
Under consideration for publication in Theory and Practice of Logic Programming 1

Automated Complexity Analysis for Prolog
by Term Rewriting∗

THOMAS STRÖDER, FABIAN EMMES, JÜRGEN GIESL

LuFG Informatik 2, RWTH Aachen University, Germany

PETER SCHNEIDER-KAMP

Dept. of Mathematics and Computer Science, University of Southern Denmark, Denmark

CARSTEN FUHS

Dept. of Computer Science, University College London, United Kingdom

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

For term rewrite systems (TRSs), a huge number of automated termination analysis tech-
niques have been developed during the last decades, and by automated transformations
of Prolog programs to TRSs, these techniques can also be used to prove termination of
Prolog programs. Very recently, techniques for automated termination analysis of TRSs
have been adapted to prove asymptotic upper bounds for the runtime complexity of TRSs
automatically. In this paper, we present an automated transformation from Prolog pro-
grams to TRSs such that the runtime of the resulting TRS is an asymptotic upper bound
for the runtime of the original Prolog program (where the runtime of a Prolog program is
measured by the number of unification attempts). Thus, techniques for complexity analysis
of TRSs can now also be applied to prove upper complexity bounds for Prolog programs.

Our experiments show that this transformational approach indeed yields more pre-
cise bounds than existing direct approaches for automated complexity analysis of Prolog.
Moreover, it is also applicable to a larger class of Prolog programs such as non-well-moded
programs or programs using built-in predicates like, e.g., cuts.

KEYWORDS: complexity analysis, automated reasoning, logic programs, term rewriting

1 Introduction

Automated complexity analysis of term rewrite systems has recently gained a lot

of attention (see, e.g., (Avanzini et al. 2008; Avanzini and Moser 2009; Bonfante

et al. 2001; Hirokawa and Moser 2008; Marion and Péchoux 2008; Noschinski et al.

2011; Waldmann 2010; Zankl and Korp 2010)). Most of these complexity analysis

techniques were obtained by adapting existing approaches for termination analysis

of TRSs. Indeed, complexity analysis can be seen as a refinement of termination

analysis: Instead of only asking whether a program will eventually halt, one asks

∗ Supported by the DFG under grant GI 274/5-3, the DFG Research Training Group 1298 (Al-
goSyn), and the Danish Council for Independent Research, Natural Sciences.

2 Ströder et al.

how many steps it will take before the program halts. This view is also apparent in

the competition on automated complexity analysis of TRSs, which takes place as

part of the annual International Termination Competition1 since 2008, and where

most of the competing tools are built on the basis of a termination analyzer.

In the area of termination analysis, there exist several transformational ap-

proaches which permit the use of techniques for automated termination proofs

of TRSs also for termination analysis of logic programs. To this end, logic pro-

grams are automatically transformed into TRSs in a non-termination preserving

way (see, e.g., (Ohlebusch 2001)). In fact, this transformational approach for ter-

mination analysis of logic programs turned out to be more powerful than techniques

to analyze termination of logic programs directly (Schneider-Kamp et al. 2009).

In this paper, we develop a similar transformational approach for complexity

analysis. While there already exists some work on direct complexity analysis for

logic programs (e.g., (Debray and Lin 1993; López-Garćıa et al. 2010)2), these

approaches are restricted to well-moded logic programs. By making complexity

analysis of TRSs applicable to logic programs as well, we obtain an approach for

automated complexity analysis of Prolog which is applicable to a much wider class

of programs (including non-well-moded and non-definite programs).3 Moreover, as

shown by extensive experiments, the implementation of our approach in the tool

AProVE (Giesl et al. 2006) is far more powerful than the previous direct approaches.

We introduce the required notations, the considered operational semantics, and

the notion of complexity for Prolog programs in Sect. 2. In Sect. 3 we show that

existing transformations from logic programs to TRSs, which were originally devel-

oped for termination analysis, cannot be directly used for complexity, as they do

not preserve asymptotic upper complexity bounds. The reason is that backtracking

in the logic program is replaced by non-deterministic choice in the TRS.

Thus, we propose a new transformation based on a derivation graph which repre-

sents all possible executions of a logic program. This is similar to our approach for

termination analysis in (Schneider-Kamp et al. 2010; Ströder et al. 2011) which goes

beyond definite logic programs. In this way, the transformation is also applicable to

Prolog programs using built-in predicates like cuts. We explain derivation graphs

in Sect. 4. Then in Sect. 5, we present a method to obtain TRSs from such graphs

which have at least the same complexity as the original Prolog program. To this end,

we also developed a new criterion for determinacy analysis of Prolog (Hill and King

1997). In Sect. 6, we compare our approach to the existing direct ones empirically.

2 Preliminaries

Let Σ be a set of function symbols. Each f ∈ Σ has an arity n ∈ IN denoted f/n. We

always assume that Σ contains at least one constant symbol. Moreover, let V be a

countably infinite set of variables. The set of terms T (Σ,V) is the least set where

1 See http://www.termination-portal.org/wiki/Termination_Competition
2 Moreover, there also exist approaches to infer lower complexity bounds for logic programs, (e.g.,

(Debray et al. 1997; King et al. 1997)), whereas our approach can only infer upper bounds.
3 However, our implementation currently does not treat built-in integer arithmetic, whereas (De-

bray and Lin 1993; López-Garćıa et al. 2010) can handle linear arithmetic constraints.

Automated Complexity Analysis for Prolog by Term Rewriting 3

V ⊆ T (Σ,V) and where f(t1, . . . , tn) ∈ T (Σ,V) for all f/n ∈ Σ and t1, . . . , tn ∈
T (Σ,V). V(t) denotes the set resp. the sequence of variables in a term t. For a term

t = f(t1, . . . , tn), we have root(t) = f/n. A position pos ∈ IN∗ in a term t addresses

a subterm t|pos of t. We denote the empty word (and thereby the top position) by

ε. The term t[s]pos results from replacing the subterm t|pos at position pos in t by

the term s. So t|ε = t and t[s]ε = s. For pos = i pos ′, i ∈ IN, and t = f(t1, . . . , tn),

we have t|pos = t|i pos′ = ti|pos′ and t[s]pos = t[s]i pos′ = f(t1, . . . , ti[s]pos′ , . . . , tn).

For the basics of term rewriting, see, e.g., (Baader and Nipkow 1998). A term

rewrite system (TRS) R is a finite set of pairs of terms `→ r (called rules) where

` /∈ V and V(r) ⊆ V(`). The rewrite relation s→R t for two terms s and t holds iff

there is an `→ r ∈ R, a position pos, and a substitution σ such that `σ = s|pos and

t = s[rσ]pos . The rewrite step is innermost (denoted s
i→R t) iff no proper subterm

of `σ can be rewritten. The defined symbols of a TRS R are Σd = {root(`) | ` →
r ∈ R}, i.e., these are the function symbols that can be “evaluated”.

Different notions of complexity have been proposed for TRSs. In this paper, we

focus on innermost runtime complexity (Hirokawa and Moser 2008), which corre-

sponds to the notion of complexity used for programming languages. Here, one only

considers rewrite sequences starting with basic terms f(t1, . . . , tn), where f ∈ Σd
and t1, . . . , tn do not contain symbols from Σd. The innermost runtime complexity

function ircR maps any n ∈ IN to the length of the longest sequence of
i→R-steps

starting with a basic term t where |t| ≤ n. Here, |t| is the number of variables

and function symbols occurring in t. To measure the complexity of a TRS R, we

determine the asymptotic size of ircR, i.e., we say that R has linear complexity iff

ircR(n) ∈ O(n), quadratic complexity iff ircR(n) ∈ O(n2), etc.

See, e.g., (Apt 1997) for the basics of logic programming. As in the ISO standard

for Prolog (ISO/IEC 13211-1 1995), we do not distinguish between predicate and

function symbols. A query is a sequence of terms, where � denotes the empty query.

A clause is a pair h :-B where the head h is a term and the body B is a query.

If B is empty, then one writes just “h” instead of “h :-�”. A Prolog program P
is a finite sequence of clauses. In this paper, we consider unification with occurs

check.4 If s and t have no mgu σ, we write mgu(s, t) = fail . SliceP(p(t1, ..., tn)) is

the sequence of all program clauses “h :-B” from P where root(h) = p/n.

We consider the operational semantics in (Ströder et al. 2011) which is equivalent

to the semantics in (ISO/IEC 13211-1 1995). A state has the form 〈G1 | . . . | Gn〉
where G1 | . . . | Gn is a sequence of goals. Essentially, a goal is just a query, i.e., a se-

quence of terms. In addition, a goal can also be labeled by a clause c, where the goal

(t1, . . . , tk)c indicates that the next resolution step has to be performed with clause

c. Intuitively, a state 〈G1 | . . . | Gn〉 means that we currently have to solve the goal

G1, but that G2, . . . , Gn are the next goals to solve when backtracking.5 The initial

state for a query (t1, . . . , tk) is 〈(t1, . . . , tk)〉, i.e., this state contains just a single goal.

The operational semantics can be defined by a set of inference rules on these states.

4 Our method could be extended to unification without occurs check, but we left this as future
work since the complexity of most programs does not depend on the occurs check.

5 We omit answer substitutions for simplicity, since they do not contribute to the complexity.

4 Ströder et al.

� | S
S

(Suc)
(t, Q) | S

(t, Q)c1 | · · · | (t, Q)ca | S
(Case) if SliceP(t) = (c1, . . . , ca)

(t, Q)h :-B | S
(Bσ,Qσ) | S

(Eval) if mgu(t, h) = σ
(t, Q)h :-B | S

S
(Backtrack) if mgu(t, h)

= fail

Fig. 1. Inference Rules for the Subset of Definite Logic Programs

In Fig. 1, we show the inference rules for the part of Prolog which defines definite

logic programming. Here, S denotes a (possibly empty) sequence of goals. The set

of all inference rules for full Prolog can be found in (Ströder et al. 2011). Since

each state contains all backtracking goals, our semantics is linear (i.e., a derivation

with these rules is just a sequence of states and not a search tree as in the classic

Prolog semantics). As outlined in (Ströder et al. 2011), this makes our semantics

particularly well suited for termination and complexity analysis.

For a Prolog program P and a query Q, we consider the length of the longest

derivation starting in the initial state for Q. As shown in (Ströder et al. 2011), this

length is equal to the number of unification attempts when traversing the whole SLD

tree according to the semantics of (ISO/IEC 13211-1 1995), up to a constant factor.

Thus, we use the length of this longest derivation to measure the complexity

of Prolog programs.6 We consider classes of atomic queries which are described

by a p ∈ Σ and a moding function m : Σ × IN → {in, out}. So m determines

which arguments of a symbol are considered to be input. The corresponding class

of queries is Qp
m = {p(t1, . . . , tn) | V(ti) = ∅ for all i with m(p, i) = in }. For a

moding function m, and any term p(t1, . . . , tn), its moded size is |p(t1, . . . , tn)|m =

Σi∈{1,...,n}:m(p,i)=in |ti|. Thus, for a program P and a class of queries Qp
m, the Prolog

runtime complexity function prcP,Qp
m

maps any n ∈ IN to the length of the longest

derivation starting with the initial state for some query Q ∈ Qp
m with |Q|m ≤ n.

For a program P and a class of queries Qp
m, our aim is to generate a TRS R such

that asymptotically, ircR(n) is an upper bound of prcP,Qp
m

(n).

3 Direct Transformation

Consider the following program sublist.pl from the Termination Problem Data

Base (TPDB)7 with the class of queries Qsublist
m . Here m is a moding function with

m(sublist, 1) = out and m(sublist, 2) = in.

(1) app([],Ys,Ys).

(2) app(.(X,Xs),Ys,.(X,Zs)) :- app(Xs,Ys,Zs).

(3) sublist(X,Y) :- app(P,U,Y), app(V,X,P).

This program computes (by backtracking) all sublists of a given list. Its complexity

6 In contrast, (Debray and Lin 1993; López-Garćıa et al. 2010) use the number of resolution steps
to measure complexity. As long as we do not consider dynamic built-in predicates like assert/1,
these measures are asymptotically equivalent, as the number of failing unification attempts is
bounded by a constant factor (i.e., by the number of clauses in the program).

7 This is the collection of examples used in the annual International Termination Competition.

Automated Complexity Analysis for Prolog by Term Rewriting 5

w.r.t. Qsublist
m is quadratic since the first call to app takes a linear number of unifi-

cation attempts and produces also a linear number of solutions. The second call to

app again needs linear time, but due to backtracking, it is called linearly often.

We now show that the classic transformation from (well-moded) logic programs

to TRSs (see, e.g., (Ohlebusch 2001)) cannot be used for complexity analysis.8

Note that the example program is well moded if m is extended to app by defining

m(app, 1) = m(app, 2) = out and m(app, 3) = in. For each predicate p, the trans-

formation introduces two new function symbols pin and pout. Let “p(~s,~t)” denote

that ~s and ~t are the sequences of terms on p’s in- and out-positions.

• For each fact p(~s,~t), the TRS contains the rule pin(~s)→ pout(~t).
• For each clause c of the form p(~s,~t) :- p1(~s1, ~t1), . . . , pk(~sk, ~tk), the resulting

TRS contains the following rules:
pin(~s) → uc1(pin1 (~s1),V(~s))

uc1(pout1 (~t1),V(~s)) → uc2(pin2 (~s2),V(~s) ∪ V(~t1))

. . .

uck(poutk (~tk),V(~s) ∪ V(~t1) ∪ . . . ∪ V(~tk−1)) → pout(~t)

If the resulting TRS is terminating, then the original logic program terminates for

any query with ground terms on all input positions of the predicates, cf. (Ohlebusch

2001). For our example program, we obtain the following TRS.

appin(Ys)→ appout([],Ys)

appin(.(X,Zs))→ u
(2)
1 (appin(Zs), X,Zs)

u
(2)
1 (appout(Xs,Ys), X,Zs)→ appout(.(X,Xs),Ys)

sublistin(Y)→ u
(3)
1 (appin(Y), Y)

u
(3)
1 (appout(P,U), Y)→ u

(3)
2 (appin(P), Y, P, U)

u
(3)
2 (appout(V,X), Y, P, U)→ sublistout(X)

However, the complexity of this TRS is linear instead of quadratic. The reason

is that backtracking in Prolog is replaced by non-deterministic choice in the TRS.

While Prolog uses backtracking to traverse the whole SLD-tree, the evaluation of

the TRS corresponds to exactly one branch in the tree. Since the SLD-tree is finitely

branching, this is sound for termination analysis, but not for complexity. So we need

a transformation which takes backtracking into account in order to make complexity

analysis of TRSs applicable for complexity analysis of Prolog.

4 Constructing Derivation Graphs

We now explain the construction of derivation graphs which represent all evalua-

tions of a Prolog program for a certain class of queries, cf. (Schneider-Kamp et al.

2010). Here, we regard abstract states, which represent sets of concrete states. In

addition to the set of “ordinary” variables N , we also use a set of abstract variables

A = {T1, T2, . . .} which represent fixed, but arbitrary terms (thus, V = N] A).

To instantiate abstract variables, we use special substitutions γ (called concretiza-

8 The same is true for the more refined transformation of (Schneider-Kamp et al. 2009) which
works similarly, but which can also handle non-well-moded programs.

6 Ströder et al.

(t, Q) | S ; G
(t, Q)

c1 | · · · | (t, Q)
ca | S ; G

(Case) if SliceP(t) = (c1, . . . , ca)

� | S ; G
S ; G

(Suc)
S ; G
S
′
; G′

(Inst)
if there is a µ such that S = S′µ and
G =

⋃
T∈G′ V(Tµ).

(t, Q)
h :-B | S ; G

(Bσ,Qσ) | Sσ|G ; G′ S ; G
(Eval)

where mgu(t, h) = σ. W.l.o.g., for all X ∈ V,
V(σ(X)) only contains fresh abstract variables not
occurring in t, Q, S, or G. Moreover, we have G′ =
A(Range(σ|G)).

(t, Q) ; G
t ; G Qδ ; G′

(Split)

where δ replaces all (abstract and non-abstract) vari-
ables from V \ G by fresh abstract variables and G′ =
G ∪ NextG(t,G)δ, i.e., G is extended by the δ-renamings
of those variables which will be instantiated by a ground
term after each successful evaluation of t.

Fig. 2. Inference Rules for Abstract States

tions) where Dom(γ) = A and Range(γ) ⊆ T (Σ,N). Apart from the sequence of

goals, an abstract state contains a set G ⊆ A of abstract variables that only repre-

sent ground terms (in the derivation graph, we denote such variables by overlining

them). So we only consider concretizations γ where γ(T) is ground for all T ∈ G.

In Fig. 2 we extend the inference rules of our operational semantics from Sect. 2

to abstract states. For the rules Suc and Case, this is straightforward. For Eval,

however, note that an abstract state may represent both concrete states where

the unification of the current query t with the head h of the next program clause

succeeds or fails. Thus, the abstract Eval rule has two successor states in order to

combine both the concrete Eval and the concrete Backtrack rule. Consequently,

we obtain derivation trees instead of derivation sequences.

In Eval, we assume that mgu(t, h) = σ renames all variables to fresh abstract

variables (to handle sharing effects correctly). If a concretization γ corresponds to

Eval’s first successor (i.e., if tγ and h unify), then for any T ∈ G, Tγ is a ground in-

stance of Tσ. Hence, we replace all T ∈ G by Tσ, i.e., we apply σ|G to the remaining

goals S. The new set G′ of abstract variables that may only be instantiated by

ground terms are the abstract variables occurring in Range(σ|G). Fig. 3 shows the

derivation for our example program when called with queries of the form sublist(T1,

T2) (i.e., the initial state a corresponds to the class of queries Qsublist
m where sublist’s

second argument is ground). The nodes of such a derivation graph are states and

each step from a node to its children is done by the inference rules of Fig. 2.

In Fig. 3, as the child of d, we have the state (〈app(T11, T8, T9)(1) | app(T11, T8,

T9)(2)〉 ; G) where G = {T9}. Here, app([],Ys,Ys) must be used for the next evalu-

ation. The Eval rule yields two successors: In the first, we have σ = mgu(app(T11,

T8, T9), app([],Ys,Ys)) = {T8/T12, T9/T12, T11/[],Ys/T12} which leads to (〈� |
app(T11, T8, T12)(2)〉 ; {T12}). The second successor is (〈app(T11, T8, T9)(2)〉 ; G).

If one uses the Eval rule for a state s, then we say that the mgu σ is associated

to the node s and label the edge to its first successor by σ. In these labels, we

restrict the substitutions to those variables occurring in the state. So in Fig. 3, the

substitution {T8/T12, T9/T12, T11/[]} is associated to the child of node d.

To represent all possible evaluations in a finite way, we need additional inference

rules to obtain finite derivation graphs instead of infinite derivation trees. To this

end, we use an inference rule which can refer back to already existing states. Such

Automated Complexity Analysis for Prolog by Term Rewriting 7

sublist(T1, T2)a

sublist(T1, T2)(3)

Case

app(T5, T6, T4), app(T7, T3, T5)b

EvalT1/T3, T2/T4

ε

Eval

app(T11, T8, T9)d

Split
T3/T8, T5/T9, T6/T10, T7/T11

app(T5, T6, T4) c

Split

Inst

T11/T5, T8/T6, T9/T4

app(T11, T8, T9)(1) | app(T11, T8, T9)(2)

Case

� | app(T11, T8, T12)(2)e

Eval

T8/T12, T9/T12, T11/[]

app(T11, T8, T12)(2)g

Suc

app(T11, T8, T9)(2) f

Eval

Inst

T12/T9

app(T16, T13, T15)h

Eval
T8/T13,

T12/.(T14, T15),

T11/.(T14, T16)

Inst

T11/T16,
T8/T13,

T9/T15
ε

Eval

Fig. 3. Derivation Graph for the sublist Program

Inst edges can be drawn in

the derivation graph if the

current state s represents

a subset of those concrete

states that are represented

by an already existing state

s′ (i.e., s is an instance of

s′). Essentially, this holds if

there is a matching substi-

tution µ making s′ equal to

s. Moreover, s and s′ must

have the same groundness

information (modulo µ).

Then we say that µ is asso-

ciated to s and label the

Inst edge from s to s′ by

µ. So µ = {T11/T16, T8/T13,
T9/T15} is associated to h

and the edge from h to d is

labeled with µ.

Moreover, we also need a Split inference rule which splits up queries to make the

Inst rule applicable. In our example, we split the query (app(T5, T6, T4), app(T7, T3,

T5)) in state b. Otherwise, when evaluating the first atom app(T5, T6, T4) by the

program clause (2), we use the substitution {T5/.(T12, T14), T6/T15, T4/.(T12, T13),

T7/T16, T3/T10} and reach a state with the query app(T14, T15, T13), app(T16, T10,

.(T12, T14)). But this new state is no instance of the state b, as we would need to

match T5 both to T14 and to .(T12, T14). So without splitting queries, we would get

an infinite derivation where no resulting state is an instance of a former state.

When splitting away the first atom t of a query, we over-approximate the possible

answer substitutions for t by a substitution δ.9 While δ is just a variable renaming

of the abstract variables, we use groundness analysis (see e.g., (Howe and King

2003)) to infer a set NextG(t,G) of abstract variables of t which are instantiated to

ground terms in every successful derivation starting from a concretization of t. More

precisely, let GroundP : Σ×2IN → 2IN be a groundness analysis function. So if p/n ∈
Σ, {i1, . . . , im} ⊆ {1, . . . , n}, and GroundP(p, {i1, . . . , im}) = {j1, . . . , jk}, then any

successful derivation of p(t1, . . . , tn) where ti1 , . . . , tim are ground leads to an answer

substitution θ where tj1θ, . . . , tjkθ are ground. Thus, GroundP approximates which

positions of p will become ground if the “input” positions i1, . . . , im are ground.

Then, we define NextG(p(t1, . . . , tn),G) = {V(tj) | j ∈ GroundP(p, {i | V(ti) ⊆
G})}. In the Split rule, the variables in NextG(t,G) are renamed according to δ

and added to the set G of abstract variables representing ground terms.

In our example, we infer that every successful evaluation of app(T5, T6, T4) instan-

9 The Split rule is only applicable to states containing just a single goal. In our implementation,
we use an additional inference rule to split up sequences of goals, but we omitted it in the paper
for readability. See (Schneider-Kamp et al. 2010) and (Ströder et al. 2012) for more details.

8 Ströder et al.

tiates the terms represented by T5 and T6 to ground terms. If δ is a renaming with

δ = {T3/T8, T5/T9, T6/T10, T7/T11}, we have NextG(app(T5, T6, T4),G)δ = {δ(T5),

δ(T6)} = {T9, T10}. So while the first successor of the Split rule has the query

app(T5, T6, T4), the second successor has the query app(T11, T8, T9) where T9 only

represents ground terms. We say that δ is associated to the node where we applied

the Split rule and we label the edge from this node to its second successor with δ.

So in our example, δ is associated to b and the edge from b to d is labeled with δ.

See (Schneider-Kamp et al. 2010) for more details, further inference rules (in

order to handle also non-definite programs), and more explanation on the graph

construction. We always require that derivation graphs are finite, that they may

not contain cycles consisting only of Inst edges, and that all leaves of the graph

are states with empty sequences ε of goals. Note that the derivation graph10 in Fig.

3 is already an over-approximation of the original program since rules like Eval

or Split may introduce abstract states representing concrete states which are not

reachable from the initial class of queries.

To obtain a transformation which over-approximates the complexity of the orig-

inal program (i.e., where the innermost runtime complexity of the resulting TRS is

an upper bound for the complexity of the Prolog program), we encode the paths of

the derivation graph. In this way, we can represent backtracking explicitly.

5 Complexity Analysis by Synthesizing TRSs from Derivation Graphs

In Sect. 5.1 we first present our approach to generate TRSs from derivation graphs.

Afterwards, in Sect. 5.2 we show how to use these TRSs in order to obtain an upper

bound on the complexity of the original Prolog program.

5.1 Synthesizing TRSs from Derivation Graphs

For a derivation graph G and an inference rule Rule, let Rule(G) denote all nodes

of G to which Rule has been applied. We denote by Succi(s) the i-th child of node

s and by Succi(Rule(G)) the set of i-th children of all nodes from Rule(G).

To obtain a TRS from G, we encode the states as terms. For each state s, we use

two fresh function symbols f ins and fouts . The arguments of f ins are the abstract va-

riables in G (which represent ground terms). The arguments of fouts are those ab-

stract variables which will be instantiated by ground terms after the successful eval-

uation of the query in s. To determine them, we again use groundness analysis.

Formally, the encoding of states is done by two functions renin and renout . For b,

we obtain renin(b) = f inb (T4) (since G = {T4} in b) and renout(b) = foutb (T5, T6, T7,

T3) (since every successful evaluation of (app(T5, T6, T4), app(T7, T3, T5)) where T4
is instantiated by a ground term instantiates T5, T6, T7, T3 by ground terms as well).

For an Inst node (i.e., a node like c which has an Inst edge labeled by a match-

ing substitution µ to another node d), we do not introduce fresh function symbols.

Instead, we take the terms resulting from its successor d, but we apply the match-

10 The application of inference rules to abstract states is not deterministic and, thus, we may
obtain a different derivation graph if we use a different heuristic for the application of the rules.

Automated Complexity Analysis for Prolog by Term Rewriting 9

ing substitution µ to them. In other words, we have renin(c) = renin(d)µ =

f ind (T9)µ = f ind (T4) and renout(c) = renout(d)µ = foutd (T11, T8)µ = foutd (T5, T6).

Definition 4 (Encoding States as Terms)

For an abstract state s = (S;G), we define the functions renin and renout by:

renin(s) =

{
renin(Succ1(s))µ, if s ∈ Inst(G) where µ is associated to s

f ins (Gin(s)), otherwise, where Gin(S;G) = G ∩ V(S)

renout(s) =


renout(Succ1(s))µ, if s ∈ Inst(G) where µ is associated to s

fouts (Gout(s)), otherwise, where11 Gout((t1, . . . , tk);G)

= NextG((t1, . . . , tk),G ∩ V(S))

Here, we extended NextG to work not only on atoms, but also on queries:

NextG((t1, . . . , tk),G) = NextG(t1,G) ∪ NextG((t2, . . . , tk), G ∪NextG(t1,G)).

So to compute NextG((t1, . . . , tk),G) for a query (t1, . . . , tk), in the beginning we

only know that the abstract variables in G represent ground terms. Then we com-

pute the variables NextG(t1,G) which are instantiated by ground terms after suc-

cessful evaluation of t1. Next, we compute the variables NextG(t2, G∪NextG(t1,G))

which are instantiated by ground terms after successful evaluation of t2, etc.

Now we encode the paths of G as rewrite rules. However, we only consider certain

connection paths of G which suffice to approximate the complexity of the program.

Connection paths are non-empty paths that start in the root node of the graph or

in a successor state of an Inst or Split node, provided that these states are not

Inst or Split nodes themselves. So the start states in our example are a, d, and g.

Moreover, connection paths end in an Inst, Split, or Suc node or in the successor

of an Inst node, while not traversing Inst or Split nodes or successors of Inst

nodes in between. So in our example, the end states are b, c, d, e, f, g, h, but

apart from e, the paths may not traverse any of these end nodes.

Thus, we have connection paths from a to b, from d to e, from d to f, from d

to g, and from g to h. These paths cover all ways through the graph except for

Inst edges (which are covered by the encoding of states to terms), for graph parts

without cycles or Suc nodes (which are irrelevant since they represent evaluations

which fail in constant time), and for Split edges (which we consider later in Def. 7).

Definition 5 (Connection Path)

A path π = s1 . . . sk is a connection path of a derivation graph G iff k > 1 and

• s1 ∈ {root(G)} ∪ Succ1(Inst(G) ∪ Split(G)) ∪ Succ2(Split(G))

• sk ∈ Inst(G) ∪ Split(G) ∪ Suc(G) ∪ Succ1(Inst(G))

• for all 1 ≤ j < k, sj /∈ Inst(G) ∪ Split(G)

• for all 1 < j < k, sj /∈ Succ1(Inst(G))

This consideration of paths is similar to our approaches for termination analysis

(Schneider-Kamp et al. 2010; Ströder et al. 2011), but now the paths are used to

generate a TRS instead of a logic program. Moreover, for complexity analysis we

11 To ease readability, in the definition of Gout we restricted ourselves to states with only one goal.
See (Ströder et al. 2012) for a definition considering also states with sequences of goals.

10 Ströder et al.

need a more sophisticated treatment of Split nodes than for termination analysis.

The reason is that for termination, we only have to approximate the form of the

answer substitutions that are computed for the first successor of a Split node. This

suffices to analyze termination of the evaluations starting in the second successor.

For complexity analysis, however, we also need to know how many answer substi-

tutions are computed for the first successor of a Split node, since the evaluation

of the second successor is repeated for each such answer substitution.

To convert connection paths to rewrite rules, the idea is to consider a path as

a clause, where the first state of the path is the clause head, the last state of

the path is the clause body, and we apply all substitutions along the path to the

clause head. For instance, the connection path from a to b is considered as a clause

sublist(T3, T4) :- app(T5, T6, T4), app(T7, T3, T5), where the head of the clause results

from applying the substitution {T1/T3, T2/T4} to the query in state a.

Then we construct TRSs similar to the direct transformation from Sect. 3. So

if π is the connection path from a to b and if σπ are the substitutions on its

edges, then the rewrite rules corresponding to π evaluate the instantiated input

term renin(a)σπ for the start node a to its output term renout(a)σπ provided

that the input term renin(b) for the end node can be evaluated to its output term

renout(b). Thus, we obtain the rules renin(a)σπ → ua,b(renin(b), V(renin(a)σπ))

and ua,b(renout(b), V(renin(a)σπ))→ renout(a)σπ. In our example, this yields

(4a) f ina (T4)→ ua,b(f inb (T4), T4)

(4b) ua,b(foutb (T5, T6, T7, T3), T4)→ fouta (T3)

However, connection paths π′ like the one from d to e where the end node is a Suc

node, are considered like a clause app([], T12, T12) :-�, i.e., like a fact. Thus, here

the resulting rewrite rule directly evaluates the instantiated input term renin(d)σπ′

for the start node d to its output term renout(d)σπ′ . Thus, we obtain

(5) f ind (T12)→ foutd ([], T12)

The rewrite rules for the connection path from d to g encode that the Suc node

e contains another goal which is evaluated as well (when backtracking). So instead

of backtracking, in the TRS we have a non-deterministic choice to decide whether

to apply Rule (5) or the Rules (6a) and (6b) when evaluating a term built with f ind .

(6a) f ind (T12)→ ud,g(f ing (T12), T12)

(6b) ud,g(foutg (T11, T8), T12)→ foutd (T11, T8)

Definition 6 (Rules for Connection Paths)
For a connection path π = s1 . . . sk, the substitution σπ is obtained by composing all

substitutions on the edges of the path. So formally, we define σπ as follows (where σ

is the associated substitution of the node sk−1 and id is the identical substitution):

σs1...sk =


id, if k = 1

σs1...sk−1
σ, if sk−1 ∈ Eval(G), sk = Succ1(sk−1)

σs1...sk−1
, otherwise

Moreover, we define the rewrite rules corresponding to π as follows. If sk ∈

Automated Complexity Analysis for Prolog by Term Rewriting 11

Suc(G), then ConnectionRules(π) = {renin(s1)σπ → renout(s1)σπ}. Otherwise,

ConnectionRules(π) = { renin(s1)σπ → us1,sk(renin(sk), V(renin(s1)σπ)),

us1,sk(renout(sk), V(renin(s1)σπ)) → renout(s1)σπ },

where us1,sk is a fresh function symbol.

So in addition to the rules (4a), (4b), (5), (6a), (6b) above, we obtain the rules

(7a) and (7b) for the path from d to f, and (8a) and (8b) for the path from g to h.

(7a) f ind (T9)→ ud,f(f ing (T9), T9)

(7b) ud,f(foutg (T11, T8), T9)→ foutd (T11, T8)

(8a) f ing (.(T14, T15))→ ug,h(f ind (T15), T14, T15)

(8b) ug,h(foutd (T16, T13), T14, T15)→ foutg (.(T14, T16), T13)

In addition to the rules for the connection paths, we also need rewrite rules to

simulate the evaluation of Split nodes like b. Let δ be the substitution associated

to b (i.e., δ is a variable renaming used to represent the answer substitution of b’s

first successor c). Then the Split node b succeeds (i.e., renin(b) δ can be evaluated

to renout(b) δ) if both successors c and d succeed (i.e., renin(c) δ can be evaluated

to renout(c) δ and renin(d) can be evaluated to renout(d)). So we obtain

(9a) f inb (T4)→ ub,c(f ind (T4), T4)

(9b) ub,c(foutd (T9, T10), T4)→ uc,d(f ind (T9), T4, T9, T10)

(9c) uc,d(foutd (T11, T8), T4, T9, T10)→ foutb (T9, T10, T11, T8)

Definition 7 (Rules for Split Nodes, Corresponding TRS of a Derivation Graph)
Let s ∈ Split(G), s1 = Succ1(s), and s2 = Succ2(s). Moreover, let δ be the substi-

tution associated to s. Then SplitRules(s) =

{ ren in(s) δ → us,s1(ren in(s1) δ, V(ren in(s) δ)),
us,s1(renout(s1) δ, V(ren in(s) δ)) → us1,s2(ren in(s2), V(ren in(s) δ) ∪ V(renout(s1)δ)),
us1,s2(renout(s2), V(ren in(s) δ) ∪ V(renout(s1) δ)) → renout(s) δ }.

So the TRS R(G) corresponding to G consists of ConnectionRules(π) for all con-

nection paths π of G and of SplitRules(s) for all Split nodes s of G.

In our example, R(G) = {(4a), (4b), (5), (6a), (6b), (7a), (7b), (8a), (8b), (9a), (9b), (9c)}.

5.2 Using TRSs for Complexity Analysis of Prolog Programs

By the approach of Sect. 5.1, we can now automatically generate a TRS from a

Prolog program. However, for complexity analysis, this TRS still has similar draw-

backs as the one obtained by the direct transformation of Sect. 3. The problem is

that the evaluation with the TRS still does not simulate the traversal of the whole

SLD tree by backtracking. So the innermost runtime complexity for the TRS R
with the rules (4a), (4b), . . . , (9a), (9b), (9c) is only linear whereas the runtime

complexity of the original Prolog program is quadratic.

The problem is due to the Split nodes of the derivation graph. If the first suc-

cessor of a Split node (i.e., a node like c) has k answer substitutions, then the

evaluation of the second successor of the Split node (i.e., the evaluation of d) is

repeated k times. Currently, this is not reflected in the TRS.

12 Ströder et al.

To solve this problem, we now generate two separate TRSs Rc and Rd for the

subgraphs starting in the two successors c and d of a Split node like b, and multiply

their corresponding complexity functions ircRc,R and ircRd,R. Here, ircRc,R differs

from the ordinary innermost runtime complexity function ircR by only counting

those rewrite steps that are done with the sub-TRS Rc ⊆ R.

So in general, for any R′ ⊆ R, the function ircR′,R maps any n ∈ IN to the maxi-

mal number of
i→R′ -steps that occur in any sequence of

i→R-steps starting with a

basic term t where |t| ≤ n. Related notions of “relative” complexity for TRSs were

used in (Avanzini and Moser 2009; Hirokawa and Moser 2008; Noschinski et al.

2011; Zankl and Korp 2010), for example. Existing automated complexity provers

like AProVE can also approximate ircR′,R asymptotically.

The function ircRc,R indeed yields an upper bound for the number k of answer

substitutions for c, because the number of answer substitutions cannot be larger

than the number of evaluation steps. In our example, both the runtime and the

number of answer substitutions for the call app(T5, T6, T4) in node c is linear in the

size of T4’s concretization. Thus, the call app(T11, T8, T9) in node d, which has linear

runtime itself, needs to be repeated a linear number of times. Thus, by multiplying

the linear runtime complexities of ircRc,R and ircRd,R, we obtain the correct result

that the runtime of the original Prolog program is (at most) quadratic.

Note that if the first successor c of a Split node only had a constant number k

of answer substitutions (i.e., if k did not depend on the size of c’s arguments), then

instead of multiplying the runtimes of the two TRSs Rc and Rd for the successors

of the Split node, it would be sufficient to add them. Since such an addition is

already encoded in the SplitRules of Def. 7, we do not need to consider separate

TRSs for the successors of such Split nodes. We call a Split node multiplicative

if the number of answer substitutions of its first successor is not bounded by a

constant and let mults(G) be the set of all multiplicative Split nodes of G. So in

our example, mults(G) = {b}. We will present a sufficient syntactic criterion to

detect non-multiplicative Split nodes in Def. 13.
A

MULTIPLICATIVE SPLIT

B C

MULTIPLICATIVE SPLIT

D E

Fig. 8. Decomposing Graphs

So in order to infer an upper bound on the com-

plexity of a Prolog program, we use the multiplica-

tive Split nodes of its derivation graph G to de-

compose G into subgraphs, such that multiplica-

tive Split nodes only occur as the leaves of sub-

graphs. For example, consider Fig. 8 where a deriva-

tion graph has been decomposed into the subgraphs

A, . . . , E (the subgraphs A and C include the re-

spective multiplicative Split node as one of its

leaves). We now determine the runtime complexi-

ties ircR(GA),R(G), . . . , ircR(GE),R(G) separately and

then we combine them in order to obtain an upper bound for the runtime of the

whole Prolog program. As discussed above, the runtime complexity functions re-

sulting from subgraphs of a multiplicative Split node have to be multiplied. In

contrast, the runtimes of subgraphs above a multiplicative Split node have to be

added. So for the graph in Fig. 8, we obtain ircRA(G),R(G)(n) + ircRB(G),R(G)(n) ·

Automated Complexity Analysis for Prolog by Term Rewriting 13

(ircRC(G),R(G)(n) + ircRD(G),R(G)(n) · ircRE(G),R(G)(n)) as an approximation for

the complexity of the Prolog program.

To ensure that the derivation graph can indeed be decomposed into subgraphs as

desired, we have to ensure that no multiplicative Split node can reach itself again.

Definition 9 (Decomposable Derivation Graphs)
A derivation graph G is called decomposable iff there is no non-empty path from a

node s ∈ mults(G) to itself.

The graph in Fig. 3 is indeed decomposable. However, decomposability is a real

restriction and there are programs in the TPDB whose complexity we cannot ana-

lyze, because our graph construction yields a non-decomposable derivation graph.

Now for any node s, the subgraph at node s is the subgraph which starts in s and

stops when reaching multiplicative Split nodes.

Definition 10 (Subgraphs of Derivation Graphs)
Let G be a decomposable derivation graph with nodes V and edges E (i.e., G =

(V,E)) and let s ∈ V . Then we define the subgraph of G at node s as the minimal

graph Gs = (Vs, Es) where s ∈ Vs and whenever s1 ∈ Vs\mults(G) and (s1, s2) ∈ E,

then s2 ∈ Vs and (s1, s2) ∈ Es.
Now we decompose the derivation graph into the subgraph at the root node and

into the subgraphs at all successors of multiplicative Split nodes. So the graph in

Fig. 3 is decomposed into Ga, Gc, and Gd, where Ga contains the 4 nodes from a to

b and to ε, Gc contains all other nodes, and Gd contains all nodes of Gc except c.

Here, R(Ga) consists of ConnectionRules(π) for the connection path π from

a to b and of SplitRules(b), i.e., R(Ga) = {(4a), (4b), (9a), (9b), (9c)}. For both

subgraphs Gc and Gd, we get the same TRS, because c is an instance of d, i.e.,

R(Gc) = R(Gd) = {(5), (6a), (6b), (7a), (7b), (8a), (8b)}.
To obtain an upper bound for the complexity of the original logic program, we

now combine the complexities of the sub-TRSs as discussed before. So we multiply

the complexities resulting from subgraphs of multiplicative Split nodes, and add

all other complexities. The function cplx s(n) approximates the runtime of the logic

program which is represented by the subgraph of G at node s.

Definition 11 (Complexity for Subgraphs)
Let G = (V,E) be a decomposable derivation graph. For any s ∈ V and n ∈ IN, let

cplx s(n) =

{
cplxSucc1(s)(n) · cplxSucc2(s)(n), if s ∈ mults(G)

ircR(Gs),R(G)(n) + Σs′ ∈mults(G)∩Gs
cplx s′(n), otherwise

So in our example, we obtain:

cplx a(n) = ircR(Ga),R(G)(n) + cplx b(n)

= ircR(Ga),R(G)(n) + cplx c(n) · cplx d(n)

= ircR(Ga),R(G)(n) + ircR(Gc),R(G)(n) · ircR(Gd),R(G)(n)

Thm. 12 states that combining the complexities of the TRSs as in Def. 11 indeed

yields an upper bound for the complexity of the original Prolog program.12

12 All proofs can be found in (Ströder et al. 2012).

14 Ströder et al.

Theorem 12 (Complexity Analysis for Prolog Programs)
Let P be a Prolog program, p ∈ Σ, m a moding function, and G a decomposable

derivation graph for P and the queries Qp
m. Then prcP,Qp

m
(n) ∈ O(cplx root(G)(n)).

For our example program, automated tools for complexity analysis of TRSs like

AProVE automatically prove that13 ircR(Ga),R(G)(n) ∈ O(n), ircR(Gc),R(G)(n) ∈
O(n), and ircR(Gd),R(G)(n) ∈ O(n). This implies cplx a(n) = ircR(Ga),R(G)(n) +

ircR(Gc),R(G)(n) · ircR(Gd),R(G)(n) ∈ O(n2) and, thus, also prcP,Qsublist
m

(n) ∈ O(n2).

It remains to explain how to automatically identify non-multiplicative Split

nodes. To this end, we have to prove that the number of answer substitutions for the

first successor of a Split node is bounded by a constant. In our implementation,

we use a sufficient criterion which can easily be checked automatically, cf. Def. 13

and Thm. 14. As future work, we could improve our analysis by combining it with

other tools for determinacy analysis (e.g., (Kriener and King 2011; López-Garćıa

et al. 2005; Mogensen 1996; Sahlin 1991)). These tools can prove upper bounds on

the number of answer substitutions for a given class of queries.

Definition 13 (Determinacy Criterion)
A node s in G satisfies the determinacy criterion if condition (a) or (b) holds:

(a) All successors of s satisfy the determinacy criterion. Moreover, if s ∈ Suc(G),

then there is no non-empty path from s to a Suc node in G.
(b) The node s is a Split node and at least one of Succ1(s) or Succ2(s) cannot

reach a Suc node in G.

The following theorem shows that the above determinacy criterion can indeed be

used to detect Split nodes that are not multiplicative.

Theorem 14 (Soundness of Determinacy Criterion)
Let G be a complexity graph. Let s be a node in G which satisfies the determinacy

criterion of Def. 13. Then for any concretization of s, its evaluation results in at

most one answer substitution. Thus if s′ is a Split node and Succ1(s′) satisfies the

determinacy criterion, then s′ is not multiplicative.

6 Experiments and Conclusion

We proposed a new method to determine asymptotic upper bounds for the runtime

complexity of Prolog programs automatically, based on a transformation to term

rewriting. First, we showed that the existing transformations from logic programs to

TRSs can yield a TRS whose runtime complexity is not an asymptotic upper bound

for the runtime complexity of the original logic program. Thus, we presented a novel

transformation where each asymptotic upper bound for the runtime complexity of

the resulting TRS is also an upper bound for the runtime complexity of the original

logic program. This transformation is also applicable to non-well-moded logic pro-

grams and programs using built-in predicates like cuts. For this transformation, we

also developed a new criterion for determinacy of Prolog programs, based on deriva-

13 Note that we even have ircR(Ga),R(G)(n) ∈ O(1), i.e., the linear bound found by AProVE is not
tight. This indicates that our approach does not always yield precise bounds. However, most
bounds detected in our experiments are in fact tight.

Automated Complexity Analysis for Prolog by Term Rewriting 15

AProVE CASLOG CiaoPP steps ub CiaoPP res steps

O(1) 54 1 3 3
O(n) 108 21 19 18
O(n2) 42 4 4 4
O(n · 2n) 0 3 3 3

Total bounds 204 29 29 28
Runtime in s 6122 7042 5579 5953

Table 1. Results on all 477 programs from the Termination Problem Data Base

tion graphs. We implemented the transformation in our fully automated termination

and complexity prover AProVE (Giesl et al. 2006). To compare its power and per-

formance to existing direct approaches for cost analysis of Prolog, we evaluated it

against the Complexity Analysis System for LOGic (CASLOG) (Debray and Lin 1993)

and against the Ciao Preprocessor (CiaoPP) (Bueno et al. 2004), which implements

the approach of (López-Garćıa et al. 2010). To this end, we ran the three tools on all

477 Prolog programs from the Termination Problem Data Base. For CiaoPP we used

both the original cost analysis (“steps ub”) and CiaoPP’s new resource framework

which allows to measure different forms of costs. Here, we chose the cost measure

“res steps” which approximates the number of resolution steps needed in evalua-

tions. Moreover, we also used CiaoPP to infer the mode and measure information

required by CASLOG. The experiments were run on 2.2 GHz Quad-Opteron 848

Linux machines with a timeout of 60 seconds per program (as in the competition

on automated complexity analysis).

Table 1 shows the results of our experiments with one column for each tool.

The first four rows give the number of programs that could be shown to have a

constant bound (O(1)), a linear or quadratic polynomial bound (O(n) or O(n2)),

or an exponential bound (O(n · 2n)). In Rows 5 and 6 we give the total number of

upper bounds that could be found by the tool and its total runtime on the whole

example set, respectively. We highlight the best tool for each row using bold font.

For the details of this empirical evaluation and to run AProVE via a web interface,

we refer to http://aprove.informatik.rwth-aachen.de/eval/plcost/.14

The table shows that AProVE can find upper bounds for a much larger subset

(> 42%) of the programs than any of the other tools (≈ 6%). However, there are

also 9 examples where CASLOG or CiaoPP can prove constant (1), linear (5), or

exponential bounds (3), whereas AProVE fails (5) or finds a weaker bound (4). In

summary, the experiments clearly demonstrate that our transformational approach

for determining upper bounds advances the state of the art in automated complexity

analysis of logic programs significantly.

Acknowledgements. We thank M. Hermenegildo and P. López-Garćıa for their dedi-

cated support. Without it, the experimental comparison with CASLOG and CiaoPP would

not have been possible. We also thank N.-W. Lin for agreeing to make the updated version

of CASLOG (running under Sicstus 4 or Ciao) available on our paper’s web page.

14 This website also contains an extended version of the paper with all proofs (Ströder et al. 2012).

16 Ströder et al.

References

Apt, K. R. 1997. From Logic Programming to Prolog. Prentice Hall.

Avanzini, M., Moser, G., and Schnabl, A. 2008. Automated implicit computational
complexity analysis. In Proc. IJCAR ’08. LNAI 5195. 132–138.

Avanzini, M. and Moser, G. 2009. Dependency pairs and polynomial path orders. In
Proc. RTA ’09. LNCS 5595. 48–62.

Baader, F. and Nipkow, T. 1998. Term Rewriting and All That. Cambridge University
Press.

Bonfante, G., Cichon, A., Marion, J.-Y., and Touzet, H. 2001. Algorithms with
polynomial interpretation termination proof. Journal of Functional Programming 11, 1,
33–53.

Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., López-Garćıa, P., and
Puebla, G. 2004. The Ciao system. Tech. rep., UPM. Available from http://www.

ciaohome.org.

Debray, S. K. and Lin, N.-W. 1993. Cost analysis of logic programs. ACM Transactions
on Programming Languages and Systems 15, 826–875.

Debray, S. K., López-Garćıa, P., Hermenegildo, M. V., and Lin, N.-W. 1997. Lower
bound cost estimation for logic programs. In Proc. ILPS ’97. MIT Press, 291–305.

Giesl, J., Schneider-Kamp, P., and Thiemann, R. 2006. AProVE 1.2: Automatic
termination proofs in the dependency pair framework. In Proc. IJCAR ’06. LNAI 4130.
281–286.

Hill, P. M. and King, A. 1997. Determinacy and determinacy analysis. Journal of
Programming Languages 5, 1, 135–171.

Hirokawa, N. and Moser, G. 2008. Automated complexity analysis based on the de-
pendency pair method. In Proc. IJCAR ’08. LNAI 5195. 364–379.

Howe, J. M. and King, A. 2003. Efficient groundness analysis in Prolog. Theory and
Practice of Logic Programming 3, 1, 95–124.

ISO/IEC 13211-1. 1995. Information technology - Programming languages - Prolog.

King, A., Shen, K., and Benoy, F. 1997. Lower-bound time-complexity analysis of logic
programs. In Proc. ILPS ’97. MIT Press, 261–285.

Kriener, J. and King, A. 2011. RedAlert: Determinacy inference for Prolog. Theory and
Practice of Logic Programming 11, 4-5, 537–553.

López-Garćıa, P., Bueno, F., and Hermenegildo, M. 2005. Determinacy analysis for
logic programs using mode and type information. In Proc. LOPSTR ’05. LNCS 3573.
19–35.

López-Garćıa, P., Darmawan, L., and Bueno, F. 2010. A framework for verification
and debugging of resource usage properties. In Technical Communications of ICLP ’10.
LIPIcs 7. Dagstuhl Publishing, 104–113.

Marion, J.-Y. and Péchoux, R. 2008. Characterizations of polynomial complexity
classes with a better intensionality. In Proc. PPDP ’08. ACM Press, 79–88.

Mogensen, T. 1996. A semantics-based determinacy analysis for Prolog with cut. In
Proc. Ershov Memorial Conference ’96. LNCS 1181. 374–385.

Noschinski, L., Emmes, F., and Giesl, J. 2011. The dependency pair framework for
automated complexity analysis of term rewrite systems. In Proc. CADE ’11. LNAI
6803. 422–438.

Ohlebusch, E. 2001. Termination of logic programs: Transformational methods revisited.
Applicable Algebra in Engineering, Communication and Computing 12, 1–2, 73–116.

Sahlin, D. 1991. Determinacy analysis for full Prolog. In Proc. PEPM ’91. ACM Press,
23–30.

Automated Complexity Analysis for Prolog by Term Rewriting 17

Schneider-Kamp, P., Giesl, J., Serebrenik, A., and Thiemann, R. 2009. Automated
termination proofs for logic programs by term rewriting. ACM Transactions on Com-
putational Logic 11, 1.

Schneider-Kamp, P., Giesl, J., Ströder, T., Serebrenik, A., and Thiemann, R.
2010. Automated termination analysis for logic programs with cut. In Proc. ICLP ’10,
Theory and Practice of Logic Programming 10, 4-6, 365–381.

Ströder, T., Schneider-Kamp, P., and Giesl, J. 2011. Dependency triples for im-
proving termination analysis of logic programs with cut. In Proc. LOPSTR ’10. LNCS
6564. 184–199.

Ströder, T., Emmes, F., Schneider-Kamp, P., Giesl, J., and Fuhs, C. 2011. A linear
operational semantics for termination and complexity analysis of ISO Prolog. In Proc.
LOPSTR ’11. To appear. Available from http://aprove.informatik.rwth-aachen.

de/eval/plcost/.

Ströder, T., Emmes, F., Giesl, J., Schneider-Kamp, P., and Fuhs, C. 2012. Au-
tomated complexity analysis for Prolog by term rewriting. Tech. Rep. AIB 2012-05,
RWTH Aachen. Available from http://aib.informatik.rwth-aachen.de/ and from
http://aprove.informatik.rwth-aachen.de/eval/plcost/.

Waldmann, J. 2010. Polynomially bounded matrix interpretations. In Proc. RTA ’10.
LIPIcs 6. Dagstuhl Publishing, 357–372.

Zankl, H. and Korp, M. 2010. Modular complexity analysis via relative complexity. In
Proc. RTA ’10. LIPIcs 6. Dagstuhl Publishing, 385–400.

