we can represent the
set of solutions of pnq = o′o conveniently:

{(n,o′) | pnq = o′o}= {(k +n0, pko′0) | k ∈ N}

Hence, it remains to check whether there are k ∈ N and σ with t(C,µ)k+n0 |pko′0
= `σ . Note that this

problem can be simplified using Lemma 5:

t(C,µ)k+n0 |pko′0
= t(C,µ)n0(C,µ)k|pk |o′0 = t(C,µ)n0 µ

k|o′0 = (t(C,µ)n0 |o′0)µ
k

Thus, we have to decide whether for the concrete terms u = t(C,µ)n0 |o′0 and `, there are k and σ such
that uµk = `σ .

Definition 21 ((`,o,h) matching problems) The set of (`,o,h) matching problems for a reduction t→q

t ′ and a context-substitution (C,µ) with C|p =l is defined as

• the empty set, if there are no n and o′ such that pnq = o′o

• {(t(C,µ)n0 |o′0 m `,µ)}, otherwise, where n0 and o′0 form the unique minimal solution to the equa-
tion pnq = o′o

By the discussion above, we have proved the following theorem.

Theorem 22 (Soundness of (`,o,h) problems) Let t→q t ′ and let (C,µ) be a context-substitution such
that C|p =l. All reductions t(C,µ)n→pnq t ′(C,µ)n are allowed w.r.t. the pattern (`,o,h) iff none of the
(`,o,h) matching problems for t→q t ′ and (C,µ) is solvable.

Using Theorem 22 in combination with the decision procedure of [17] for solvability of matching prob-
lems, one can decide whether all reductions t(C,µ)n→pnq t ′(C,µ)n are allowed w.r.t. the pattern (`,o,h).

Example 23 We consider the TRS of Example 3 and Π = {(x : (y : inf(z)),2.2,h)}. Here, we have the
looping reduction t = inf(x)→ x : inf(s(x)) =C[tµ] for C = x :l and µ = {x/s(x)}. Hence, to investigate
whether this loop is a Π-loop, we have p = 2 as the position of l in C, q = ε since the reduction is on the
root position of t, and o = 2.2. Then we compute n0 = d |o|�|q||p| e= d

2�0
1 e= 2 and observe that pn0q = 2.2

has o = 2.2 as a suffix, and set o′0 = ε . Hence, we construct the matching problem (t(C,µ)n0 |o′0 m `,µ) =
(inf(x)(C,µ)2 m `,µ) = (x : (s(x) : inf(s(s(x))))m x : (y : inf(z)),µ) which is solvable by choosing n = 0
and σ = {y/s(x),z/s(s(x))}. Thus, by Theorem 22 we know that this loop is not a Π-loop.

5.2 Deciding Loops for Forbidden Patterns of Type (·, ·,a)

Also for patterns of type (·, ·,a) we want to generate a finite set of matching problems such that the loop
respects a pattern (`,o,a) iff none of these matching problems is solvable. Essentially, we replace the
condition pnq = o′o of the previous subsection by pnq < o′o, i.e., o′o must now be strictly below the
redex.

The plan is to systematically represent all terms t(C,µ)n|o′ for all numbers n and all positions o′ where
pnq < o′o. We consider two alternatives: either the term starts within Cn[t] and not in the substitutions
below t, or the term starts within the substitutions that are below t. To distinguish these possibilities, we
define the finite set of positions P = {q′ | qq′ ∈ Pos(t)}. Then the first alternative corresponds to the



René Thiemann et. al 11

constraint o′ ≤ pnqq′ for some q′ ∈P , and the second alternative corresponds to the constraint o′ > pnqq′

for some maximal position q′ ∈ P .
For the first alternative, we start to fix the unknown n by choosing n0 = 0 if p = ε , and n0 = d |o|�|q||p| e

otherwise. We will show later that if pno < o′o can be satisfied by some n and o′, then it can also be
satisfied using some n ≥ n0. For n ≥ n0, we will see that t(C,µ)n|o′ must be of the form t(C,µ)n0 |o′′µk

for some o′′ and k. Hence, we build the finite set of matching problems

M1 = {(t(C,µ)n0 |o′′ m `,µ) | o′′ ≤ pn0qq′∧q′ ∈ P ∧ pn0q < o′′o}.

Suppose one of these matching problems is solvable. Then there exist k, σ , o′′, and q′ ∈ P such that
t(C,µ)n0 |o′′µk = `σ , o′′ ≤ pn0qq′, and pn0q < o′′o. Then we define n = n0 +k and o′ = pko′′ and achieve

t(C,µ)n|o′ = t(C,µ)n0(C,µ)k|pk |o′′ = t(C,µ)n0 µ
k|o′′ = t(C,µ)n0 |o′′µk = `σ

and moreover pnq = pk pn0q < pko′′o = o′o. Hence, if one of the matching problems inM1 is solvable,
then also (13) holds.

We now show that also the converse direction is valid whenever o′ ≤ pnqq′ for some q′ ∈ P . So, let
n, o′, q′ ∈ P , and σ be given such that t(C,µ)n|o′ = `σ , o′ ≤ pnqq′ and pnq < o′o. If p = ε then n0 = 0,
and we define o′′ = o′ and k = n. Hence, using Lemma 5

t(C,µ)n0 |o′′µk = t|o′′µk = t|o′µn = tµn|o′ = t(C,µ)n|pn |o′ = t(C,µ)n|εn |o′ = t(C,µ)n|o′ = `σ

shows that the matching problem (t(C,µ)n0 |o′′ m `,µ) is solvable, and since o′′ = o′ ≤ pnqq′ = pn0qq′

and pn0q = εn0q = εnq = pnq < o′o = o′′o we also know that this matching problem is contained in
M1. Otherwise, p /= ε and n0 = d |o|�|q||p| e. W.l.o.g. one can assume that n ≥ n0.2 Hence, the position
pn−n0 is well formed. Next, we prove that o′ ≥ pn−n0 . Note that o′ cannot be parallel to pn−n0 as
o′ ≤ pnqq′. If we had o′ < pn−n0 , then |pn−n0 |+ |pn0q|= |pnq|< |o′o|= |o′|+ |o|< |pn−n0 |+ |o| shows
that n0 · |p|+ |q| < |o|, and hence yields the contradiction d |o|�|q||p| e · |p| = n0 · |p| < |o|� |q|. So there is
some o′′ such that o′ = pn−n0o′′ and since o′ ≤ pnqq′= pn−n0 pn0qq′ we know that o′′≤ pn0qq′. Moreover,
as pn−n0 pn0q = pnq < o′o = pn−n0o′′o we also know that pn0q < o′′o. Thus, o′′ ≤ pn0qq′ and pn0q < o′′o
and hence, (t(C,µ)n0 |o′′ m `,µ) ∈M1. It remains to show that this matching problem is solvable which
is established using Lemma 5:

t(C,µ)n0 |o′′µn−n0 = t(C,µ)n0 µ
n−n0 |o′′ = t(C,µ)n0(C,µ)n−n0 |pn−n0 |o′′ = t(C,µ)n|o′ = `σ .

For the second alternative, we first define the set W =
⋃

k∈NV(t|qµk) of variables that can occur
below t|q when applying µ an arbitrary number of times. Note that for substitutions with finite domains,
W is finite and can easily be computed by iteratively applying µ on t|q until no new variables appear.
We define the second set of matching problems as

M2 = {(u m `,µ) | uE xµ ∧ x ∈W}.

We first prove that if (13) is satisfiable where o′ > pnqq′ for some maximal position q′ ∈ P , then there is
also some matching problem inM2 that is solvable. So, let n, o′, q′, and σ be such that t(C,µ)n|o′ = `σ ,
o′ > pnqq′, pnq < o′o, and q′ is a maximal position in P . Hence, o′ = pnqq′o′′ for some o′′ /= ε and thus
by Lemma 5,

t(C,µ)n|o′ = t(C,µ)n|pn |qq′o′′ = tµn|qq′o′′ = t|qq′µ
n|o′′ .

2If n < n0 then one can replace n, o′, and σ by n+n0, pn0 o′, and σ µn0 . These new values also satisfy (13).



12 Loops under Strategies . . . Continued

Since q′ was maximal and o′′ /= ε we know that t|qq′ must be a variable. Then one can show as in the proof
of [17, Thm. 10] that t|qq′µ

n|o′′ = uµk for some u E xµ , x ∈W , and k. Hence, (u m `,µ) is a matching
problem ofM2 and it is solvable since

`σ = t(C,µ)n|o′ = t|qq′µ
n|o′′ = uµ

k.

For the other direction we assume that one of the matching problems in M2 is solvable and show
that then (13) is satisfied. Here, we additionally assume that t|q is not a variable. This assumption is
not severe as we are interested in terms t where t→q t ′, which implies that t|q is not a variable for well-
formed TRSs.3 So, let u, x, k, k′, and σ be given such that x ∈ V(t|qµk′), u E xµ , and uµk = `σ . Let o′′

and o′′′ be positions such that t|qµk′ |o′′ = x and xµ|o′′′ = u. We define n = k + k′+ 1 and o′ = pnqo′′o′′′

and show for these values that (13) is satisfied (again, using Lemma 5):

t(C,µ)n|o′ = t(C,µ)n|pn |qo′′o′′′ = tµn|qo′′o′′′ = t|qµ
k′+1+k|o′′o′′′ = xµ

1+k|o′′′ = uµ
k = `σ

and pnq < pnqo′′o′′′o = o′o since o′′ /= ε . That o′′ is indeed non-empty follows from the fact that t|q
and thus also tµk′ |q is not a variable, but tµk′ |qo′′ = t|qµk′ |o′′ = x. Thus, we have proved the following
theorem.

Theorem 24 (Soundness of (`,o,a) problems) Let t→q t ′ and let (C,µ) be a context-substitution such
that C|p =l and such that t|q is not a variable. All reductions t(C,µ)n→pnq t ′(C,µ)n are allowed w.r.t.
the pattern (`,o,a) iff none of the matching problems inM1∪M2 is solvable.

Note that when encoding innermost rewriting by using forbidden patterns, the resulting matching prob-
lems one obtains in [17] are essentiallyM1∪M2.

5.3 Deciding Loops for Forbidden Patterns of Type (·, ·,b)

Finally, for patterns (`,o,b), we replace the condition pnq = o′o by pnq > o′o, i.e., o′o has to be strictly
above the redex. First note that o′o ∈ Pos(Cn[t]). Now, we consider the following two cases: either o′o
ends in t, or otherwise it ends in some occurrence of C.

In the first case there are only finitely many positions in t above q in which o′o could end. Thus, we
reduce this case to finitely many (·, ·,h) cases as follows. For each q̄ above q in t, we consider the pattern
(`,o,h) for a reduction at position q̄. Suppose that one of the resulting (`,o,h) matching problems is
solvable. By Theorem 22 we have q̄, m, o′, and σ with t(C,µ)n|o′ = `σ and pnq̄ = o′o. Since q̄ < q, this
implies pnq > o′o and thus satisfies the case of (13) where λ = b. Conversely, assume that there are n,
o′, and σ such that t(C,µ)n|o′ = `σ , pnq > o′o, and o′o ≥ pn (i.e., o′o ends in t). Thus, there is some
o′′ /= ε with pnq = o′oo′′. Since we are in the case where o′o ends in t, this implies that o′′ is a suffix of
q. Hence, there is some position q̄ such that q = q̄o′′ and pnq̄ = o′o. As o′′ /= ε we know that q̄ < q and
hence, one of the considered (`,o,h) matching problems for a reduction at position q̄ is solvable using
Theorem 22.

Now we consider the case where o′o ends in some occurrence of C. Here we have pn > o′o, since
otherwise we would end in t. Moreover, p > ε , since otherwise we would obtain the contradiction
ε = pn > o′o. So there is a k < n and a p′′′ ≤ p with o′ = pk p′′′. Let p′′ be the position with p = p′′′p′′.
Then we have o < p′′pn0 for some n0. To examine all possible choices for o′, we consider all prefixes p′′′

of p, i.e., all contexts D withlCDEC where C|p′′′ = D, D|p′′ =l, and p = p′′′p′′. Let n0 be the smallest

3It is also possible to define M2 in a way that t|q can be a variable. However, then the definitions would become even more
technical. Essentially, one just would have to perform some additional book-keeping to check whether one is strictly below t|q.



René Thiemann et. al 13

number such that |p′′|+ |pn0 | > |o| (since p > ε , such a number always exists). Then we have to check
whether o < p′′pn0 . If that is not the case, then we do not result in any additional matching problems.
Otherwise, we obtain an extended matching problem (D m `,Cµ, t(C,µ)n0 µ,µ) for eachlCDEC. This
is the same kind of extended matching problem as for deciding outermost loops.

Definition 25 (Extended matching problems [19]) We call a quadruple (D m `,C, t,µ) an extended
matching problem. It is solvable iff there are m, k, σ , such that D[t(C,µ)m]µk = `σ .

Suppose that one of the extended matching problems above is solvable. Thus there are m, k, and σ such
that D[t(C,µ)n0 µ(Cµ,µ)m]µk = `σ . Let o′ = pk p′′′ and n = k +n0 +m+1. Hence, using Lemma 5

t(C,µ)n|o′ = t(C,µ)k+n0+m+1|pk p′′′ = t(C,µ)n0+m+1
µ

k|p′′′ = C[t(C,µ)n0+m
µ]µk|p′′′

= D[t(C,µ)n0+m
µ]µk = D[t(C,µ)n0 µ(Cµ,µ)m]µk = `σ

and moreover pnq = pk pn0 pm pq ≥ pk ppn0 = pk p′′′p′′pn0 > pk p′′′o = o′o. In order to prove the other
direction, assume that there are n, o′, and σ such that t(C,µ)n|o′ = `σ and pn > o′o. Let k = b |o

′|
|p| c.

Hence, there is some p′′′ < p such that o′ = pk p′′′. Since p′′′ < p, there is also some p′′ with p = p′′′p′′.
From the fact that o′ is a strict prefix of pn, we obtain some m ∈ N such that pn = pk p′′′p′′pm = o′p′′pm.
Thus, o′p′′pm = pn > o′o which implies p′′pm > o and so, |p′′|+ |pm|> |o|. Hence, m is greater than or
equal to the smallest number n0 satisfying |p′′|+ |pn0 |> |o| and thus m = n0 +m′ for some m′ ∈N. From
pn = pk p′′′p′′pm, we also obtain n = k +m+1. Let D = C|p′′′ .

`σ = t(C,µ)n|o′ = t(C,µ)k+m+1|pk p′′′ = t(C,µ)m+1
µ

k|p′′′ = C[t(C,µ)m
µ]µk|p′′′

= D[t(C,µ)m
µ]µk = D[t(C,µ)n0+m′

µ]µk = D[t(C,µ)n0(C,µ)m′
µ]µk = D[t(C,µ)n0 µ(Cµ,µ)m′ ]µk

By m′, k, σ , we obtain the desired solution of the extended matching problem (D m `,Cµ, t(C,µ)n0 µ,µ).
Note that lC D since otherwise p′′′ = p, which is not possible. Moreover, since p′′pm > o and |p′′|+
|pn0 |> |o|, we have p′′pn0 > o. This shows that the matching problem (D m `,Cµ, t(C,µ)n0 µ,µ) is really
one of those constructed above.

Definition 26 ((`,o,b) matching problems) The set of (`,o,b) matching problems for a reduction t→q

t ′ and a context-substitution (C,µ) with C|p =l is defined by the union of the following sets:

• The first set is the set of all (`,o,h) matching problems for the reductions t →q̄ t̄ and (C,µ), for
every q̄ ∈ Pos(t) with q̄ < q.

• If there are no n and o′ such that pn > o′o, then the second set is empty. Otherwise, the second set
consists of all extended matching problems {(D m `,Cµ, t(C,µ)n0 µ,µ)}, for each lCDEC with
D|p′′ =l, where n0 is the smallest number such that |p′′|+n0|p|> |o| is satisfied.

Hence, we have proved the following theorem.

Theorem 27 (Soundness of (`,o,b) problems) Let t→q t ′ and let (C,µ) be a context-substitution such
that C|p =l. All reductions t(C,µ)n→pnq t ′(C,µ)n are allowed w.r.t. the pattern (`,o,b) iff none of the
(`,o,b) matching problems for t→q t ′ and (C,µ) is solvable.

Note that as in the innermost case, when encoding outermost rewriting by using forbidden patterns, the
resulting matching problems one obtains in [19] are the ones of Definition 26.

By combining Corollary 7 with Theorem 22, Theorem 24, and Theorem 27, we finally obtain the
following corollary.



14 Loops under Strategies . . . Continued

Corollary 28 (Forbidden loops are decidable) Let t1 →q1 t2 →q2 · · · →qm tm+1 = t1(C,µ) be a loop
with C|p = l and let Π be a set of forbidden patterns. Then it is decidable whether the loop is a loop
under the strategy Π.

6 Conclusion

In this paper, we developed approaches to disprove termination of rewriting under strategies like leftmost-
innermost, leftmost-outermost, (max-)parallel-innermost, (max-)parallel-outermost, and forbidden pat-
terns automatically. To this end, we introduced decision procedures which check whether a given loop is
also a loop under the respective strategy. By combining these procedures with techniques to detect loops
automatically, one obtains methods to prove non-termination of term rewriting under these strategies.

The general idea of our decision procedures is to generate a set of (extended) matching problems from
every loop such that one of these matching problems is solvable iff the given loop violates the strategy.
We presented a decision problem for solvability of matching problems in [17] (for extended matching
problems this was done in [19]).

We started with defining leftmost matching problems in Section 3 which shows that it is decidable
whether a loop is a leftmost loop. By combining this result with the decision procedures for innermost
and outermost loops from [17,19], it is also decidable whether a loop is a leftmost-innermost or leftmost-
outermost loop.

In Section 4 we considered parallel- and max-parallel-rewriting, where in the latter case, all redexes
at parallel positions must be reduced simultaneously. Similar to leftmost matching problems, here we
defined max-parallel matching problems and showed that it is decidable whether a given loop is also a
max-parallel, a (max-)parallel-innermost, or a (max-)parallel-outermost loop.

Finally, in Section 5 we extended our approach to strategies defined by forbidden patterns [6]. For-
bidden patterns are very expressive and in particular, they can also be used to describe strategies such
as innermost, outermost, or context-sensitive rewriting. There are three variants of such patterns which
restrict rewriting on, above, or below certain positions of certain subterms. For each of these classes of
forbidden patterns, we showed how to generate corresponding matching problems such that one of these
matching problems is solvable iff the given loop violates the restriction described by the pattern. Thus,
it is decidable whether a loop is also a loop under a strategy expressed by a set of forbidden patterns.

Our results constitute the first automatic approach for disproving termination under these strategies.
Future work will be concerned with extending and adapting our results such that they can be integrated
in rewriting-based approaches for termination analysis of programming languages (e.g., [16, 5, 12]).

Acknowledgments. We thank the referees for many helpful suggestions.

References

[1] F. Baader & T. Nipkow (1998): Term Rewriting and All That. Cambridge University Press.

[2] J. Giesl & A. Middeldorp (2004): Transformation Techniques for Context-Sensitive Rewrite Systems. Journal
of Functional Programming 14(4), pp. 379–427.

[3] J. Giesl, R. Thiemann & P. Schneider-Kamp (2005): The Dependency Pair Framework: Combining Tech-
niques for Automated Termination Proofs. In: Proc. LPAR ’04, LNAI 3452, pp. 301–331.

[4] J. Giesl, R. Thiemann & P. Schneider-Kamp (2005): Proving and Disproving Termination of Higher-Order
Functions. In: Proc. FroCoS ’05, LNAI 3717, pp. 216–231.



René Thiemann et. al 15

[5] J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski & R. Thiemann (2010): Automated Termination
Proofs for Haskell by Term Rewriting. ACM Transactions on Programming Languages and Systems To
appear. Preliminary version appeared in Proc. RTA ’06, LNCS 4098, pp. 297–312, 2006.

[6] B. Gramlich & F. Schernhammer (2010): Extending Context-Sensitivity in Term Rewriting. In: Proc.
WRS ’09, EPTCS 15, pp. 56–68.

[7] J. Guttag, D. Kapur & D. Musser (1983): On Proving Uniform Termination and Restricted Termination of
Rewriting Systems. SIAM Journal of Computation 12, pp. 189–214.

[8] W. Kurth (1990): Termination und Konfluenz von Semi-Thue-Systemen mit nur einer Regel. Ph.D. thesis,
Technische Universität Clausthal, Germany.

[9] D. Lankford & D. Musser (1978): A Finite Termination Criterion. Unpublished Draft. USC Information
Sciences Institute.

[10] S. Lucas (1998): Context-Sensitive Computations in Functional and Functional Logic Programs. Journal of
Functional and Logic Programming 1, pp. 1–61.

[11] S. Lucas (2001): Termination of On-Demand Rewriting and Termination of OBJ Programs. In: Proc. PPDP
’01, pp. 82–93.

[12] C. Otto, M. Brockschmidt, C. von Essen & J. Giesl (2010): Automated Termination Analysis of Java Byte-
code by Term Rewriting. In: Proc. RTA ’10, LIPIcs 6, pp. 259–276.

[13] É. Payet (2008): Loop Detection in Term Rewriting Using the Eliminating Unfoldings. Theoretical Computer
Science 403(2-3), pp. 307–327.

[14] M. Raffelsieper & H. Zantema (2009): A Transformational Approach to Prove Outermost Termination Auto-
matically. In: Proc. WRS ’08, ENTCS 237, pp. 3–21.

[15] M. R. K. Krishna Rao (2000): Some Characteristics of Strong Innermost Normalization. Theoretical Com-
puter Science 239, pp. 141–164.

[16] P. Schneider-Kamp, J. Giesl, A. Serebrenik & R. Thiemann (2009): Automated Termination Proofs for Logic
Programs by Term Rewriting. ACM Transactions on Computational Logic 11(1).

[17] R. Thiemann, J. Giesl & P. Schneider-Kamp (2008): Deciding Innermost Loops. In: Proc. RTA ’08, LNCS
5117, pp. 366–380.

[18] R. Thiemann (2009): From Outermost Termination to Innermost Termination. In: Proc. SOFSEM ’09, LNCS
5404, pp. 533–545.

[19] R. Thiemann & C. Sternagel (2009): Loops under Strategies. In: Proc. RTA ’09, LNCS 5595, pp. 17–31.
[20] J. Waldmann (2004): Matchbox: A Tool for Match-Bounded String Rewriting. In: Proc. RTA ’04, LNCS

3091, pp. 85–94.
[21] H. Zantema (2005): Termination of String Rewriting Proved Automatically. Journal of Automated Reasoning

34, pp. 105–139.


	Introduction
	Preliminaries
	Leftmost Loops
	Parallel and Max-Parallel Loops
	Loops for Rewriting with Forbidden Patterns
	Deciding Loops for Forbidden Patterns of Type (,,h)
	Deciding Loops for Forbidden Patterns of Type (,,a)
	Deciding Loops for Forbidden Patterns of Type (,,b)

	Conclusion

