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Abstract

This paper deals with automated termination analysis of partial functional pro-

grams, that is, of functional programs which do not terminate for some input. We

present a method to determine their domains (resp. non-trivial subsets of their

domains) automatically. More precisely, for each functional program a termination

predicate algorithm is synthesized that only returns true for inputs where the pro-

gram is terminating. To ease subsequent reasoning about the generated termination

predicates we also present a procedure for their simpli�cation. Finally, we show

that our method can also be used for automated termination analysis of imperative

programs.

1. Introduction

Termination of algorithms is a central problem in software development and

formal methods for termination analysis are essential for program veri�cation.

While most work on the automation of termination proofs has been done in

the areas of term rewriting systems (for surveys see e.g. [11,27]) and of logic

programs (e.g. [24,25,28]), in this paper we focus on functional programs.

Up to now all methods for automated termination analysis of functional pro-

grams (e.g. [1,3,13,14,23,26,29,32]) aim to prove that a program terminates for

each input. However, if the termination proof fails then these methods pro-

vide no means to �nd a (sub-)domain where termination is provable. Therefore

these methods cannot be used to analyze the termination behavior of partial

functional programs, i.e., of programs which do not terminate for some input.

Partial functions are often used in practice and therefore tools for auto-

mated reasoning about such functions are of vital interest in program analysis

[4,22]. Moreover, techniques for handling partial functions are also important
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for termination analysis of imperative programs. The reason is that a direct

termination proof for imperative programs is hard to perform automatically.

Therefore one attempt to verify their termination is to transform imperative

programs into functional ones and to prove termination of these correspond-

ing functional programs instead. In this translation, every while-loop is trans-

formed into a separate function (see [19] for example). But in general these

functions are partial, because termination of while-loops often depends on their

contexts, i.e., on the preconditions that hold before entering the while-loop. So

to prove termination of imperative programs in this way, one needs a method

for termination analysis of partial functions to determine the (sub-)domains

where the partial \loop-functions" are terminating.

In this paper we automate Manna's approach for termination analysis of

\partial programs" [22]: For every algorithm de�ning a function f there has

to be a termination predicate

2

�

f

which speci�es the \admissible input" of f

(thus, evaluation of f must terminate for each input admitted by the termina-

tion predicate). But while in [22] termination predicates have to be provided

by the user, in this paper we present a technique to synthesize them automat-

ically.

In Section 2 we introduce our functional programming language and sketch

the basic approach for proving termination of algorithms. Then in Section 3

we show the requirements termination predicates have to satisfy and based

on these requirements we present a procedure for the automated synthesis of

termination predicates

3

in Section 4. The generated termination predicates

can be used both for further automated and interactive program analysis.

To ease the handling of these termination predicates we have developed a

procedure for their simpli�cation which is introduced in Section 5. In Section 6

we show how our method can be applied for automated termination analysis

of imperative programs. Extensions of our technique are discussed in Section

7. Finally, we give a summary of our method (Section 8) and illustrate its

power with a collection of examples.

2. Termination of Algorithms

In this paper we regard an eager �rst-order functional language with free

algebraic data types. To simplify the presentation we restrict ourselves to non-

parameterized types and to functions without mutual recursion (see Section 7

for a discussion of possible extensions of our method).

In our language, a data type s is introduced by de�ning constructors c

1

; : : : ;

c

k

that are used to build the data objects of s. Furthermore, for each argu-

2
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Strictly speaking, we synthesize algorithms which compute termination predi-

cates. For the sake of brevity sometimes we also refer to these algorithms as \ter-

mination predicates".
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ment position j of a constructor c

i

, a (total) selector d

ij

is de�ned such that

d

ij

(c

i

(x

1

; : : : ; x

n

)) = x

j

. As an example consider the algebraic data type nat

for natural numbers. Its objects are built with the constructors 0 and succ and

we use a selector pred as an inverse function to succ (with pred(succ(x)) = x

and pred(0) = 0, i.e., pred is indeed a total function). To ease readability we

often write \1" instead of \succ(0)", etc.

For each type s there is a pre-de�ned equality function \=" : s� s! bool.

Then the following algorithm computes the arithmetical mean of two naturals.

function mean(x; y : nat) : nat (

if x = y then x

else mean(pred(x); succ(y))

In general, the body b of an algorithm \function f(x

1

: s

1

; : : : ; x

n

: s

n

) : s(

b" is a term built from the variables x

1

; : : : ; x

n

, constructors, selectors, equal-

ity function symbols, function symbols de�ned by algorithms, and conditionals

(where we write \if t

1

then t

2

else t

3

" instead of \if(t

1

; t

2

; t

3

)"). These condi-

tionals are the only functions with non-eager semantics. Thus, when evaluating

\if t

1

then t

2

else t

3

", the (boolean) term t

1

is evaluated �rst and depending

on the result of its evaluation either t

2

or t

3

is evaluated afterwards.

To prove termination of an algorithm one has to show that in each recur-

sive call a certain measure is decreased. For that purpose a measure function

j:j is used that maps a tuple of data objects q

1

; : : : ; q

n

to a natural number

jq

1

; : : : ; q

n

j. In the following we often abbreviate tuples q

1

; : : : ; q

n

by q

�

.

For example, one might attempt to prove termination of mean with the size

measure j:j

#

, where the size of an object of type nat is the number it represents

(i.e., the number of succ's it contains). So we have j0j

#

= 0, jsucc(0)j

#

= 1,

etc. In general, the size j:j

#

of an object c(q

1

; : : : ; q

n

) of type s is de�ned by

� jc(q

1

; : : : ; q

n

)j

#

= 1 + jq

i

1

j

#

+ : : :+ jq

i

k

j

#

, if i

k

> 0

(where i

1

; : : : ; i

k

are all argument positions of c that have type s)

� jc(q

1

; : : : ; q

n

)j

#

= 0, if i

k

= 0.

As mean is a binary function, for its termination proof we need a mea-

sure function on pairs of data objects. Therefore we extend the size measure

function to pairs by measuring a pair by the size of the �rst object, that is,

jq

1

; q

2

j

#

= jq

1

j

#

. Hence, to prove termination of mean we now have to verify

the following implication.

4

x 6= y ! jpred(x); succ(y)j

#

< jx; yj

#

(1)

For instance, C. Walther presented a method to verify implications of the

form  ! jt

�

j

#

< jx

�

j

#

automatically [32]. While in this approach the size is

4
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used as a �xed measure function, J. Giesl generalized it for arbitrary measure

functions j:j [14]. Furthermore, he incorporated techniques for the automated

synthesis of appropriate measures based on polynomial norms [12,13].

However, these methods fail in proving the implication (1). The reason is

that the algorithm for mean does not terminate for all inputs. In fact, mean is

a partial function, because mean(x; y) only terminates if the number x is not

smaller than the number y and if the di�erence of x and y is even. For instance,

the callmean(0; 1) leads to the recursive callmean(pred(0); succ(1)). As pred(0)

is evaluated to 0, this results in callingmean(0; 2) and so on. Hence, evaluation

of mean(0; 1) is not terminating. Consequently, any termination proof for mean

must fail. For example, (1) is not satis�ed if x is 0 and y is 1.

Instead of proving that algorithms terminate for all inputs (total termina-

tion), in the following we are interested in �nding subsets of inputs where the

algorithms are terminating. Hence, for each algorithm de�ning a function f

we want to generate a termination predicate algorithm �

f

where evaluation of

�

f

always terminates and if �

f

returns true for some input q

�

then evaluation

of f(q

�

) terminates, too.

De�nition 1 Let f : s

1

� : : : � s

n

! s be de�ned by a (possibly non-ter-

minating) algorithm. A total function �

f

: s

1

� : : :�s

n

! bool is a termination

predicate for f i� for all tuples q

�

of data objects, �

f

(q

�

) = true implies that

the evaluation of f(q

�

) is terminating.

Of course the problem of determining the exact domains of functions is

undecidable. As we want to generate termination predicates automatically we

therefore only demand that a termination predicate �

f

represents a su�cient

criterion for f 's termination. So in general, a function f may have an in�nite

number of termination predicates and false is a termination predicate for each

function. But of course our aim is to synthesize weaker termination predicates,

i.e., termination predicates that return true as often as possible.

3. Requirements for Termination Predicates

In this section we introduce two requirements that are su�cient for termi-

nation predicates. In other words, if a (terminating) algorithm satis�es these

requirements then it de�nes a termination predicate for the function under

consideration. A procedure for the automated synthesis of such algorithms

will be presented in Section 4.

First, we consider simple partial functions like mean (Section 3.1) and after-

wards we examine algorithms that call other partial functions (Section 3.2).

3.1. Termination Predicates for Simple Partial Functions

We resume our example and generate a termination predicate �

mean

such that

evaluation ofmean(x; y) terminates if �

mean

(x; y) is true. Recall that for proving
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total termination one has to show that a certain measure is decreased in each

recursive call. But as we illustrated, the algorithm for mean is not always

terminating and therefore implication (1) does not hold for all instantiations of

x and y. Hence, the central idea for the construction of a termination predicate

�

mean

is to let �

mean

(x; y) return true only for those inputs x and y where the

measure of x and y is greater than the measure of the corresponding recursive

call and to return false for all other inputs. So if evaluation of mean(x; y)

leads to a recursive call (i.e., if x 6= y holds), then �

mean

(x; y) may only return

true if the measure jpred(x); succ(y)j

#

is smaller than jx; yj

#

. This yields the

following requirement for a termination predicate �

mean

.

�

mean

(x; y) ^ x 6= y ! jpred(x); succ(y)j

#

< jx; yj

#

(2)

For example, the function de�ned by the following algorithm satis�es (2).

function �

mean

(x; y : nat) : bool (

if x = y then true

else jpred(x); succ(y)j

#

< jx; yj

#

This algorithm for �

mean

uses the same case analysis as mean. Since mean ter-

minates in its non-recursive case (if x = y), the corresponding result of �

mean

is

true. For the recursive case (if x 6= y), �

mean

returns true i� jpred(x); succ(y)j

#

<

jx; yj

#

is true. We assume that each measure function j:j is de�ned by a (ter-

minating) algorithm. Hence, in the result of the second case �

mean

calls the

algorithm for the computation of the size measure j:j

#

and it also calls a

(terminating) algorithm to compute the less-than relation \<" on natural

numbers.

So in general, given an algorithm for f we demand the following requirement

for termination predicates �

f

(where j:j is an arbitrary measure function).

If evaluation of f(q

�

) leads to a recursive call f(p

�

),

then �

f

(q

�

) may only return true if jp

�

j < jq

�

j holds.

(Req1)

However, (Req1) is not a su�cient requirement for termination predicates.

For instance, the function �

mean

de�ned above is not a termination predicate for

mean although it satis�es requirement (Req1). The reason is that �

mean

(1; 0) re-

turns true (as jpred(1); succ(0)j

#

< j1; 0j

#

holds). But evaluation of mean(1; 0)

is not terminating because its evaluation leads to the (non-terminating) re-

cursive call mean(0; 1).

This non-termination is not recognized by �

mean

because �

mean

(1; 0) only

checks if the arguments (0; 1) of the next recursive call ofmean are smaller than

the input (1; 0). But it is not guaranteed that subsequent recursive calls are also

measure decreasing. For example, the next recursive call with the arguments

(0; 1) will lead to a subsequent recursive call of mean with the same �rst

argument. So in the subsequent recursive call the measure of the arguments

remains the same. Therefore �

mean

(1; 0) evaluates to true, but application of

�

mean

to the arguments (0; 1) of the following recursive call yields false.
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Hence, in addition to (Req1) we must demand that a termination predicate

�

f

remains valid for each recursive call in f 's algorithm. This ensures that

subsequent recursive calls are also measure decreasing.

If evaluation of f(q

�

) leads to a recursive call f(p

�

),

then �

f

(q

�

) may only return true if �

f

(p

�

) is also true.

(3)

In our example, to satisfy the requirements (Req1) and (3) we modify the re-

sult of �

mean

's second case by demanding that �

mean

also holds for the following

recursive call of mean.

function �

mean

(x; y : nat) : bool (

if x = y then true

else jpred(x); succ(y)j

#

< jx; yj

#

^ �

mean

(pred(x); succ(y))

In this algorithm we use the boolean function symbol ^ to ease readability,

where '

1

^'

2

abbreviates \if '

1

then '

2

else false". Hence, the function ^ does

not have eager semantics, because terms in a conjunction are evaluated from

left to right. In other words, given a conjunction '

1

^ '

2

of boolean terms

(which we also refer to as \formulas"), '

1

is evaluated �rst. If the value of

'

1

is false, then false is returned, otherwise '

2

is evaluated and its value is

returned. Note that we need a lazy conjunction function ^ to ensure termi-

nation of �

mean

. It guarantees that evaluation of �

mean

(x; y) can only lead to a

recursive call �

mean

(pred(x); succ(y)) if the measure of the recursive arguments

jpred(x); succ(y)j

#

is smaller than the measure of the inputs jx; yj

#

.

The above algorithm really de�nes a termination predicate for mean, that is,

�

mean

is a total function and the truth of �

mean

is su�cient for the termination of

mean. This algorithm for �

mean

was constructed in order to obtain an algorithm

satisfying the requirements (Req1) and (3). In Section 4 we will show that this

construction can easily be automated. A closer look at �

mean

reveals that �

mean

returns true i� x is greater than or equal to y and the di�erence of x and y is

even. As mean(x; y) is only terminating for those inputs, in this example we

have even generated the weakest possible termination predicate. Thus, �

mean

returns true not only for a subset but for all elements of mean's domain.

3.2. Algorithms Calling Other Partial Functions

In general (Req1) and (3) are no su�cient criteria for termination predicates.

These requirements can only be used for algorithms like mean which (apart

from recursive calls) only call other total functions (like =, succ, and pred).

In this section we will examine algorithms that call other partial functions.

As an example consider the algorithm for list half(l) that halves each element

of a list l by application of mean. Objects of the data type list are built with

the constructors nil and cons, where cons(x; k) represents the insertion of the

number x into the list k. We also use the selectors head and tail, where head

6



returns the �rst element of a list and tail returns a list without its �rst element

(i.e., head(cons(x; k)) = x, head(nil) = 0, tail(cons(x; k)) = k, tail(nil) = nil).

function list half(l : list) : list (

if l = nil then nil

else cons(mean(head(l); 0); list half(tail(l)))

We construct the following algorithm for �

list half

by measuring lists by their

size (or length), that is, jnilj

#

= 0 and jcons(x; l)j

#

= 1 + jlj

#

.

function �

list half

(l : list) : bool (

if l = nil then true

else jtail(l)j

#

< jlj

#

^ �

list half

(tail(l))

Although this algorithm de�nes a function satisfying (Req1) and (3), it is

not a termination predicate for list half. For example, �

list half

(cons(1; nil)) eval-

uates to true because the size of the empty list nil is smaller than the size of

cons(1; nil). But evaluation of list half(cons(1; nil)) is not terminating as it leads

to the (non-terminating) evaluation of mean(1; 0).

The problem is that �

list half

only checks if recursive calls of list half are mea-

sure decreasing but it does not guarantee the termination of other algorithms

called. Therefore we have to demand that �

list half

ensures termination of the

subsequent call of mean, that is, in the second case �

list half

(l) must imply

�

mean

(head(l); 0).

So we replace (3) by a requirement that guarantees the truth of �

g

(p

�

)

for all function calls g(p

�

) in f 's algorithm (i.e., also for functions g di�er-

ent from f):

If evaluation of f(q

�

) leads to a function call g(p

�

),

then �

f

(q

�

) may only return true if �

g

(p

�

) is also true.

(Req2)

Note that (Req2) must also be demanded for non-recursive cases. The func-

tion �

list half

de�ned by the following algorithm satis�es (Req1) and the ex-

tended requirement (Req2).

function �

list half

(l : list) : bool (

if l = nil then true

else �

mean

(head(l); 0) ^ jtail(l)j

#

< jlj

#

^ �

list half

(tail(l))

The above algorithm in fact de�nes a termination predicate for list half. Ana-

lyzing the algorithm one notices that �

list half

(l) returns true i� all elements of l

are even numbers. As evaluation of list half(l) only terminates for such inputs,

we have synthesized the weakest possible termination predicate again.

Note that algorithms may also call partial functions in their conditions. For

example consider the following algorithm for computing the dual logarithm

that calls mean in its condition.
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function dual log(x : nat) : nat (

if mean(x; 0) = 1 then 1

else succ(dual log(mean(x; 0)))

This algorithm does not terminate for odd inputs, since in the condition the

term mean(x; 0) must be evaluated. Therefore due to (Req2), �

dual log

must

ensure that all resulting calls of the partial function mean are terminating.

Thus, �

dual log

(x) must imply �

mean

(x; 0). The following algorithm for �

dual log

satis�es both requirements (Req1) and (Req2).

function �

dual log

(x : nat) : bool (

�

mean

(x; 0) ^ ( if mean(x; 0) = 1

then true

else �

mean

(x; 0) ^ jmean(x; 0)j

#

< jxj

#

^ �

dual log

(mean(x; 0)) )

The above algorithm �rst checks if the call of the algorithm mean in the

condition of dual log is terminating. If the corresponding termination predicate

�

mean

(x; 0) is false, then �

dual log

also returns false. Otherwise, evaluation of

�

dual log

continues as usual.

This algorithm really de�nes a termination predicate for dual log. Analysis

of �

dual log

reveals that it returns true i� the input is a power of 2 di�erent from

1. This is the weakest possible termination predicate for dual log.

The following lemma states that the two requirements we have derived are

in fact su�cient for termination predicates. In other words, if a total function

�

f

satis�es these two requirements then it is a termination predicate for f .

Lemma 2 Let �

f

be a function satisfying (Req1) and (Req2). If �

f

(q

�

) evalu-

ates to true for some data objects q

�

, then evaluation of f(q

�

) is terminating.

Proof. Suppose that there exist data objects q

�

such that �

f

(q

�

) returns true

but evaluation of f(q

�

) does not terminate. Then let q

�

be the smallest such

data objects, i.e., for all objects p

�

with a measure jp

�

j smaller than jq

�

j the

truth of �

f

(p

�

) implies termination of f(p

�

).

As we have excluded mutual recursion we may assume that for all other

functions g (that are called by f), the truth of �

g

really implies termination of

g. Hence, requirement (Req2) ensures that evaluation of f(q

�

) can only lead to

terminating calls of other functions g. Therefore the non-termination of f(q

�

)

cannot be caused by another function g.

So evaluation of f(q

�

) must lead to a recursive call f(p

�

). But because of

requirement (Req1), p

�

has a smaller measure than q

�

. Hence, due to the

minimality of q

�

, f(p

�

) must be terminating (as (Req2) ensures that �

f

(p

�

)

also returns true). So the recursive calls of f cannot cause non-termination

either. Therefore evaluation of f(q

�

) must also be terminating. 2
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4. Automated Generation of Termination Predicates

In this section we show how termination predicates can be synthesized auto-

matically. Given a functional program f , we present a technique to generate a

(terminating) algorithm for �

f

satisfying the requirements (Req1) and (Req2).

Then due to Lemma 2 this algorithm computes a termination predicate for f .

Requirement (Req2) demands that �

f

may only return true if evaluation of

all terms in the conditions and results of f is terminating. Therefore we extend

the idea of termination predicates from algorithms to arbitrary terms.

So for each term t we construct a boolean term �(t) (a termination formula)

such that for each substitution � of t's variables by data objects we have:

� evaluation of �(�(t) ) is terminating and

� if �(�(t) ) = true, then evaluation of �(t) is also terminating.

For example, a termination formula for dual log(mean(x; 0)) is �

mean

(x; 0) ^

�

dual log

(mean(x; 0)), because due to the eager nature of our functional language

in this term mean is evaluated before evaluating dual log. So termination for-

mulas have to guarantee that a subterm g(t

�

) is only evaluated if �

g

(t

�

) holds.

In general, termination formulas are constructed by the following rules.

�(x) :� true; for variables x, (i)

�(g(t

1

; : : : ; t

n

)) :� �(t

1

) ^ : : : ^�(t

n

)^ �

g

(t

1

; : : : ; t

n

); for functions g, (ii)

�(if t

1

then t

2

else t

3

) :� �(t

1

) ^ if t

1

then �(t

2

) else �(t

3

): (iii)

In Rule (ii), if g is a constructor, a selector, or an equality function, then we

de�ne �

g

(x

�

) = true, because those functions are total.

To satisfy requirement (Req2), �

f

must ensure that evaluation of all terms

in the body of an algorithm f terminates. So if f is de�ned by the algorithm

\function f(x

1

: s

1

; : : : ; x

n

: s

n

) : s ( b", then �

f

has to check whether the

termination formula �(b) of f 's body is true.

But the body of f can also contain recursive calls f(t

�

). To satisfy require-

ment (Req1) we must additionally ensure that the measure jt

�

j of recursive

calls is smaller than the measure of the inputs jx

�

j. Therefore for recursive

calls f(t

�

) we have to change the de�nition of termination formulas as follows.

�(f(t

1

; : : : ; t

n

)) :� �(t

1

) ^ : : : ^�(t

n

) ^ jt

1

; : : : ; t

n

j < jx

1

; : : : ;x

n

j ^ �

f

(t

1

; : : : ; t

n

) (iv)

In this way we obtain the following procedure for the generation of termi-

nation predicates.

Theorem 3 Given an algorithm \function f(x

1

: s

1

; : : : ; x

n

: s

n

) : s ( b",

we de�ne the algorithm \function �

f

(x

1

:s

1

; : : : ; x

n

:s

n

) :bool ( �(b)", where

the termination formula �(b) is constructed by the rules (i){(iv). Then this

algorithm de�nes a termination predicate �

f

for f , i.e., this algorithm is termi-

nating and if �

f

(q

�

) returns true, then evaluation of f(q

�

) is also terminating.
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Proof. For all terms t and all substitutions � of t's variables by data objects,

�(�(t)) = true implies �(�(tj

�

)) = true, whenever evaluation of �(t) leads to

evaluation of �(tj

�

). (This is easily proved by induction on the position �).

Thus, due to the construction principles (ii) and (iv), �

f

satis�es the require-

ments (Req1) and (Req2). Hence by Lemma 2, �

f

is \partially correct". So if

�

f

(q

�

) = true for some data objects q

�

, then evaluation of f(q

�

) is terminating.

It remains to show that �

f

is total. We �rst prove the following lemma.

If �(�(t)) = true for some term t, then evaluation of �(t) is terminating. (4)

We use structural induction on t. If t has the form g(t

�

), then the truth of

�(�(t)) implies the truth of all �(�(t

i

)) and of �(�

g

(t

�

)). By the induction hy-

pothesis, all �(t

i

) can be evaluated to data objects q

i

. As we excluded mutual

recursion we may assume that the termination predicates for all functions g 6=

f are partially correct. If g = f , then the partial correctness of �

f

follows from

Lemma 2 as remarked above. Thus, the truth of �

g

(q

�

) implies termination of

g(q

�

). The remaining cases of the induction proof are straightforward.

Now we can prove the totality of �

f

. Suppose that there exist data objects

q

�

such that evaluation of �

f

(q

�

) does not halt. Let q

�

be the smallest such

data objects, i.e., for all objects p

�

with jp

�

j < jq

�

j evaluation of �

f

(p

�

) is

terminating. Let � denote the substitution fx

1

=q

1

; : : : ; x

n

=q

n

g. To refute our

assumption, we show that �(�(t)) is terminating for any subterm t of the

body b, provided that evaluation of �(b) leads to evaluation of �(t). Then, in

the case t := b we obtain the desired contradiction.

The proof is by structural induction on t. If t = g(t

�

), then the induction

hypothesis implies termination of all �(�(t

i

)). If one of the �(�(t

i

)) is false,

then termination of �(�(t)) is obvious. Otherwise, �(t

�

) can be evaluated

to data objects p

�

by (4). In the case g 6= f , termination of �

g

(p

�

) follows

from the assumption that the termination predicates for all other functions

are total (due to the exclusion of mutual recursion). If g = f , then we �rst

have to compute jp

�

j < jq

�

j. If jp

�

j < jq

�

j yields false, then �(�(t)) is trivially

terminating. Otherwise, by the minimality of q

�

evaluation of �

f

(p

�

) halts and

thus, �(�(t)) is also terminating. The remaining proof cases are analogous. 2

The construction of algorithms for termination predicates according to The-

orem 3 can be automated directly. So by this theorem we have developed a pro-

cedure for the automated generation of termination predicates. For instance,

the termination predicate algorithms for mean, list half, and dual log in the

last section were built according to Theorem 3 (where for the sake of brevity

we omitted termination predicates for total functions because such predicates

always return true). As demonstrated, the generated termination predicates

often are as weak as possible, that is, they often describe the whole domain of

the partial function under consideration (instead of just a sub-domain).

10



5. Simpli�cation of Termination Predicates

In the previous section we presented a method for the automated gener-

ation of algorithms that de�ne termination predicates. But sometimes the

synthesized algorithms are unnecessarily complex. To ease subsequent reason-

ing about termination predicates now we introduce a procedure to simplify

the generated termination predicate algorithms.

5.1. Application of Induction Lemmata

First, the well-known induction lemma method by Boyer and Moore [3] is

used to eliminate (some of) the inequalities jt

�

j < jx

�

j (which ensure that

recursive calls are measure decreasing) from the termination predicate algo-

rithms. Elimination of these inequalities simpli�es the algorithms considerably

and often enables the execution of subsequent simpli�cation steps.

An induction lemma points out that under a certain hypothesis � some

operation drives some measure down. So induction lemmata have the form

�! jt

�

j < jx

�

j:

In the system of Boyer and Moore induction lemmata have to be provided by

the user. However, C. Walther presented a method to generate a certain class

of induction lemmata for the size measure function j:j

#

automatically [32] and

J. Giesl generalized this approach towards arbitrary measure functions [14].

Both methods have been implemented in the induction theorem prover inka

[20,31]. Walther's technique veri�es termination of many examples automati-

cally (a collection of 60 such algorithms can be found in [30]) and it also proved

successful for almost all examples from the data base of [3]. However, three

algorithms of this data base terminate with a measure di�erent from size and

therefore, his approach fails for these examples. The method by Giesl over-

comes this drawback and performs successfully on an even larger collection

of benchmarks (including all 82 algorithms from [3] and all 60 examples from

[15]). For instance, the induction lemmata needed in the following examples

can be synthesized by Walther's and Giesl's method.

While Boyer and Moore, Walther, and Giesl use induction lemmata for total

termination proofs, we will now illustrate their use for the simpli�cation of

termination predicate algorithms. Furthermore, we sketch the main ideas for

the automated generation of induction lemmata according to [14,17,32].

Consider again the termination predicate �

mean

from Section 3.

5

function �

mean

(x; y : nat) : bool (

if x = y then true

else ( if jpred(x); succ(y)j

#

< jx; yj

#

then �

mean

(pred(x); succ(y))

else false )

5

Recall that '

1

^ '

2

is an abbreviation for \if '

1

then '

2

else false".

11



In order to eliminate the inequality jpred(x); succ(y)j

#

< jx; yj

#

, we search

for an induction lemma of the form �! jpred(x); succ(y)j

#

< jx; yj

#

. The

size measure function on pairs was de�ned by measuring a pair by the size

of the �rst object, i.e., jq

1

; q

2

j

#

= jq

1

j

#

. Hence, we only need a hypothesis

� satisfying �! jpred(x)j

#

< jxj

#

. For instance, an appropriate hypothesis

may be generated by Walther's method.

His technique tries to prove that the size of a function's value is bounded

by the size of one of its arguments. So non-strict inequalities of the form

jg(: : : x

i

: : :)j

#

� jx

i

j

#

are veri�ed. If the automated veri�cation of such an

inequality succeeds, then based on that proof a (totally terminating) di�erence

predicate algorithm �

g

is generated such that �

g

(x

�

)! jg(: : : x

i

: : :)j

#

< jx

i

j

#

holds. In other words, �

g

implies that x

i

is a strict upper bound for g.

For instance, Walther's system veri�es the inequality jpred(x)j

#

� jxj

#

which establishes that pred is bounded by its only argument. Based on this

(trivial) veri�cation the following algorithm for �

pred

is generated.

function �

pred

(x : nat) : bool (

if x = 0 then false

else true

So for each selector d

ij

that is associated with a constructor c

i

, a di�erence

predicate algorithm �

d

ij

(x) is synthesized that returns true i� x = c

i

(q

�

) for

some q

�

.

Di�erence predicates like �

pred

are used to generate induction lemmata. For

instance, since �

pred

is su�cient for jpred(x)j

#

< jxj

#

by construction, the

following induction lemma is generated by Walther's method.

�

pred

(x)! jpred(x)j

#

< jxj

#

(5)

Thus, in mean's termination predicate algorithm we can now replace the in-

equality jpred(x)j

#

< jxj

#

by �

pred

(x) which yields the following simpli�ed

algorithm.

function �

mean

(x; y : nat) : bool (

if x = y then true

else ( if �

pred

(x) then �

mean

(pred(x); succ(y))

else false )

As another example consider the following multiplication algorithm.

function times(x; y : nat) : nat (

if x = 0 then 0

else ( if even(x) then times(mean(x; 0); double(y))

else plus(y; times(pred(x); y)) )

The value of times(x; y) is computed as follows. If x is even, then x�y equals

12



x

2

� double(y). Hence, in this case the algorithm is called recursively where the

value of x is halved and the value of y is doubled. If x is odd, then x � y

equals y + pred(x)�y. For that purpose, the algorithm uses the total auxiliary

functions even, double, plus and the partial function mean.

The algorithm for times terminates for each input. However, as termination

of times depends on the termination behavior of the partial function mean,

to prove termination of times one needs a method for termination analysis of

partial functions. Therefore all existing techniques for total termination proofs

fail for functions like times.

Using the procedure of Theorem 3 the following termination predicate algo-

rithm is generated. In this algorithm we neglect the calls of the termination

predicates �

even

, �

double

, and �

plus

as even, double, and plus are de�ned by totally

terminating algorithms and therefore �

even

, �

double

, and �

plus

always return true.

function �

times

(x; y : nat) : bool (

if x = 0 then true

else ( if even(x) then �

mean

(x; 0) ^ jmean(x; 0); double(y)j

#

< jx; yj

#

^ �

times

(mean(x; 0); double(y))

else jpred(x); yj

#

< jx; yj

#

^ �

times

(pred(x); y) )

The inequality jpred(x); yj

#

< jx; yj

#

of �

times

's third result may be replaced

by �

pred

(x) according to the induction lemma (5). The inequality in the sec-

ond result of �

times

is only evaluated if this evaluation is terminating, that is,

if �

mean

(x; 0) holds. So in order to eliminate this inequality, we look for an

induction lemma of the form

�

mean

(x; 0) ^�! jmean(x; 0); double(y)j

#

< jx; yj

#

:

For that purpose we again use Walther's technique. First, the non-strict

inequality jmean(x; y)j

#

� jxj

#

is veri�ed, i.e., mean is bounded by its �rst

argument. Then the algorithm for the di�erence predicate �

mean

is generated,

where �

mean

(x; y) must ensure that the size of mean(x; y) is strictly smaller

than the size of the �rst argument x whenever evaluation of mean(x; y) halts.

�

mean

(x; y) ^ �

mean

(x; y)! jmean(x; y)j

#

< jxj

#

(6)

The following algorithm for �

mean

is constructed inductively such that it

satis�es implication (6), where \'

1

_'

2

" abbreviates \if '

1

then true else '

2

".

function �

mean

(x; y : nat) : bool (

if x = y then false

else ( if �

pred

(x) then �

mean

(pred(x); succ(y)) _ �

pred

(x)

else true )

This algorithm for �

mean

uses the same case analysis as �

mean

. Under the

condition x = y, the result of mean(x; y) is x. Thus, jmean(x; y)j

#

< jxj

#

evaluates to jxj

#

< jxj

#

. Since this inequality is false for each x, the algorithm

13



�

mean

has the result false in that case. Under the condition x 6= y, the result

of mean(x; y) is mean(pred(x); succ(y)). Hence, jmean(x; y)j

#

< jxj

#

holds i�

jmean(pred(x); succ(y))j

#

< jxj

#

. As mean and pred are bounded by their �rst

arguments, we have

jmean(pred(x); succ(y))j

#

� jpred(x)j

#

� jxj

#

: (7)

If �

mean

(pred(x); succ(y)) _ �

pred

(x) is satis�ed, then the �rst or the second

inequality in (7) is strict. Hence, the second result of �

mean

is indeed su�cient

for jmean(pred(x); succ(y))j

#

< jxj

#

. For the condition x 6= y ^ :�

pred

(x) the

algorithm for �

mean

trivially satis�es (6). The above algorithm terminates by

construction as it is called recursively under the same condition and with the

same arguments as the totally terminating algorithm for �

mean

.

6

For more

details on the automated synthesis of di�erence predicates see [17,32].

So (6) is a valid induction lemma, because the result of mean(x; 0) is smaller

than x, provided that mean(x; 0) terminates and that �

mean

(x; 0) evaluates to

true.

Since in the result of �

times

the truth of �

mean

(x; 0) is guaranteed before eval-

uating the inequality jmean(x; 0); double(y)j

#

< jx; yj

#

, we can now replace

this inequality by �

mean

(x; 0) which yields the following simpli�ed algorithm.

function �

times

(x; y : nat) : bool (

if x = 0 then true

else ( if even(x) then �

mean

(x; 0) ^ �

mean

(x; 0)

^ �

times

(mean(x; 0); double(y))

else �

pred

(x) ^ �

times

(pred(x); y) )

So in general, if the body of an algorithm contains an inequality jt

�

j < jx

�

j

that will only be evaluated under the condition  , then our simpli�cation

procedure looks for an induction lemma of the form

 ^�! jt

�

j < jx

�

j:

If such an induction lemma is known (or can be synthesized) then the inequal-

ity jt

�

j < jx

�

j is replaced by �.

We have sketched how appropriate induction lemmata are generated auto-

matically following the approach of Walther [32]. However, this technique is

restricted to one single �xed measure function, viz. the size measure. An ex-

tension of Walther's method to arbitrary measures is presented in [14] and an

adaptation of this re�ned method to partial functions is described in [7]. In

all these approaches the generation of measure functions and induction lem-

mata  ^ �! jt

�

j < jx

�

j is based on the analysis of the auxiliary functions

in the arguments t

�

of the recursive calls. We recently developed a new tech-

6

In fact, the body of �

mean

's algorithm can be subsequently simpli�ed to \if x = y

then false else true " using the simpli�cation techniques of the following sections.
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nique that also examines auxiliary functions in the conditions  during that

synthesis [8].

5.2. Subsumption Elimination

In the next simpli�cation step redundant terms are eliminated from the

termination predicate algorithms. Recall that �

mean

(x; y) returns true i� x is

greater than or equal to y and the di�erence of x and y is even. Hence the

term �

mean

(x; 0) in the result of �

times

's second case evaluates to true i� x is

even. So the condition of the second case implies the truth of �

mean

(x; 0). In

other words we can verify

x 6= 0 ^ even(x) ! �

mean

(x; 0): (8)

For that reason the subsumed term �

mean

(x; 0) may be eliminated from the

second case of �

times

which yields

if x = 0 then true

else ( if even(x) then �

mean

(x; 0) ^ �

times

(mean(x; 0); double(y))

else �

pred

(x) ^ �

times

(pred(x); y) ).

In a similar way we may eliminate the terms �

mean

(x; 0) and �

pred

(x) from the

algorithm �

times

. As �

mean

(x; y) returns true i� x 6= y, the term �

mean

(x; 0) (as

well as �

pred

(x)) is true for each x greater than 0. Hence we can easily verify

x 6= 0 ^ even(x) ! �

mean

(x; 0); (9)

x 6= 0 ^ :even(x) ! �

pred

(x): (10)

So the subsumed terms �

mean

(x; 0) and �

pred

(x) can also be eliminated which

results in the following algorithm for �

times

.

function �

times

(x; y : nat) : bool (

if x = 0 then true

else ( if even(x) then �

times

(mean(x; 0); double(y))

else �

times

(pred(x); y) )

According to [32] we call formulas like (8), (9), and (10) subsumption for-

mulas. So in general, if a boolean term  

2

is evaluated under the condition  

1

and if the subsumption formula

 

1

!  

2

can be veri�ed, then our simpli�cation procedure replaces the term  

2

by true.

(Subsequently of course, in a conjunction the term true may be eliminated.)

For the automated veri�cation of subsumption formulas an induction theo-

rem proving system is used (e.g. one of those described in [2,3,10,20,21,31]).

For instance, the subsumption formula (8) can be veri�ed by an induction
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proof and subsumption formulas (9) and (10) can already be proved by case

analysis and propositional reasoning only.

5.3. Recursion Elimination

Now we eliminate the recursive calls of �

times

according to the recursion

elimination technique of Walther [32]. If we can verify that evaluation of a

recursive call �

f

(t

�

) always yields the same result (i.e., it always yields true

or it always yields false) then we can replace the recursive call �

f

(t

�

) by this

result. In this way it is possible to replace both recursive calls of �

times

by the

value true.

The reason is that the arguments of �

times

's recursive calls always satisfy the

condition of the �rst, second, or third case. So due to the termination of �

times

after a �nite number of recursive calls �

times

will be called with arguments that

satisfy the condition of the �rst (non-recursive) case. Hence, the result of the

evaluation is always true. Therefore the recursive calls of �

times

can in fact be

replaced by true which yields the following non-recursive version of �

times

.

function �

times

(x; y : nat) : bool (

if x = 0 then true

else ( if even(x) then true

else true )

In general, let R be a set of recursive �

f

-cases with results of the form �

f

(t

�

)

and let ! be a boolean value (either true or false). Our simpli�cation procedure

replaces the recursive calls in the R-cases by the boolean value !, if for each

case in R, evaluation of the result �

f

(t

�

) either leads to a non-recursive case

with the result ! or to a recursive case from R.

Let 	 be the set of all conditions from non-recursive cases with the result

! and of all conditions from R-cases. Then one has to show that the argu-

ments t

�

satisfy one of the conditions ' 2 	. In other words '[x

�

=t

�

] must be

valid (where [x

�

=t

�

] denotes the substitution of the formal parameters x

�

by

the terms t

�

). Hence, for each case in R with the condition  the following

recursion elimination formula has to be veri�ed.

 !

_

'2	

'[x

�

=t

�

]

In our example, the set R contains both recursive cases. So for the �rst

recursive call one has to prove that under its condition x 6= 0 ^ even(x), the

recursive arguments mean(x; 0) and double(y) either satisfy the conditions of

an R-case or of the �rst non-recursive case.

x 6= 0 ^ even(x) ! mean(x; 0) = 0 _ (11)

(mean(x; 0) 6= 0 ^ even(mean(x; 0))) _

(mean(x; 0) 6= 0 ^ :even(mean(x; 0)))
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A similar recursion elimination formula is also obtained for �

times

's second

recursive call.

Again, for the automated veri�cation of such formulas an (induction) theo-

rem prover is used. In fact, the recursion elimination formulas in our example

are tautologies that can already be veri�ed by propositional reasoning only.

5.4. Case Elimination

In the last simpli�cation step one tries to replace conditionals by their re-

sults. More precisely, regard a conditional of the form \if '

1

then '

2

else '

3

"

that will only be evaluated under a condition  . Now the simpli�cation pro-

cedure tries to replace this conditional by the result '

2

. For that purpose the

procedure has to check whether under the appropriate premises, '

2

is equal

to the result in the else-case of the conditional. Hence, it tries to verify the

implication

 ^ :'

1

! '

2

= '

3

:

Furthermore, it has to be checked whether the condition '

1

is necessary to

ensure termination of '

2

's evaluation. Hence, the simpli�cation procedure also

tries to prove the formula

 ! �('

2

):

If veri�cation of both case elimination formulas succeeds, then the conditional

is replaced by '

2

. Otherwise, simpli�cation of the conditional into '

3

is tried.

For that purpose the case elimination formulas  ^ '

1

! '

2

= '

3

and  !

�('

3

) have to be proved.

In our example, �rst the conditional \if even(x) then true else true" is re-

placed by true after veri�cation of the case elimination formulas x 6= 0 ^

:even(x)! true = true and x 6= 0! true. Second, the resulting conditional

\if x 6= 0 then true else true" is replaced by true since x = 0! true = true and

true can easily be proved. In this way we obtain the �nal version of �

times

.

function �

times

(x; y : nat) : bool ( true

Using the above techniques this trivial algorithm for �

times

has been con-

structed which states that times is indeed total. In general, our simpli�cation

procedure eases further automated reasoning about termination predicates

signi�cantly and it also enhances the readability of the termination predicate

algorithms.
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Summing up, the procedure for simpli�cation of termination predicate algo-

rithms performs the following steps.

(S1) Application of induction lemmata

(S2) Subsumption elimination

(S3) Recursion elimination

(S4) Case elimination

The simpli�cation procedure does not a�ect the soundness of the trans-

formed termination predicates. So if an algorithm �

0

f

is obtained from a termi-

nation predicate �

f

by simpli�cation, then �

0

f

is also a termination predicate

for f .

Theorem 4 Let the algorithm �

0

f

be obtained from an algorithm �

f

by ap-

plying the simpli�cation steps (S1){(S4). Then for all data objects q

�

, �

0

f

(q

�

)

terminates i� �

f

(q

�

) terminates and if �

0

f

(q

�

) = true, then �

f

(q

�

) = true, too.

Proof. For (S1), (S2), and (S4), the soundness follows from the truth of

the applied induction lemmata, subsumption formulas, and case elimination

formulas. The soundness of recursion elimination is shown in [30]. 2

The simpli�cation procedure for termination predicates works automatically

and it proved successful on numerous examples [6]. It is based on methods for

the synthesis of induction lemmata [7,13,14,17,32] and it uses an induction

theorem prover to verify the subsumption, recursion elimination, and case

elimination formulas (which often is a simple task).

6. Termination Analysis for Imperative Programs

Although imperative languages are extensively used in practice, up to now

there have been very few attempts to automate termination analysis for imper-

ative programs. However, methods for the automatic translation of imperative

programs into functional ones are well known and can be found in several text-

books on functional programming. Therefore, a straightforward approach for

automated termination proofs of imperative programs is to transform them

into corresponding functional programs. If termination of the resulting func-

tions can be proved, then termination of the original imperative program is

veri�ed. However, it turns out that in general the existing approaches for ter-

mination analysis of functional programs cannot be used for that purpose,

because the functions obtained from the translation of imperative programs

are often partial.

We regard a simple PASCAL-like language with the atomic statements

\: : : := : : :", \if : : : then : : : else : : : �", \while : : : do : : : od" and the compound

statement \: : : ; : : :" which all have the usual semantics.
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As an example consider the following imperative program for the multipli-

cation of natural numbers. After execution of the program, the value of the

variable r is the result of multiplying the initial values of x and z, i.e., r = x�z.

Therefore the values of x, z, and r are repeatedly changed similar as in the

algorithm times, cf. Section 5.

r := 0;

while :x 6= 0

do if even(x) then y := 0;

while x 6= y

do x := pred(x);

y := succ(y) od;

9

>

>

=

>

>

;

sets x to

x

2

z := double(z)

else x := pred(x);

r := plus(z; r) � od

To translate this imperative program into a functional one, every while-loop

is transformed into a separate \loop-function". For instance, for the inner

while-loop we obtain the function mean from Section 2 that takes the input

values of the variables x and y as arguments and returns the output value of

x. (Of course, a similar function returning the output value of y could also

be constructed.) If the loop-condition x 6= y is satis�ed, then mean is called

recursively with the new values of x and y. If the loop-condition is not satis�ed,

then mean returns the value of x. Using the auxiliary function mean, the outer

while-loop and the whole imperative program are translated into the functions

while and multiply, respectively.

function while(x; z; r : nat) : nat (

if x 6= 0 then ( if even(x) then while(mean(x; 0); double(z); r)

else while(pred(x); z; plus(z; r)) )

else r

function multiply(x; z : nat) : nat ( while(x; z; 0)

In general, each program written in our imperative programming language

translates into a program of our �rst-order functional language. See e.g. [19]

for an automation of this translation.

The resulting function multiply is in fact \equivalent" to the original im-

perative program, as multiply computes the value of r after execution of the

program. In particular, for the termination proof of the imperative program

it su�ces to show termination of the function multiply.

Note that although the original imperative program is terminating, in gen-

eral the auxiliary functions resulting from this translation are partial. The

reason is that in imperative programs, termination of while-loops often de-

pends on their contexts. For instance, in our example the inner while-loop

is only entered with an even input x. However, this restriction on the value
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of x is no longer present in the function mean. Therefore multiply is totally

terminating, but the auxiliary function mean(x; y) is only terminating if x is

greater than or equal to y and if x� y is even.

With our method, termination of multiply can easily be veri�ed. The synthe-

sis of a termination predicate formean has already been illustrated in Section 3.

For the function while, our method generates a termination predicate similar

to �

times

, cf. Section 5, and the simpli�cation procedure performs exactly the

same steps. Hence we �nally obtain the following termination predicate algo-

rithm.

function �

while

(x; z; r : nat) : bool ( true

In this way, total termination of the outer while-loop is proved. Hence, termi-

nation of multiply and thereby, termination of the original imperative program

is also veri�ed.

7. Extensions

The synthesis of termination predicates can be directly used for polymorphic

types, too, where type constants may be parameterized with type variables �.

For instance, consider a polymorphic type list

�

with the constructors nil

�

: list

�

and cons

�

: � � list

�

! list

�

and the selectors head

�

: list

�

! � and tail

�

:

list

�

! list

�

. Then the following algorithm computes the last element of a list

containing data objects of type �.

function last(l : list

�

) : � (

if l = cons

�

(head

�

(l); nil

�

) then head

�

(l)

else last(tail

�

(l))

Our method synthesizes the following termination predicate for last where

we use the size measure to compare the objects of type list

�

, i.e., we have

jnil

�

j

#

= 0 and jcons

�

(x; k)j

#

= 1 + jkj

#

.

function �

last

(l : list

�

) : bool (

if l = cons

�

(head

�

(l); nil

�

) then true

else jtail

�

(l)j

#

< jlj

#

^ �

last

(tail

�

(l))

The above algorithm returns true for each non-empty list and thus, it de�nes

exactly the domain of last. In general, no modi�cation of our method is needed

to enable the synthesis of termination predicates if polymorphic types are

considered as well.

Moreover, our method may also be extended tomutual recursion in the same

way as suggested in [16] for total termination proofs.

Our technique can be directly generalized to a certain class of higher-order

functions, viz. functions that may have higher-order arguments but that have

�rst-order results. As an example, consider the following algorithm that applies
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a function f to each element of a list l.

function map(f : nat! nat; l : list) : list (

if l = nil then nil

else cons(f(head(l)); map(f; tail(l)))

A termination predicate algorithm for map also has to check whether the

term f(head(l)) terminates if evaluated. For that purpose, the associated ter-

mination predicate �

f

is used to compute �

f

(head(l)).

7

Thus, the higher-order

variable f is treated like an auxiliary function when the termination predicate

algorithm for map is synthesized and the synthesis rule (ii) is applied to an-

alyze the term f(head(l)). So we obtain the following termination predicate

algorithm where instead of jf; lj

#

we use jlj

#

. Thus, �rst-order termination

analysis can be extended to higher-order algorithms by inspecting the decrease

of their �rst-order arguments, cf. also [23].

function �

map

(f : nat! nat; l : list) : bool (

if l = nil then true

else �

f

(head(l)) ^ jtail(l)j

#

< jlj

#

^ �

map

(f; tail(l))

Again we have obtained an algorithm that de�nes the exact domain of a

partial function (provided that �

f

describes the exact domain of f). The al-

gorithm �

map

(f; l) returns true i� each element of the list l satis�es �

f

.

In this higher-order extension of our language, we do not allow the use of

\�". Thus, the only higher-order terms are function variables (like f) and

function constants (like mean or map). Function variables are handled like

auxiliary functions during the computation of termination formulas. Thus, for

each term t of non-function type one can compute a termination formula �(t),

where Rule (ii) is changed to

�(g(t

1

; : : : ;t

i

; t

i+1

; ; : : : ;t

n

)) :� �(t

i+1

) ^ : : : ^�(t

n

) ^ �

g

(t

1

; : : : ; t

n

);

for functions and function variables g. Here 1; : : : ; i denote the higher-order

arguments of g, whereas i + 1; : : : ; n are the arguments of basic types. Of

course, Rule (iv) has to be changed analogously, where instead of jt

1

; : : : ; t

n

j <

jx

1

; : : : ;x

n

j one only obtains jt

i+1

; : : : ;t

n

j < jx

i+1

; : : : ;x

n

j. Thus, one only inspects

the decrease of the �rst-order arguments.

An extension of our method to a language with \�" and to functions with

higher-order results is not as straightforward, because now one would have to

extend the concept of termination formulas �(t) to terms t of higher type.

Moreover, one does not only need a termination predicate for each function

f but one also has to generate termination predicates for the (higher-order)

results of each function. For example, if f has the type nat ! (nat ! nat)

then one needs a termination predicate �

f

: nat! bool for f and a functional

7

Strictly speaking, \�

f

" is a (higher-order) function that maps f (after its instan-

tiation) to the actual corresponding termination predicate.

21



�

result

f

: nat ! (nat ! bool) where �

result

f

(n) is the termination predicate for

f(n). An extension of our approach to such higher-order functions is a subject

of future work.

8. Conclusion

We have presented a method to determine the domains (resp. non-trivial

sub-domains) of partial functions automatically. For that purpose we have

automated the approach for termination analysis suggested by Manna [22].

Our analysis uses termination predicates which represent conditions that im-

ply the termination of the algorithm under consideration. Based on su�cient

requirements for termination predicates we have developed a procedure for

the automated synthesis of termination predicate algorithms. Subsequently

we introduced a procedure for the simpli�cation of these generated termina-

tion predicate algorithms which also works automatically. Furthermore, by

computing termination predicates for the partial \loop-functions", with our

approach it is also possible to perform termination analysis for imperative pro-

grams. Finally, we have extended our method for polymorphic types and (a

certain class of) higher-order functions.

Our method proved successful on numerous algorithms (see Table 1 for some

examples to illustrate its power). For each function f in this table the corre-

sponding termination predicate �

f

could be synthesized automatically. In all

these examples the synthesized termination predicate is not only su�cient for

termination, but it even describes the exact domain of the functions.

These examples demonstrate that the procedure of Theorem 3 is able to

synthesize sophisticated termination predicate algorithms (e.g. for a quotient

algorithm it synthesizes the termination predicate \divides", for a logarithm

algorithm it synthesizes a termination predicate that checks if one number is

a power of another number, for an algorithm that deletes an element from

a list a termination predicate for list membership is synthesized, etc.). By

subsequent application of our simpli�cation procedure one usually obtains

very simple formulations of the synthesized termination predicate algorithms.

Up to now, the termination behavior of the algorithms in Table 1 could not

be analyzed with any other automatic method. Those functions in the table

that have the termination predicate true are total, but their algorithms call

other non-terminating algorithms. Therefore the existing methods for total

termination proofs failed in proving their totality. A detailed description of

our experiments can be found in [6].

The presented procedure for the generation of termination predicates works

for any given measure function j:j. Therefore the procedure can also be com-

bined with methods for the automated generation of suitable measure func-

tions (e.g. the one presented in [12,14]), cf. [7,8,17]. In this way we obtained

an extremely powerful approach for automated termination analysis of par-

tial functions that performed successfully on a large collection of benchmarks
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Table 1

Termination predicates synthesized by our method

Function f Term. Pred. �

f

Function f Term. Pred. �

f

minus(x; y) x � y list half(l)

V

i

even(l

i

)

half1(x) even(x) last(l) l 6= nil

half2(x) even(x) ^ x 6= 0 but last(l) l 6= nil

times(x; z) true reverse(l) true

exp(x; y) true list min(l) l 6= nil

quotient1(x; y) y 6= 0 last x(l; x) length(l) � x

quotient2(x; y) yjx index(x; l) x = 0 _member(x; l)

mod(x; y) y 6= 0 delete(x; l) x = 0 _member(x; l)

lcm(x; y) x 6= 0 ^ y 6= 0 sum lists(l; k) length(l) = length(k)

dual log1(x) x 6= 0 nat to bin(x; y) y = 2

n

dual log2(x) x = 2

n

bin vec(x) x 6= 0

log1(x; y) x = 1_

x 6= 0 ^ y 6= 0 ^ y 6= 1

gcd(x; y) x = 0 ^ y = 0_

x 6= 0 ^ y 6= 0

log2(x; y) x = 1_

x = y

n

^x 6= 0^y 6= 1

mean(x; y)

list minus(l; y)

x � y ^ even(x�y)

V

i

l

i

� y

(including all 68 examples from [6,9]). Our method also proved successful for

termination analysis of imperative programs. For instance, in 33 of 45 exam-

ples from [18] the exact domain could be determined automatically.
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