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Abstract. We present a new approach for automatic termination anal-

ysis of functional programs. Several methods have been presented which

try to �nd a well-founded ordering such that the arguments in the recur-

sive calls are smaller than the corresponding inputs. However, previously

developed approaches for automated termination analysis often disregard

the conditions under which the recursive calls are evaluated. Hence, the

existing methods fail for an important class of algorithms where the nec-

essary information for proving termination is `hidden' in the conditions.

In this paper we develop the inductive evaluation method which ana-

lyzes the auxiliary functions occurring in the conditions of the recursive

calls. We also discuss an extension of our method to partial functions

in order to determine their domains automatically. The proposed tech-

nique proved successful for termination analysis of numerous algorithms

in functional as well as imperative programming languages.

1 Introduction

Proving termination is a central problem in the development of correct software.

While most work on the automation of termination proofs has been done for term

rewriting systems (for surveys see e.g. [Der87,Ste95]) and for logic programs (e.g.

[UvG88,Pl�u90,SD94]), in this paper we consider functional programs.

A well-known method for termination proofs of lisp functions has been im-

plemented in the nqthm system of R. S. Boyer and J S. Moore [BM79]. To

prove that arguments decrease w.r.t. a well-founded ordering, they use a mea-

sure function j:j which maps data objects t to natural numbers jtj. In their

approach, for each recursive call f(r) in an algorithm f(x), an induction lemma

�! jrj < jxj is required. It asserts that under the condition �, the argument of

the recursive call has a smaller measure than the input. Now it remains to verify

 ! � where  is the condition under which the recursive call f(r) is performed.

While in [BM79] the user has to supply all induction lemmata, the methods in

[Wal94b,Gie95c,GWB98] synthesize a certain class of induction lemmata auto-

matically. The technique in [Wal94b] is restricted to one �xed measure function

j:j, but the approach of [Gie95c,GWB98] also allows an automatic generation of

suitable measures by using techniques from the area of term rewriting systems.

To synthesize an induction lemma for a recursive call f(r) under the condi-

tion  , these methods analyze the auxiliary functions occurring in the recursive
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argument r. However, auxiliary functions in the condition  are ignored at this

point. Consequently, the previous approaches often fail if the necessary informa-

tion for the termination proof is given by the functions called in the conditions.

We illustrate this problem in Sect. 2. In Sect. 3 we present the inductive

evaluation technique which overcomes this drawback by combining termination

analysis with methods for induction theorem proving. While in Sect. 3 our aim

is to show that a procedure terminates for each input, in Sect. 4 the method

is generalized for termination analysis of functions which terminate for some

inputs only. In Sect. 5 the techniques are extended for analysis of more complex

procedures and Sect. 6 draws some conclusions.

2 Termination of Functional Programs

We regard an eager �rst-order functional language with free algebraic data types

1

and pattern matching where the patterns have to be exhaustive and exclusive.

As an example consider the data types bool and nat (for naturals). The type bool

has the nullary constructors true and false and the objects of type nat are built

with the constructors 0 and s : nat! nat. The following procedures compute

the `less than or equal' relation for naturals and the subtraction function.

function le : nat� nat! bool

le(0; v) = true

le(s(u); 0) = false

le(s(u); s(v)) = le(u; v)

function minus : nat� nat! nat

minus(x; y) = if( le(x; y);

0;

s(minus(x; s(y))) )

For each data type � there is a pre-de�ned conditional function if : bool���

� ! � . These conditionals are the only functions with non-eager semantics, i.e.

when evaluating if( ; t

1

; t

2

), the boolean term

2

 is evaluated �rst and depending

on the result of its evaluation either t

1

or t

2

is evaluated afterwards.

An algorithm f is terminating if the inputs are `greater' than the arguments

of the recursive calls. For instance, termination of le can be shown by inventing

a measure function j:j satisfying le's termination hypothesis

ju; vj < js(u); s(v)j: (1)

We only regard universally quanti�ed formulas of the form 8...', where we

omit the quanti�ers to ease readability. Now `veri�cation of '' means proving

that ' evaluates to true for all instantiations of its variables with data objects.

For termination proofs we extend the speci�cation by a new data type weight,

new measure function symbols j:j : � ! weight for each data type � 6= weight,

and a function symbol < : weight� weight! bool. To compare tuples of terms,

we also introduce new n-ary tuple symbols tuple

n

: weight� : : �weight! weight

for each n 2 IN, where we often write jt

1

; : : ; t

n

j instead of tuple

n

(jt

1

j; : : ; jt

n

j). In

1

See [NN96,Sen96,PS97] for extensions of termination analysis to higher-order lan-

guages, languages with lazy evaluation strategy, and to non-free algebraic data types.

2

We use Greek letters ';  ; ! to denote boolean terms and often refer to them as `for-

mulas', where :;^;_;! are pre-de�ned boolean functions with obvious semantics.
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the following, we restrict ourselves to interpretations where the universe for ob-

jects of type weight is the set of natural numbers IN and where < is interpreted as

the usual `less than' relation on IN. For data types � 6= weight the corresponding

universe must correspond to the set of all constructor ground terms and more-

over, all de�ning equations of the algorithms must be valid (i.e. we only consider

inductive models of the speci�cation, cf. e.g. [ZKK88,Wal94a,BR95]).

In the area of term rewriting systems, several techniques have been devel-

oped to generate suitable interpretations for the measure function symbols j:j.

For example, termination of le can be proved by using an appropriate polyno-

mial norm j:j

pol

[Lan79]. A polynomial norm is de�ned by associating each n-ary

constructor c with an n-ary polynomial pol(c) with integer coe�cients. In this

way, each data object c(t

1

; : : ; t

n

) is mapped to a number, i.e. jc(t

1

; : : ; t

n

)j

pol

=

pol(c)(jt

1

j

pol

; : : ; jt

n

j

pol

), where we always demand that the choice of the coe�-

cients ensures that data objects are only mapped to non-negative integers. For

example, if j0j

pol

= 0 and js(u)j

pol

= juj

pol

+ 1, then each data object of type

nat is mapped to a natural number, and we have juj

pol

< js(u)j

pol

since juj

pol

is smaller than juj

pol

+ 1 for each natural number juj

pol

.

Similarly, tuple symbols are also associated with polynomials mapping IN

n

to

IN. If tuple

2

(x; y) is associated with x+y, then we have ju; vj

pol

< js(u); s(v)j

pol

,

as juj

pol

+ jvj

pol

< juj

pol

+ 1+ jvj

pol

+ 1 holds for all naturals juj

pol

and jvj

pol

.

If j:j and tuple

2

are interpreted according to the above polynomial norm,

then the termination hypothesis (1) is satis�ed. Consequently, termination of le

is proved. Techniques to generate suitable polynomial norms automatically have

been developed in [Ste94,Gie95a], for instance.

Let t

�

and r

�

denote tuples of terms t

1

; : : ; t

n

and r

1

; : : ; r

n

. To prove termi-

nation of f , for every recursive call in a de�ning equation f(t

�

) = : : : f(r

�

) : : : we

build a termination hypothesis  ! jr

�

j < jt

�

j where  is the condition under

which the recursive call f(r

�

) is evaluated. (We restrict ourselves to algorithms

without recursive calls in conditions.) For instance, the recursive call of minus is

evaluated under the condition :le(x; y). So minus' termination hypothesis is

:le(x; y)! jx; s(y)j < jx; yj: (2)

Termination of a functional program f is proved if one �nds a polynomial norm

such that all termination hypotheses of f are satis�ed.

As the termination hypothesis (1) of le only contains terms built with con-

structors, a suitable polynomial norm can easily be generated automatically.

However, this is not possible for the termination hypothesis (2) of minus. The

reason is that minus calls another algorithm, le. In contrast to (1), the inequality

jt

1

; s(t

2

)j < jt

1

; t

2

j in minus' termination hypothesis does not have to be satis�ed

for all data objects t

1

and t

2

, but only for those where :le(t

1

; t

2

) is true. To

determine these data objects we have to consider the semantics of the algorithm

le. However, the existing methods for the automated generation of polynomial

norms can only be used for termination proofs if the termination hypotheses do

not contain de�ned symbols, i.e. function symbols de�ned by algorithms.
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3 Termination Proofs with Inductive Evaluation

To enable automatic termination proofs for algorithms like minus, in this section

we develop a calculus which transforms termination hypotheses like (2) into for-

mulas without de�ned symbols. Our calculus operates on pairs H ;C where H is

a set of formulas possibly containing de�ned symbols (the hypotheses) and C is

a set of formulas without de�ned symbols (the constraints). The soundness of

our calculus guarantees that if H ;C can be transformed into H

0

;C

0

, then every

interpretation (of the form as described in Sect. 2) satisfying H

0

[C

0

also satis-

�es H [ C. For termination proofs, we initialize H to be the set of termination

hypotheses and we let C be empty. Then rules of the calculus are applied re-

peatedly until we result in a pair H

0

;C

0

where the �rst component H

0

is empty.

By the soundness of the calculus, to prove the termination of the algorithm now

it su�ces to �nd a polynomial norm satisfying the constraints C

0

.

An obvious solution to eliminate the de�ned symbol le from minus' termina-

tion hypothesis is to omit its premise, i.e. we could use the following rule

3

.

Premise Elimination H [ f ! !g ; C

if ! does not contain

any de�ned symbols.

H ; C [ f!g

This is a sound transformation technique, because every interpretation sat-

isfying ! for all instantiations of its variables will also satisfy ! for those in-

stantiations which meet the condition  , i.e.  ! jr

�

j < jt

�

j may indeed be

transformed into jr

�

j < jt

�

j. Moreover, we also allow the application of this

rule if the premise  is missing, i.e. for an algorithm like le, the unconditional

termination hypothesis (1) can be directly inserted into the set of constraints.

For the termination proof of minus, we would initialize H to be f(2)g and C

to be empty. Then one application of the premise elimination rule transforms H

into the empty set and C into fjx; s(y)j < jx; yjg. However, in our example this

naive solution cannot be used, because this constraint is unsatis�able. Hence,

the termination of minus cannot be proved if the premise of its termination

hypothesis is neglected. For that reason, all previous approaches for automatic

termination proofs fail with this example.

To enable termination proofs for algorithms like minus we now introduce a

new rule which evaluates the auxiliary functions in the premises of termination

hypotheses. To construct a set of constraints su�cient for the termination hy-

pothesis (2) we use an induction w.r.t. the de�nition of the algorithm le. The

base cases of this inductive construction correspond to le's non-recursive de�ning

equations and the step case results from le's recursive (third) equation.

3

In order to obtain constraints without de�ned symbols, this rule may only be applied

if ! contains no calls of auxiliary algorithms. Hence, in this paper we restrict ourselves

to termination hypotheses  ! ! where de�ned symbols may only occur in the con-

dition  . For algorithms with de�ned symbols in the arguments of recursive calls, the

technique of the present paper is extended by the calculus of [Gie95c,Gie97,GWB98]

to eliminate the remaining de�ned symbols from the conclusion !.
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First we perform a case analysis w.r.t. le, i.e. the variables x; y in (2) are

instantiated by the patterns of le's de�ning equations. Instead of (2) we demand

:le(0; v) ! j0; s(v)j < j0; vj; (3)

:le(s(u); 0) ! js(u); s(0)j < js(u); 0j; (4)

:le(s(u); s(v)) ! js(u); s(s(v))j < js(u); s(v)j: (5)

In order to detect redundant cases, in each resulting formula we now check

whether the premise is unsatis�able. For example, (3) may be omitted as its

negated premise ::le(0; v) can be veri�ed by evaluation of le and :. As the

premises of (3) and (4) are satis�able, the corresponding proofs must fail.

In the third case (5) we use that each le-call produces a �nite sequence of

recursive calls. Hence, we assume as an induction hypothesis that the termination

hypothesis (2) is true for the arguments u and v of le's recursive call, i.e.

:le(u; v) ! ju; s(v)j < ju; vj: (6)

To apply the induction hypothesis, we check if the premise of the induction

conclusion (5) entails the premise of the induction hypothesis (6), i.e. we prove

:le(s(u); s(v))! :le(u; v): (7)

Again, the proof is trivial since le(s(u); s(v)) evaluates to le(u; v). For that reason

we may now apply the induction hypothesis (6), i.e. instead of (5) we demand

:le(s(u); s(v)) ^ ju; s(v)j < ju; vj ! js(u); s(s(v))j < js(u); s(v)j: (8)

The existing techniques for generating polynomial norms expect a set of inequali-

ties as constraints, i.e. they cannot treat constraints like jr

�

1

j < jt

�

1

j ! jr

�

2

j < jt

�

2

j.

To eliminate the inequality in the premise of (8) we use that we restricted our-

selves to interpretations where naturals are compared by the usual `less than'

relation. For arbitrary naturals k; l;m; n the conjecture [m + l � n + k]!

[k < l! m < n] holds. Hence, instead of (8) we may demand

:le(s(u); s(v)) ! js(u); s(s(v))j + ju; vj � js(u); s(v)j+ ju; s(v)j: (9)

Here, + and � are new function symbols (on weight) and we require that all

interpretations map + to the addition and � to the `less than or equal' relation.

In this way, the termination hypothesis (2) can be transformed into the for-

mulas (4) and (9). By eliminating their premises (using the premise elimina-

tion rule), we obtain two constraints without de�ned symbols. Therefore we

can now apply the existing techniques to generate a polynomial norm satis-

fying these constraints. For example, we may use the polynomial norm where

j0j

pol

= 0, js(u)j

pol

= juj

pol

+ 1, and tuple

2

(x; y) is associated with (x � y)

2

.

(Note that this is a legal polynomial norm, because all tuples of data objects

are mapped to non-negative numbers

4

.) Hence, termination of minus is proved.

4

In contrast to conventional termination proofs of term rewriting systems, for func-

tional programs one may use orderings which are not even weakly monotonic, cf.
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Recall that during the transformation of minus' termination hypothesis we

had to verify the formulas ::le(0; v) and (7). To perform the required proofs, we

simply applied symbolic evaluation, i.e. we used the de�ning equations as rewrite

rules. In general this veri�cation could require an induction theorem proving

system, e.g. [BM79,ZKK88,Bun

+

89,Wal94a,BR95,HS96]. However, when testing

our method on numerous algorithms, we found that in almost all examples the

required conjectures could already be proved by symbolic evaluation.

Let  ! jr

�

j < jt

�

j be a termination hypothesis containing at least the

pairwise di�erent variables y

1

; : : ; y

n

of the data types �

1

; : : ; �

n

. Moreover, let

g : �

1

� : : � �

n

! � be de�ned by a terminating algorithm with k de�ning

equations. To ease the presentation, we restrict ourselves to functions g which

are de�ned without using the conditional if (for an extension see Sect. 5).

Then we use the following rule for induction w.r.t. the recursions of g and

subsequent evaluation. In this rule, for any terms p; s

1

; : : : ; s

n

let p[s

�

] be an

abbreviation for p[y

1

=s

1

; : : : ; y

n

=s

n

], i.e. p[s

�

] abbreviates �(p) where � substi-

tutes each y

i

by s

i

. Moreover, throughout the paper we always assume that the

variables occurring in di�erent algorithms are disjoint.

Inductive Evaluation H [ f ! jr

�

j < jt

�

jg ; C

H [ f'

1

; : : ; '

k

g ; C

If g(s

�

) = q is the i-th de�ning equation of g, then '

i

is de�ned as follows:

- '

i

:= true if : [s

�

] can be veri�ed,

- '

i

:=  [s

�

]!

jr

�

[s

�

]j + jt

�

[q

�

]j � jt

�

[s

�

]j + jr

�

[q

�

]j

�

otherwise, if q contains a term g(q

�

)

where  [s

�

]!  [q

�

] can be veri�ed;

- '

i

:=  [s

�

]! jr

�

[s

�

]j < jt

�

[s

�

]j otherwise

In our example, for le's �rst equation we have s

�

= (0; v) and '

1

is true, as

: [s

�

] (i.e. ::le(0; v)) can be veri�ed. Similarly, '

2

is (4), i.e. here s

�

is (s(u); 0).

For le's recursive equation we have s

�

= (s(u); s(v)) and q

�

= (u; v). As the

condition (7) could be proved, the resulting formula '

3

is (9). The following

theorem proves that our rule performs a Noetherian induction, since it only

allows inductions w.r.t. functions g whose termination has been proved before.

Theorem 1. If H ;C can be transformed into H

0

;C

0

by premise elimination and

inductive evaluation, then we have H

0

[ C

0

j= H [ C.

Proof. The soundness of premise elimination is obvious. For inductive evaluation,

recall that we restricted ourselves to inductive models I . Now assume that I j=

'

i

= true for all i, but there exists a counterexample, i.e. a tuple of constructor

ground terms p

�

such that I j=  [p

�

] = true and I 6j= jr

�

[p

�

]j < jt

�

[p

�

]j = true.

Let �

g

be the relation where p

�

2

�

g

p

�

1

holds i� evaluation of g(p

�

1

) leads to

[AG97]. In fact, termination of the algorithm minus from Sect. 2 cannot be proved

by any monotonic well-founded ordering. For that reason, in our approach we re-

stricted ourselves to orderings based on polynomial norms, as most other classes of

orderings (that are amenable to automation) possess the monotonicity property.

6



evaluation of g(p

�

2

). Then by termination of g we know that �

g

is well founded.

Hence, we may choose p

�

to be a minimal counterexample w.r.t. �

g

.

There is a de�ning equation g(s

�

) = q (say, the i-th) such that p

�

= �(s

�

)

for some �. Obviously,  [s

�

] is satis�able as its instantiation  [p

�

] is valid in I .

Hence, '

i

6= true. Thus, q must contain a subterm g(q

�

) where  [s

�

] !  [q

�

]

can be veri�ed. Then I j=  [p

�

] = true implies I j=  [�(q

�

)] = true. But as

I(�(q

�

)) �

g

p

�

, due to the minimality of p

�

, I(�(q

�

)) cannot be a counterexam-

ple. Hence, we have I j= jr

�

[�(q

�

)]j < jt

�

[�(q

�

)]j = true. But then I j= '

i

= true

implies that p

�

is no counterexample either, which leads to a contradiction. ut

To select suitable functions g for inductive evaluation, we use a well-known

heuristic from induction theorem proving. For a termination hypothesis  !

jr

�

j < jt

�

j, we check whether  contains a subterm g(y

1

; : : ; y

n

) where y

i

are

pairwise di�erent variables. Such a term suggests an induction w.r.t. g using

y

1

; : : ; y

n

as induction variables, cf. e.g. [BM79,ZKK88,Bun

+

89,Wal94a]. Hence,

for the termination hypothesis of minus this heuristic suggests inductive evalua-

tion w.r.t. le using the induction variables x and y. Further re�ned heuristics to

choose among several suggested induction relations can be found in [Gie95b].

Inductive evaluation is used for algorithms where the conditions of recur-

sive calls have to be analyzed in order to prove termination. In particular, this

holds for algorithms like minus where some value is repeatedly increased until it

reaches some bound. This class of algorithms is also used extensively in impera-

tive programming languages. A straightforward approach to prove termination

of imperative programs is to transform them into functional ones and to verify

termination of the resulting functions, cf. e.g. [Hen80,GWB98]. For example, the

imperative program `r := 0; while x > y do y := y+1; r := r+1 od ' is trans-

formed into a function whose termination can be proved analogously to minus.

Hence, inductive evaluation is particularly useful when extending termination

analysis to imperative programs, cf. [BG98].

4 Termination Analysis for Partial Functions

Up to now we tried to prove that an algorithm terminates totally, i.e. for each

input. In the following, we also regard procedures which terminate for some

inputs only. For example, consider the data type list with the constructors empty

and � : nat � list! list where x�y represents the insertion of the number x in

front of the list y. Then nextindex(x; y; z) returns the smallest index i � x such

that z is the i-th element of the list y (where the �rst element has index 0).

function nth : nat� list! nat

nth(u; empty) = 0

nth(0; v�w)) = v

nth(s(u); v�w) = nth(u;w)

function eq : nat� nat! bool

eq(0; 0) = true

eq(0; s(v)) = false

eq(s(u); 0) = false

eq(s(u); s(v)) = eq(u; v)

function nextindex : nat� list� nat! nat

nextindex(x; y; z) = if( eq(nth(x; y); z); x; nextindex(s(x); y; z) )
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Let `u�v�w' abbreviate `u�(v�w)'. Hence, nextindex(2; 5�6�3�5�7�5�empty; 5) = 3.

While termination of nth and eq can easily be proved, nextindex(x; y; z) only

terminates i� z occurs in y at a position whose index is greater than or equal to

x or if z = 0 (as nth(x; y) = 0 whenever x is not an index of y). Thus, evaluation

of nextindex(2; 5�6�3�5�7�5�empty; 6) does not halt.

4.1 Termination Predicates

To represent subsets of inputs where procedures like nextindex terminate, in

[BG96] we introduced termination predicates. An n-ary boolean function �

f

is a

termination predicate for an n-ary function f i� �

f

is total and if �

f

(t

1

; : : ; t

n

) =

true implies that evaluation of f(t

1

; : : ; t

n

) halts. Our aim is to synthesize termi-

nation predicates which return true as often as possible, but of course in general

this goal cannot be reached as the domains of functions are undecidable.

In [BG96,GWB98], rules for the synthesis of termination predicates are de-

veloped. Given an algorithm f and a measure function j:j these rules generate a

procedure for �

f

such that �

f

(t

1

; : : ; t

n

) returns true i� for f(t

1

; : : ; t

n

)

(i) the sequence of arguments of (recursive) f -calls decreases under j:j and

(ii) �

g

(r

1

; : : ; r

n

) holds for each resulting auxiliary function call g(r

1

; : : ; r

n

).

For example, given j:j the following procedure is synthesized for �

nextindex

.

function �

nextindex

: nat� list� nat! bool

�

nextindex

(x; y; z) = if( eq(nth(x; y); z); true; if( js(x); y; zj < jx; y; zj;

�

nextindex

(s(x); y; z);

false ) )

The procedure �

nextindex

satis�es (i), since under the condition :eq(nth(x; y);

z) of the only recursive call in nextindex, �

nextindex

returns true i� the arguments of

this recursive call decrease (i.e. js(x); y; zj < jx; y; zj ) and if the arguments of the

subsequent recursive nextindex-calls decrease under j:j, too (i.e. �

nextindex

(s(x); y;

z) ). Furthermore, (ii) is satis�ed since the only auxiliary functions, nth and eq,

are total. As the constructors also denote total functions, we may neglect their

termination predicates. Note that �

nextindex

terminates totally by construction

since it is called recursively only if the arguments decrease under j:j.

4.2 Inductive Evaluation for Partial Functions

The synthesis of termination predicates described in [BG96] requires the user to

provide a measure function j:j. To get independent from this input, our aim is an

automated generation of suitable polynomial norms for termination predicates,

such that the corresponding termination hypotheses are satis�ed `as often as

possible'

5

. In order to �nd a suitable choice for the measure j:j in the termination

5

For algorithms with auxiliary functions in the recursive arguments (instead of the

conditions), the techniques developed for total termination [Gie95c] can be adapted

to partial functions [Bra97], cf. [GWB98].
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predicate algorithm �

nextindex

, consider the termination hypothesis of nextindex,

:eq(nth(x; y); z)! js(x); y; zj < jx; y; zj: (10)

The formula (10) cannot be transformed into satis�able constraints, since then

total termination of nextindex would be falsely proved. However, we can use in-

ductive evaluation to generate an interpretation that satis�es (10) for a maximal

number of instances. In this way, we �nally obtain a termination predicate for

nextindex that is true as often as possible.

In general, the set H of termination hypotheses is transformed into a (pos-

sibly empty) set C of inequalities that are satis�ed by a polynomial norm. For

that purpose we now also use unsound transformation rules. However, based on

the faulty transformation, for each termination hypothesis  ! jr

�

j < jt

�

j con-

taining the variables x

�

, a soundness predicate � is generated such that every

interpretation satisfying C also satis�es the restricted termination hypothesis

�(x

�

) ^  ! jr

�

j < jt

�

j. So the soundness predicate � indicates for which data

objects the transformation of  ! jr

�

j < jt

�

j into the constraints C is correct

6

.

Hence, if we interpret j:j by a polynomial norm satisfying the obtained con-

straints C, then we can modify the termination predicate algorithm and replace

the inequality jr

�

j < jt

�

j by the corresponding soundness predicate �(x

�

).

For instance, to �nd a suitable measure function for �

nextindex

we transform

the termination hypothesis (10). To exploit the premise :eq(nth(x; y); z) our

heuristic suggests inductive evaluation w.r.t. nth. According to the de�nition of

nth we have to consider two base cases and one step case. For none of these

cases the premise is unsatis�able. In the third case the induction hypothesis

may be applied as the formula :eq(nth(s(u); v�w); z)! :eq(nth(u;w); z) can

be proved by symbolic evaluation. Thus inductive evaluation and subsequent

premise elimination transform (10) into the following inequalities.

js(u); empty; zj < ju; empty; zj (11)

js(0); v�w; zj < j0; v�w; zj (12)

js(s(u)); v�w; zj+ ju;w; zj � js(u); v�w; zj+ js(u); w; zj (13)

Of course, (11)-(13) are unsatis�able, since nextindex is not totally terminating.

Hence, we do no longer demand all inequalities but we select a satis�able subset

of (11)-(13). For instance, if (11) is rejected, then (12) and (13) are satis�ed

by the polynomial norm where jemptyj

pol

= j0j

pol

= 0, js(u)j

pol

= juj

pol

+ 1,

jv�wj

pol

= jwj

pol

+ 1, and tuple

3

(x; y; z) is associated with (y � x)

2

.

In general, our aim is to �nd a maximal satis�able subset of the inequalities

and to reject as few inequalities as possible. As the number of hypotheses is

always �nite, exhaustive search could be used to determine such a maximal set

7

.

6

This is similar to the approach of [Pro96] where a proof predicate is generated from

an unsound induction proof in order to extend faulty conjectures to valid ones.

7

Rejection of an inequality means that one suspects that the algorithm does not

terminate for any input corresponding to this inequality. (Otherwise, this rejection

will result in a termination predicate which only describes a subset of the domain.)
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E�ciency can be improved if `probably polynomially satis�able' inequalities are

selected by the heuristics of [Gie95b] which have proved successful in practice.

In our example, we associate the following soundness predicate � with the

faulty transformation of (10) into (12) and (13), where �(x; y; z) is true for all

those instantiations of x, y, and z where this transformation is correct.

function � : nat� list� nat! bool

�(u; empty; z) = false

�(0; v�w; z) = true

�(s(u); v�w; z) = �(u;w; z)

The case analysis of � is given by the case analysis of the algorithm nth which

has been used for inductive evaluation of (10). The results of � are created de-

pending on the transformation steps performed during the inductive evaluation.

Since inequality (11) for y = empty has been rejected, � returns false for that

case. Analogously, as (12) was kept as a constraint, this results in the value true

for x = 0 and y = v�w. For inputs of the form s(u); v�w; z, the soundness of

the transformation depends on the soundness of the transformation for u;w; z,

because inequality (13) of the third case has been created by applying the in-

duction hypothesis. Hence, in this case the result �(u;w; z) is generated. The

procedure � terminates totally by construction as it is called recursively under

the same condition as nth whose total termination has already been veri�ed.

Thus, � returns true i� the �rst argument (the natural x) is less than the

length of the second argument (the list y). If the inequality js(x); y; zj < jx; y; zj

in the termination predicate �

nextindex

is replaced by �(x; y; z), then �

nextindex

(x; y;

z) is true i� z occurs in y at a position i � x or if z = 0, i.e. we have indeed

generated a termination predicate that returns true as often as possible.

To formalize the generation of soundness predicates �

'

for termination hy-

potheses ', we modify the calculus of Sect. 3. The resulting calculus operates

on triples H ;C;E where the third component E contains the de�ning equations

of the newly synthesized soundness predicates. The correctness of the calculus

guarantees that if H ;C;E can be transformed into H

0

;C

0

;E

0

, then every in-

terpretation satisfying C

0

and �

'

(x

�

) ! ' for all ' 2 H

0

also satis�es C and

�

'

(x

�

)! ' for all ' 2 H . Here, the semantics of �

'

is given by E

0

.

To use our calculus for termination proofs, we again initialize H with the

termination hypotheses and let C and E be empty. Then the rules of the calcu-

lus are applied repeatedly until we have obtained a triple of the form ;;C

0

;E

0

.

Now the de�ning equations E

0

of the generated soundness predicates are added

to our speci�cation. Then by the correctness of the calculus every interpretation

satisfying the constraints C

0

also satis�es the original termination hypotheses

' 2 H for those inputs where the corresponding soundness predicates �

'

return

true. Hence, if there exists a polynomial norm satisfying C

0

, then in the de�ni-

tions of termination predicates each inequality jr

�

j < jt

�

j may be replaced by

the soundness predicate for the termination hypothesis  ! jr

�

j < jt

�

j.

In the following rules, let x

1

; : : ; x

l

(x

�

for short) be the variables in  ! !

of types �

1

; : : ; �

l

and let �

 !!

be a new boolean function symbol with the

10



argument types �

1

� : : � �

l

. As in Sect. 3 we also allow an application of the

next two rules if the condition  is missing.

Premise Elimination H [ f ! !g ; C ;E

H ; C [ f!g ;E [ f�

 !!

(x

�

) = trueg

if ! does not contain any de�ned symbols.

Rejection H [ f ! !g ; C ; E

H ; C ; E [ f�

 !!

(x

�

) = falseg

In the third rule, let x

�

be the variables of  ! jr

�

j < jt

�

j and to ease

readability we write � instead of �

 !jr

�

j<jt

�

j

. Let the variables y

1

; : : ; y

n

of the

types �

1

; : : ; �

n

be contained in x

�

and let g : �

1

� : : � �

n

! � be de�ned by

a terminating algorithm with k equations. Again p[s

�

] abbreviates p[y

�

=s

�

] and

moreover, �[s

�

] is used as an abbreviation for �(x

�

[y

�

=s

�

]), i.e. �[s

�

] abbreviates

�(�(x

�

)) where � substitutes each y

i

with s

i

but does not change the remaining

variables of x

�

.

Inductive Evaluation H [ f ! jr

�

j < jt

�

jg ; C ; E

H [ f'

1

; : : ; '

k

g ; C ; E [ fe

1

; : : ; e

k

g

If g(s

�

) = q is the i-th de�ning equation of g, then '

i

and e

i

are de�ned as

-'

i

:= true

e

i

:= �[s

�

] = true

�

if : [s

�

] can be veri�ed,

-'

i

:=  [s

�

]! jr

�

[s

�

]j+ jt

�

[q

�

]j � jt

�

[s

�

]j+ jr

�

[q

�

]j

e

i

:= �[s

�

] = �[q

�

] ^ �

'

i

(z

�

)

�

else, if q contains g(q

�

) and

 [s

�

]!  [q

�

] can be veri�ed,

-'

i

:=  [s

�

]! jr

�

[s

�

]j < jt

�

[s

�

]j;

e

i

:= �[s

�

] = �

'

i

(z

�

)

�

otherwise.

Here, z

�

are the variables occurring in '

i

.

Similar to Sect. 3, the heuristic for the application of these rules is that

inductive evaluation should be applied �rst if possible and otherwise, premise

elimination is preferable to rejection.

Using this calculus, the termination hypothesis (10) can be inductively evalu-

ated w.r.t. nth. For nth's �rst equation, '

1

is :eq(nth(u; empty); z)! (11) and e

1

is the equation �

(10)

(u; empty; z) = �

(11)

(u; z). Similarly, '

2

is :eq(nth(0; v�w); z)

! (12) and e

2

is �

(10)

(0; v�w; z) = �

(12)

(v; w; z). Finally, for nth's third equation

'

3

is :eq(nth(s(u); v�w); z)! (13) and e

3

is �

(10)

(s(u); v�w; z) = �

(10)

(u;w; z)^

�

(13)

(u; v; w; z). As (11) is rejected and as both (12) and (13) are inserted into

the constraints using premise elimination, this results in the de�ning equations

�

(11)

(u; z) = false; �

(12)

(v; w; z) = true; �

(13)

(u; v; w; z) = true. Hence, by sym-

bolic evaluation one obtains the algorithm � given at the beginning of the section.

The following theorem shows that our calculus is sound.

11



Theorem 2. If H ;C;E is transformed into H

0

;C

0

;E

0

by our calculus, then we

have f�

'

(x

�

)! ' j ' 2 H

0

g [ C

0

[ E

0

j= f�

'

(x

�

)! ' j ' 2 Hg [ C [ E.

Proof. The soundness of premise elimination and rejection is trivial. For induc-

tive evaluation we proceed as in the proof of Thm. 1. Assume I j= �

'

i

(z

�

) !

'

i

= true and I j= e

i

holds for all i, but I j= �[p

�

] = true, I j=  [p

�

] = true, and

I 6j= jr

�

[p

�

]j < jt

�

[p

�

]j = true for a minimal counterexample p

�

.

Again this implies that for some i-th de�ning equation g(s

�

) = q we have

p

�

= �(s

�

) and q contains a subterm g(q

�

) such that  [s

�

] !  [q

�

] can be

veri�ed. Thus we have I j=  [�(q

�

)] = true and I j= �[�(q

�

)] = true (by I j= e

i

).

As I(�(q

�

)) is smaller than p

�

, it cannot be a counterexample and so we obtain

I j= jr

�

[�(q

�

)]j < jt

�

[�(q

�

)]j = true. But as I j= �(�

'

i

(z

�

)) = true (due to

I j= e

i

), p

�

cannot be a counterexample either, which is a contradiction. ut

This extension of inductive evaluation for termination analysis of partial

functions generalizes our �rst approach, i.e. whenever total termination of f can

be veri�ed by the technique of Sect. 3, the technique of the present section can

generate a termination predicate �

f

that returns true for each input.

The handling of partial functions is also necessary for termination analy-

sis of imperative programs, because when translating imperative programs into

functional ones, while-loops are often transformed into partial functions, as ter-

mination of while-loops often depends on their contexts, cf. [GWB98].

5 Re�nements

In this section we present extensions of our approach which increase its power

considerably. As an example regard the following algorithms.

function max : list! nat

max(empty) = 0

max(u�empty)= u

max(u�v�w) = if( le(u; v);

max(v�w);

max(u�w) )

function add if mem : nat� list� list! list

add if mem(x; empty; z)= z

add if mem(x; u�y; z) = if( eq(x; u);

x�z;

add if mem(x; y; z) )

function sort : nat� list! list

sort(x; y) = if( eq(x;max(y)); x�empty; add if mem(x; y; sort(s(x); y)) )

Total termination ofmax and add if mem is easily proved (where add if mem(x; y;

z) returns x�z if x occurs in y and z otherwise

8

). The function sort(x; y) returns

a sorted list composed of all elements of y which are greater or equal to x where

multiple occurrences of elements are removed. Hence, sort(0; y) sorts the entire

list y. This procedure terminates i� x is less than or equal to the maximal element

of y (where the maximum of empty is 0). Consider sort's termination hypothesis,

:eq(x;max(y))! js(x); yj < jx; yj: (14)

8

In the algorithm sort, we use add if mem(x; y; sort(s(x); y)) instead of if(member(x; y);

x�sort(s(x); y); sort(s(x); y)) to ease the readability of our presentation.
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To construct a soundness predicate for (14) according to our heuristic we have to

use inductive evaluation w.r.t. the algorithmmax. However, for functions likemax

which are de�ned using the conditional if, we now have to re�ne the inductive

evaluation rule. For max' recursive (third) equation, the idea is to perform a case

analysis w.r.t. its if-condition le(u; v). We �rst add the condition le(u; v) to the

condition of (14) and treat max as if it only had the recursive call max(v�w),

cf. (17). Then we add the negated condition :le(u; v) instead and now we only

regard the recursive call max(u�w), cf. (18). In each resulting case the premise is

satis�able and in both step cases the induction hypothesis can be applied. Hence

by inductive evaluation we obtain the following new hypotheses.

:eq(x;max(empty)) ! js(x); emptyj < jx; emptyj (15)

:eq(x;max(u�empty)) ! js(x); u�emptyj < jx; u�emptyj (16)

:eq(x;max(u�v�w))^ le(u; v) ! js(x); u�v�wj+jx; v�wj� jx; u�v�wj+js(x); v�wj (17)

:eq(x;max(u�v�w))^:le(u; v) ! js(x); u�v�wj+jx; u�wj� jx; u�v�wj+ js(x); u�wj (18)

The generation of soundness predicates proceeds in an analogous way by building

�

(14)

(x; y) according to the algorithm max, where the results of max are replaced

by the corresponding soundness predicates for the new hypotheses. For a formal

de�nition of the inductive evaluation rule for conditional algorithms see [BG98].

function �

(14)

: nat� list! bool

�

(14)

(x; empty) = �

(15)

(x)

�

(14)

(x; u�empty)= �

(16)

(x; u)

�

(14)

(x; u�v�w) = if( le(u; v); �

(14)

(x; v�w) ^ �

(17)

(x; u; v; w);

�

(14)

(x; u�w) ^ �

(18)

(x; u; v; w) )

Our heuristic suggests no further inductive evaluation for (15) and (16),

since no term g(y

1

; : : ; y

n

) with pairwise di�erent y

i

occurs in their premises.

But then the inequalities in (15) and (16) have to be rejected, since they are

unsatis�able. Thus, both �

(15)

and �

(16)

would always be false and hence, the

soundness predicate �

(14)

for sort's termination hypothesis would also return

false for each input. Hence, we would obtain an unsatis�able soundness predicate

although evaluation halts for some recursive calls of sort.

To construct a better soundness predicate, we should again perform induc-

tive evaluation on the obtained hypothesis (16). For that purpose the occurring

max-term is symbolically evaluated. If we replace the term max(u�empty) by its

symbolic value u then instead of (16) we obtain

:eq(x; u)! js(x); u�emptyj < jx; u�emptyj: (19)

Hence, we extend our calculus by an additional symbolic evaluation rule which

allows to replace a term g(t

�

) in a premise by the term r whenever g(t

�

) can be

evaluated to r, where C and E do not change.

Now for (19) our heuristic suggests another inductive evaluation w.r.t. eq.

We use inductive evaluation as often as possible, but to ensure that it is only ap-

plied a �nite number of times, we never perform inductive evaluation w.r.t. the
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same algorithm twice. In our example, if we �nally reject the hypothesis (15) and

the hypothesis resulting from eq's second equation during the inductive evalua-

tion of (19), then the resulting constraints are satis�ed by the polynomial norm

jemptyj

pol

= j0j

pol

= 0, js(u)j

pol

= juj

pol

+ 1, jv�wj

pol

= jvj

pol

+ jwj

pol

, where

tuple

2

(x; y) is associated with (y�x)

2

. Hence, we generate soundness predicates

�

(15)

(x) = false, �

(17)

(x) = true, �

(18)

(x) = true, and for �

(16)

we obtain a pred-

icate computing the `less than or equal' relation on naturals, cf. [BG98]. Thus,

the soundness predicate �

(14)

(x; y) for sort's termination hypothesis is true i� y

is non-empty and if x is less than or equal to the maximal element of y. Using

this soundness predicate we �nally obtain the termination predicate procedure

function �

sort

: nat� list! bool

�

sort

(x; y) = if( eq(x;max(y)); true; if(�

(14)

(x; y); �

sort

(s(x); y); false) ):

The procedure �

sort

de�nes the exact domain of sort, i.e. it returns true i� x

is less than or equal to the maximal element of y. Hence, in this way a predicate

describing the domain of sort can be generated automatically.

6 Conclusion

We have illustrated that termination of many interesting algorithms cannot be

veri�ed if the premises of the termination hypotheses are neglected. Therefore,

in this paper we presented the inductive evaluation method which analyzes aux-

iliary functions occurring in the conditions of recursive calls. Our calculus trans-

forms termination hypotheses into inequalities such that existing automated

methods can be used to check whether they are satis�ed by a polynomial norm.

In this way, total termination of algorithms can be proved automatically.

Subsequently, we have generalized our approach for analyzing partially ter-

minating procedures. For that purpose our calculus is extended in order to syn-

thesize soundness predicates which are used for the construction of termination

predicates describing the domain of the function under consideration.

We combined our method to handle auxiliary functions in the conditions

with techniques to deal with de�ned functions in the arguments of recursive

calls [Gie95b,Gie95c,Gie97,GWB98] and implemented it within the induction

theorem prover inka [HS96]. In this way we obtained an extremely powerful

approach for automated termination analysis which performed successfully on a

large collection of benchmarks (including all 82 algorithms from [BM79], all 60

examples from [Wal94b], and all 92 examples in [Gie95b] and [BG96]).

See [BG98] for a collection of 36 algorithms whose termination behaviour

could not be analyzed with any other automatic method up to now, but where in-

ductive evaluation enables termination analysis without user interaction. For all

these examples, termination predicates describing the exact domains of the func-

tions could be synthesized. We also applied our approach to imperative programs

14



by translating them into equivalent functional programs. In this way, in 33 of 45

examples from [Gri81] the exact domain could be determined automatically.
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