
Aachen
Department of Computer Science

Technical Report

Proving and Disproving Termination of

Higher-Order Functions

Jürgen Giesl, René Thiemann, Peter Schneider-Kamp

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2005-3

RWTH Aachen · Department of Computer Science · May 2005 (revised version)

1

The publications of the Department of Computer Science of RWTH Aachen
(Aachen University of Technology) are in general accessible through the World
Wide Web.

http://aib.informatik.rwth-aachen.de/

2

Proving and Disproving Termination of Higher-Order

Functions

Jürgen Giesl, René Thiemann, Peter Schneider-Kamp

LuFG Informatik II, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany
{giesl|thiemann|psk}@informatik.rwth-aachen.de

Abstract. The dependency pair technique is a powerful modular method for
automated termination proofs of term rewrite systems (TRSs). We present two
important extensions of this technique: First, we show how to prove termination
of higher-order functions using dependency pairs. To this end, the dependency
pair technique is extended to handle (untyped) applicative TRSs. Second, we
introduce a method to prove non-termination with dependency pairs, while up
to now dependency pairs were only used to verify termination. Our results lead to
a framework for combining termination and non-termination techniques for first-
and higher-order functions in a very flexible way. We implemented and evaluated
our results in the automated termination prover AProVE.

1 Introduction

One of the most powerful techniques to prove termination or innermost termi-
nation of TRSs automatically is the dependency pair approach [4, 12, 13]. In [16],
we recently showed that dependency pairs can be used as a general framework
to combine arbitrary techniques for termination analysis in a modular way. The
general idea of this framework is to solve termination problems by repeatedly de-
composing them into sub-problems. We call this new concept the “dependency
pair framework” (“DP framework”) to distinguish it from the old “dependency
pair approach”. In particular, this framework also facilitates the development of
new methods for termination analysis. After recapitulating the basics of the DP
framework in Sect. 2, we present two new significant improvements: in Sect. 3 we
extend the framework in order to handle higher-order functions and in Sect. 4 we
show how to use the DP framework to prove non-termination. Sect. 5 summarizes
our results and describes their empirical evaluation with the system AProVE.

2 The Dependency Pair Framework

We refer to [6] for the basics of rewriting and to [4, 13, 16] for motivations and
details on dependency pairs. We only regard finite signatures and TRSs and
T (F ,V) denotes the set of terms over the signature F and the infinite set of
variables V = {x, y, z, . . . , α, β, . . .}. R is a TRS over F if l, r ∈ T (F ,V) for all
rules l → r ∈ R.

Our approach is restricted to untyped higher-order functions which do not
use λ-abstraction. To represent higher-order functions, we use the well-known
approach to encode them in curried form as applicative first-order TRSs (cf.
e.g., [21]). A signature F is called applicative if it only contains nullary function
symbols and a binary symbol ′ for function application. Moreover, any TRS
R over F is called applicative. So for example, instead of a term map(α, x) we

write ′ (′ (map, α), x). To ease readability, we use ′ as an infix-symbol and to
avoid unnecessary parentheses, we let ′ associate to the left. Then this term can
be written as map ′ α ′ x. In this way, one can easily encode typical higher-order
functional programs as first-order TRSs, provided that these programs do not
use λ-abstractions.

Example 1 The function map is used to apply a function to all elements in a
list. Instead of the higher-order rules map(α, nil) → nil and map(α, cons(x, xs)) →
cons(α(x),map(α, xs)), we encode it by the following first-order TRS.

map ′ α ′ nil → nil (1)

map ′ α ′ (cons ′ x ′ xs) → cons ′ (α ′ x) ′ (map ′ α ′ xs) (2)

A TRS is terminating if all reductions are finite, i.e., if all functions encoded
in the TRS terminate. So intuitively, the TRS {(1), (2)} is terminating iff the
function map terminates whenever its arguments are terminating terms.

For a TRS R over F , the defined symbols are D = {root(l) | l → r ∈ R} and
the constructors are C = F \ D. For every f ∈ F let f♯ be a fresh tuple symbol
with the same arity as f, where we often write F for f♯. The set of tuple symbols
is denoted by F ♯. If t=g(t1, . . . , tm) with g∈D, we let t♯ denote g♯(t1, . . . , tm).

Definition 2 (Dependency Pair) The set of dependency pairs for a TRS R
is DP (R) = {l♯ → t♯ | l → r ∈ R, t is a subterm of r, root(t) ∈ D}.

Example 3 In the TRS of Ex. 1, the only defined symbol is ′ and map, cons,
and nil are constructors. Let AP denote the tuple symbol for ′ . Then we have the
following dependency pairs where s is the term AP(map ′ α, cons ′ x ′ xs).

s → AP(cons
′ (α ′

x), map
′
α

′
xs) (3)

s → AP(cons, α
′
x) (4)

s → AP(α, x) (5)

s → AP(map
′
α, xs) (6)

s → AP(map, α) (7)

For termination, we try to prove that there are no infinite chains of depen-
dency pairs. Intuitively, a dependency pair corresponds to a function call and a
chain represents a possible sequence of calls that can occur during a reduction.
We always assume that different occurrences of dependency pairs are variable dis-
joint and consider substitutions whose domains may be infinite. In the following
definition, P is usually a set of dependency pairs.

Definition 4 (Chain) Let P,R be TRSs. A (possibly infinite) sequence of pairs
s1 → t1, s2 → t2, . . . from P is a (P,R)-chain iff there is a substitution σ with
tiσ →∗

R si+1σ for all i. It is an innermost (P,R)-chain iff tiσ
i→∗
R si+1σ and siσ

is in normal form w.r.t. R for all i. Here, “ i→R” denotes innermost reductions.

Example 5 The sequence “(6), (6)” is a chain. The reason is that an instance
of the right-hand side AP(map ′ α1, xs1) of (6) can reduce to an instance of its
left-hand side AP(map ′ α2, cons ′ x2

′ xs2).

Theorem 6 (Termination Criterion [4]) A TRS R is (innermost) termi-
nating iff there is no infinite (innermost) (DP (R),R)-chain.

4

The idea of the DP framework is to treat a set of dependency pairs P toge-
ther with the TRS R and to prove absence of infinite (P,R)-chains instead of
examining →R. The advantages of this framework were illustrated in [16].

Formally, a dependency pair problem (“DP problem”)1 consists of two TRSs
P and R (where initially, P = DP (R)) and a flag e ∈ {t, i} which stands for
“termination” or “innermost termination”. Instead of “(P,R)-chains” we also
speak of “(P,R, t)-chains” and instead of “innermost (P,R)-chains” we speak
of “(P,R, i)-chains”. Our goal is to show that there is no infinite (P,R, e)-chain.
In this case, we call the problem finite and it is infinite iff it is not finite or if R is
not terminating (if e = t) resp. not innermost terminating (if e = i). Thus, there
can be DP problems which are both finite and infinite, but this does not cause
any difficulties, cf. [16]. If one detects an infinite problem during a termination
proof, one can always abort the proof, since termination has been disproved (if
all proof steps were “complete”, i.e., if they preserved the termination behavior).

A DP problem (P,R, e) is applicative iff R is a TRS over an applicative
signature F , and for all s → t ∈ P, we have t /∈ V, {root(s), root(t)} ⊆ F ♯, and
all function symbols below the root of s or t are from F . We also say that such
a problem is an applicative DP problem over F .

Termination techniques should now operate on DP problems instead of TRSs.
We refer to such techniques as dependency pair processors (“DP processors”).
Formally, a DP processor is a function Proc which takes a DP problem as input
and returns a new set of DP problems which then have to be solved instead.
Alternatively, it can also return “no”. A DP processor Proc is sound if for all
DP problems d, d is finite whenever Proc(d) is not “no” and all DP problems in
Proc(d) are finite. Proc is complete if for all DP problems d, d is infinite whenever
Proc(d) is “no” or when Proc(d) contains an infinite DP problem.

Soundness of a DP processor Proc is required to prove termination (in partic-
ular, to conclude that d is finite if Proc(d) = ∅). Completeness is needed to prove
non-termination (in particular, to conclude that d is infinite if Proc(d) = no).

So termination proofs in the DP framework start with the initial DP problem
(DP (R),R, e), where e depends on whether one wants to prove termination or
innermost termination. Then this problem is transformed repeatedly by sound
DP processors. If the final processors return empty sets of DP problems, then
termination is proved. If one of the processors returns “no” and all processors
used before were complete, then one has disproved termination of the TRS R.

Example 7 If d0 is the initial DP problem (DP (R),R, e) and there are sound
processors Proc0, Proc1, Proc2 with Proc0(d0) = {d1, d2}, Proc1(d1) = ∅, and
Proc2(d2) = ∅, then one can conclude termination. But if Proc1(d1) = no, and
both Proc0 and Proc1 are complete, then one can conclude non-termination.

3 DP Processors for Higher-Order Functions

Since we represent higher-order functions by first-order applicative TRSs, all ex-
isting techniques and DP processors for first-order TRSs can also be used for
higher-order functions. However, most termination techniques rely on the outer-
most function symbol when comparing terms. This is also true for dependency

1 To ease readability we use a simpler definition of DP problems than [16], since this simple
definition suffices for the new results of this paper.

5

pairs and standard reduction orders. Therefore, they usually fail for applicative
TRSs since here, all terms except variables and constants have the same root
symbol ′ . For example, a direct termination proof of Ex. 1 is impossible with
standard reduction orders and difficult2 with dependency pairs.

Therefore, in Sect. 3.1 and Sect. 3.2 we improve the most important processors
of the DP framework in order to be successful on applicative TRSs. Moreover,
we introduce a new processor in Sect. 3.3 which removes the symbol ′ and
transforms applicative TRSs and DP problems into ordinary (functional) form
again. Sect. 5 shows that these contributions indeed yield a powerful termination
technique for higher-order functions. Sect. 3.4 is a comparison with related work.

3.1 A DP Processor Based on the Dependency Graph

The dependency graph determines which pairs can follow each other in chains.

Definition 8 (Dependency Graph) Let (P,R, e) be a DP problem. The nodes
of the (P,R, e)-dependency graph are the pairs of P and there is an arc from
s → t to u → v iff s → t, u → v is an (P,R, e)-chain.

Example 9 For Ex. 1, we obtain the following (P,R, e)-dependency graph for
both e = t and e = i. The reason is that the right-hand sides of (3), (4), and
(7) have cons ′ (α ′ x), cons, or map as their first arguments. No instance of these
terms reduces to an instance of map ′ α (which is the first argument of s).

s→AP(cons ′ (α ′ x),map ′ α ′ xs) (3) s→AP(cons, α ′ x) (4)

s→AP(α, x) (5) s→AP(map ′ α, xs) (6)s→AP(map, α) (7)

A set P ′ of dependency pairs is a cycle iff for all s → t and u → v in P ′,
there is a path from s → t to u → v traversing only pairs of P ′. A cycle P ′ is a
strongly connected component (“SCC”) if P ′ is not a proper subset of any other
cycle. As absence of infinite chains can be proved separately for every SCC, one
can modularize termination proofs by decomposing a DP problem into several
sub-problems.

Theorem 10 (Dependency Graph Processor [16]) For any DP problem
(P,R, e), let Proc return {(P1,R, e), . . . , (Pn,R, e)}, where P1, . . . ,Pn are the
SCCs of the (P,R, e)-dependency graph. Then Proc is sound and complete.

For Ex. 1, we start with the initial DP problem (P,R, e), where P = {(3), . . . ,
(7)}. The only SCC of the dependency graph is {(5), (6)}. So the above processor
transforms (P,R, e) into ({(5), (6)},R, e), i.e., (3), (4), and (7) are deleted.

Unfortunately, the dependency graph is not computable. Therefore, for au-
tomation one constructs an estimated graph containing at least all arcs of the
real graph. The existing estimations that are used for automation [4, 17] assume
that all subterms with defined root could possibly be evaluated. Therefore, they
use a function cap, where cap(t) results from replacing all subterms of t with

2 It needs complex DP processors or base orders (e.g., non-linear polynomial orders).

6

defined root symbol by different fresh variables. To estimate whether s → t and
u → v form a chain, one checks whether cap(t) unifies with u (after renaming
their variables). Moreover, if one regards termination instead of innermost ter-
mination, one first has to linearize cap(t), i.e., multiple occurrences of the same
variable in cap(t) are renamed apart. Further refinements of this estimation can
be found in [17]; however, they rely on the same function cap.

These estimations are not suitable for applicative TRSs. The problem is that
there, all subterms except variables and constants have the defined root symbol
′ and are thus replaced by variables when estimating the arcs of the depen-
dency graph. So for Ex. 1, the estimations assume that (3) could be followed
by any dependency pair in chains. The reason is that the right-hand side of (3)
is AP(cons ′ (α ′ x),map ′ α ′ xs) and cap replaces both arguments of AP by fresh
variables, since their root symbol ′ is defined. The resulting term AP(y, z) uni-
fies with the left-hand side of every dependency pair. Therefore, the estimated
dependency graph contains additional arcs from (3) to every dependency pair.

The problem is that these estimations do not check whether subterms with
defined root can really be reduced further when being instantiated. For example,
the first argument cons ′ (α ′ x) of (3)’s right-hand side can never become a redex
for any instantiation. The reason is that all left-hand sides of the TRS have the
form map ′ t1

′ t2. Thus, one should not replace cons ′ (α ′ x) by a fresh variable.
Therefore, we now refine cap’s definition. If a subterm can clearly never be-

come a redex, then it is not replaced by a variable anymore. Here, icap is used for
innermost termination proofs and tcap differs from icap by renaming multiple
occurrences of variables, which is required when proving full termination.

Definition 11 (icap, tcap) Let R be a TRS over F , let f ∈ F∪F ♯. We define
icap as follows:

(i) icap(x) = x for all x ∈ V
(ii) icap(f(t1, . . . , tn)) = f(icap(t1), . . . , icap(tn)) iff f(icap(t1), ..., icap(tn))

does not unify with any left-hand side of a rule from R
(iii) icap(f(t1, . . . , tn)) is a fresh variable, otherwise

We define tcap like icap but in (i), tcap(x) is a different fresh variable for
every occurrence of x. Moreover in (ii), we use tcap(ti) instead of icap(ti):

(i) tcap(x) is a different fresh variable for every occurrence of x ∈ V
(ii) tcap(f(t1, . . . , tn)) = f(tcap(t1), . . . ,tcap(tn)) iff

f(tcap(t1), . . . ,tcap(tn)) does not unify with any left-hand side
of a rule from R

(iii) tcap(f(t1, . . . , tn)) is a fresh variable, otherwise.

Now one can detect that (3) should not be connected to any pair in the depen-
dency graph, since icap(AP(cons ′ (α ′ x),map ′ α ′ xs)) = AP(cons ′ y, z) does not
unify with left-hand sides of dependency pairs. Similar remarks hold for tcap.
This leads to the following improved estimation.3

Definition 12 (Improved Estimated Dependency Graph) In the estima-
ted (P,R, t)-dependency graph there is an arc from s → t to u → v iff tcap(t)

3 Moreover, tcap and icap can also be combined with further refinements to approximate
dependency graphs [4, 17].

7

and u are unifiable. In the estimated (P,R, i)-dependency graph there is an arc
from s → t to u → v iff icap(t) and u are unifiable by an mgu µ (after renaming
their variables) such that sµ and uµ are in normal form w.r.t. R.

Now the estimated graph is identical to the real dependency graph in Ex. 9,
both in the termination and innermost termination case.

Theorem 13 (Soundness of the Improved Estimation) The dependency
graph is a subgraph of the estimated dependency graph.

Proof. We first regard the termination case e = t. Here we have to show that
if s → t, u → v is a (P,R, t)-chain, then tcap(t) and u unify. To this end, we
prove the following claim for all terms t and u and all substitutions σ:

tcap(t)σ →∗
R u implies that u = tcap(t)δ for some substitution δ (8)

The claim (8) immediately implies the theorem in the termination case. The
reason is that obviously t = tcap(t)σ′ for a suitable substitution σ′. Hence, if
s → t, u → v is a (P,R, t)-chain (i.e., if tσ →∗

R uσ for some σ), then we have
tσ = tcap(t)σ′σ and hence uσ = tcap(t)δ for some substitution δ by (8). Hence,
since tcap(t) and u are variable disjoint, they are unifiable.

To prove (8), it suffices to regard the case tcap(t)σ →R u, since then
(8) follows by induction on the length of the reduction. We use induction on
t. If tcap(t) ∈ V, the claim (8) is trivial. Otherwise, t = f(t1, . . . , tn) and
tcap(t) = f(tcap(t1), . . . ,tcap(tn)), where tcap(t) does not unify with any
left-hand side of R. Thus, there is an 1 ≤ i ≤ n with tcap(ti)σ →∗

R ui and
u = f(tcap(t1)σ, . . . , ui, . . . ,tcap(tn)σ). By the induction hypothesis we ob-
tain ui = tcap(ti)δ for some δ. As the variables of all tcap(tj) are disjoint, we
can extend δ to operate like σ on the variables of tcap(tj) for j 6= i. Then we
have u = f(tcap(t1)δ, . . . ,tcap(ti)δ, . . . ,tcap(tn)δ) = tcap(t)δ, as desired.

For innermost termination, we prove the following for all terms s, t, u with
V(t) ⊆ V(s) and all substitutions σ where σ(x) is in normal form for x ∈ V(s):

If icap(t)σ→∗
Ru then u= icap(t)δ for a δ with δ(x)=σ(x) for x ∈ V(s) (9)

The claim (9) immediately implies the theorem in the innermost termination
case. Note that t = icap(t)σ′ for a σ′ where σ′(x) = x for all x ∈ V(s). Hence,
if s → t, u → v is a (P,R, i)-chain (i.e., if tσ i→∗

R uσ for some σ where both sσ
and uσ are in normal form), then tσ = icap(t)σ′σ and hence uσ = icap(t)δ for
some δ with δ(x) = σ(x) for all x ∈ V(s) by (9). Hence, since icap(t) and u are
variable disjoint and since sδ = sσ and uσ are in normal form, icap(t) and u are
unifiable by a substitution that instantiates both s and u to normal forms.

To prove (9) it again suffices to regard icap(t)σ →R u. We use induction on
t. Note that t /∈ V, since otherwise σ would instantiate t by a term which is not in
normal form. So if icap(t) ∈ V then icap(t) is a fresh variable and (9) is trivial.
Otherwise, t = f(t1, . . . , tn) and icap(t) = f(icap(t1), . . . , icap(tn)). As in the
termination case, we obtain u = f(icap(t1)σ, . . . , ui, . . . , icap(tn)σ), and ui =
icap(ti)δ for some δ where δ(x) = σ(x) for all x ∈ V(s). Apart from the variables
of s, the terms icap(tj) with j 6= i only contain fresh variables not occurring in
icap(ti). Thus, we can extend δ to operate like σ on these variables. Then we
have u = f(icap(t1)δ, . . . , icap(ti)δ, . . . , icap(tn)δ) = icap(t)δ, as desired. ⊓⊔

8

3.2 DP Processors Based on Orders and on Usable Rules

Classical techniques for automated termination proofs try to find a reduction
order ≻ such that l ≻ r holds for all rules l → r. In practice, most orders are
simplification orders [10]. However, termination of many important TRSs cannot
be proved with such orders directly. Therefore, the following processor allows us
to use such orders in the DP framework instead. It generates constraints which
should be satisfied by a reduction pair [22] (%,≻) where % is reflexive, transitive,
monotonic, and stable and ≻ is a stable well-founded order compatible with %
(i.e., % ◦ ≻ ⊆ ≻ and ≻ ◦ % ⊆ ≻). Now one can use existing techniques to search
for suitable relations % and ≻, and in this way, classical simplification orders can
prove termination of TRSs where they would have failed otherwise.

For a DP problem (P,R, e), the constraints require that at least one rule
in P is strictly decreasing (w.r.t. ≻) and all remaining rules in P and R are
weakly decreasing (w.r.t. %). Requiring l % r for l → r ∈ R ensures that in
chains s1 → t1, s2 → t2, . . . with tiσ →∗

R si+1σ, we have tiσ % si+1σ. Hence, if a
reduction pair satisfies these constraints, then the strictly decreasing pairs of P
cannot occur infinitely often in chains. Thus, the following processor deletes these
pairs from P. For any TRS P and any relation ≻, let P≻ = {s → t ∈ P | s ≻ t}.

Theorem 14 (Reduction Pair Processor [16]) Let (%,≻) be a reduction
pair. Then the following DP processor Proc is sound and complete. For a DP
problem (P,R, e), Proc returns

• {(P \ P≻,R, e)}, if P≻ ∪ P% = P and R% = R

• {(P,R, e)}, otherwise

DP problems (P,R, i) for innermost termination can be simplified by replac-
ing the second component R by those rules from R that are usable for P (i.e., by
the usable rules of P). Then by Thm. 14, a weak decrease l % r is not required
for all rules but only for the usable rules. As defined in [4], the usable rules of
a term t contain all f-rules for all function symbols f occurring in t. Moreover,
if f’s rules are usable and there is a rule f(. . .) → r in R whose right-hand side
r contains a symbol g, then g is usable, too. The usable rules of a TRS P are
defined as the usable rules of its right-hand sides.

For instance, after applying the dependency graph processor to Ex. 1, we have
the remaining dependency pairs (5) and (6) with the right-hand sides AP(α, x)
and AP(map ′ α, xs). While AP(α, x) has no usable rules, AP(map ′ α, xs) contains
the defined function symbol ′ and therefore, all ′ -rules are usable.

This indicates that the definition of usable rules has to be improved to handle
applicative TRSs successfully. Otherwise, whenever ′ occurs in the right-hand
side of a dependency pair, then all rules (except rules of the form f → . . .) would
be usable. The problem is that the current definition of “usable rules” assumes
that all ′ -rules can be applied to any subterm with the root symbol ′ .

Thus, we refine the definition of usable rules. Now a subterm starting with ′

only influences the computation of the usable rules if this subterm can potentially
start new reductions. To detect this, we again use the function icap from Def. 11.
For example, map ′ α can never be reduced if α is instantiated by a normal form,

9

since map ′ α does not unify with the left-hand side of any rule. Therefore, the
right-hand side AP(map ′ α, xs) of (6) should not have any usable rules.4

Definition 15 (Improved Usable Rules) For a DP problem (P,R, i), we de-
fine the usable rules U(P)=

⋃
s→t∈P U(t). Here U(t)⊆R is the smallest set with:

• If t = f(t1, . . . , tn), f ∈ F ∪F ♯, and f(icap(t1), . . . , icap(tn)) unifies with a
left-hand side l of a rule l → r ∈ R, then l → r ∈ U(t).

• If l → r ∈ U(t), then U(r) ⊆ U(t).

• If t′ is a subterm of t, then U(t′) ⊆ U(t).

Theorem 16 (Usable Rule Processor) For a DP problem (P,R, e), let Proc
return { (P,U(P), i) } if e = i and { (P,R, e) } otherwise. Then Proc is sound.5

Proof. Let s1 → t1, s2 → t2, . . . be an infinite (P,R, i)-chain, i.e., tiσ
i→∗
R si+1σ

and siσ is in normal form for some σ. We show that the innermost reduction
from tiσ to si+1σ only uses rules from U(P). It suffices to prove the following
for all normal substitutions σ (i.e., σ(x) is in normal form for all x ∈ V), since it
implies the above claim by induction on the length of the reduction:

tσ i→{l→r} s with l → r ∈ R implies that l → r ∈ U(t) and that there is
some term u and a normal substitution δ with δ(x) = σ(x) for x ∈ V(l),
such that s = uδ, U(t) ⊇ U(u), and icap(u) = icap(t)ρ for a substitution
ρ whose domain only contains fresh variables introduced in icap(t)

We use induction on t. As σ is normal, we have t /∈ V. So t = f(t1, . . . , tn). If
tσ = f(t1σ, . . . , tnσ) = lτ i→R rτ = s, then obviously, f(icap(t1), . . . , icap(tn))
unifies with l. Thus, l → r ∈ U(t) and by Def. 15 we have U(r) ⊆ U(t). Moreover,
any term is an instance of icap(t), since icap(t) is a fresh variable. As τ is
normal, we can choose u = r, ρ = [icap(t) / icap(u)], δ(x) = τ(x) for x ∈ V(l),
and δ(x) = σ(x) otherwise.

In the remaining case, we have tσ i→R f(t1σ, . . . , si, . . . , tnσ) = s where
tiσ

i→R si. By the induction hypothesis, the rule used for the reduction was from
U(ti) and thus, it is also contained in U(t) by Def. 15. By induction, there exist ui,
δ, and ρ such that si = uiδ, U(ti) ⊇ U(ui), and icap(ui) = icap(ti)ρ. Thus, s =
f(t1σ, . . . , uiδ, . . . , tnσ) = f(t1, . . . , ui, . . . , tn)δ, since w.l.o.g. l is variable disjoint
from t, and we define u = f(t1, . . . , ui, . . . , tn). Now if icap(t) is a fresh variable,
then obviously icap(u) is an instance of icap(t) (i.e., ρ = [icap(t) / icap(u)]).
Otherwise icap(t) = f(icap(t1), . . . , icap(ti), . . . , icap(tn)) and for the term
u′ = f(icap(t1), . . . , icap(ui), . . . , icap(tn)) we have u′ = icap(t)ρ by the in-
duction hypothesis and since ρ only instantiates the fresh variables in icap(ti).
Since icap(t) does not unify with any left-hand side of a rule from R, this also
holds for u′ and thus, icap(u) = u′ = icap(t)ρ. Together with the fact that
U(ti) ⊇ U(ui), this also implies that U(t) ⊇ U(u). ⊓⊔

4 Our new definition of usable rules can also be combined with other techniques to reduce the
set of usable rules [14] and it can also be applied for dependency graph estimations or other
DP processors that rely on usable rules [16, 17].

5 Incompleteness is only due to our simplified definition of “DP problems”. With the full
definition of “DP problems” from [16], the processor is complete [16, Thm. 27].

10

Example 17 In Ex. 1, now the dependency pairs in the remaining DP problem
({(5), (6)},R, i) have no usable rules. Thus, Thm. 16 transforms this DP prob-
lem into ({(5), (6)}, ∅, i). Then with the processor of Thm. 14 we try to find a
reduction pair such that (5) and (6) are decreasing. Any simplification order ≻
(even the embedding order) makes both pairs strictly decreasing: s ≻ AP(α, x)
and s ≻ AP(map ′ α, xs) for s = AP(map ′ α, cons ′ x ′ xs). Thus, both dependency
pairs are removed and the resulting DP problem (∅,R, i) is transformed into
the empty set by the dependency graph processor of Thm. 10. So innermost ter-
mination of map can now easily be proved automatically. Note that this TRS
is non-overlapping and thus, it belongs to a well-known class where innermost
termination implies termination. Hence, we also proved termination of map.

In [29], we showed that under certain conditions, the usable rules of [4] can
also be used to prove full instead of just innermost termination (for arbitrary
TRSs). Then, even for termination, it is enough to require l % r just for the
usable rules in Thm. 14. This result also holds for the new improved usable rules
of Def. 15, provided that one uses tcap instead of icap in their definition.

3.3 A DP Processor to Transform Applicative to Functional Form

Some applicative DP problems can be transformed (back) to ordinary functional
form. In particular, this holds for problems resulting from first-order functions
(encoded by currying). This transformation is advantageous: e.g., the processor
in Thm. 14 is significantly more powerful for DP problems in functional form,
since standard reduction orders focus on the root symbol when comparing terms.

Example 18 We extend the map-TRS by the following rules for minus and div.
Note that a direct termination proof with simplification orders is impossible.

minus
′
x

′
0 → x (10)

minus
′(s ′

x) ′(s ′
y) → minus

′
x

′
y (11)

div
′
0

′(s ′
y) → 0 (12)

div
′(s ′

x) ′(s ′
y) → s

′(div
′(minus

′
x

′
y) ′(s ′

y)) (13)

While map is really a higher-order function, minus and div correspond to first-
order functions. It again suffices to verify innermost termination, since this TRS
R is non-overlapping. The improved estimated dependency graph has three SCCs
corresponding to map, minus, and div. Thus, by the dependency graph and the
usable rule processors (Thm. 10 and 16), the initial DP problem (DP (R),R, i) is
transformed into three new problems. The first problem ({(5), (6)}, ∅, i) for map
can be solved as before. The DP problems for minus and div are:

({AP(minus ′ (s ′ x), s ′ y) → AP(minus ′ x, y)}, ∅, i) (14)

({AP(div ′ (s ′ x), s ′ y) → AP(div ′ (minus ′ x ′ y), s ′ y)}, {(10), (11)}, i) (15)

Since (14) and (15) do not contain map anymore, one would like to change them
back to conventional functional form. Then they could be replaced by the following
DP problems. Here, every (new) function symbol is labelled by its arity.

({MINUS2(s1(x), s1(y)) → MINUS2(x, y)}, ∅, i) (16)

({DIV2(s1(x), s1(y)) → DIV2(minus2(x, y), s1(y))},

{minus2(x, 00) → x, minus2(s1(x), s1(y)) → minus2(x, y)}, i) (17)

11

These DP problems are easy to solve: for example, the constraints of the reduction
pair processor (Thm. 14) are satisfied by the polynomial order which maps s1(x)
to x + 1, minus2(x, y) to x, and every other symbol to the sum of its arguments.
Thus, termination could immediately be proved automatically.

Now we characterize those applicative TRSs which correspond to first-order
functions and can be translated into functional form. In these TRSs, for any
function symbol f there is a number n (called its arity) such that f only occurs
in terms of the form f ′ t1

′ . . . ′ tn. So there are no applications with too few or
too many arguments. Moreover, there are no terms x ′ t where the first argument
of ′ is a variable. Def. 19 extends this idea from TRSs to DP problems.

Definition 19 (Arity and Proper Terms) Let (P,R, e) be an applicative DP
problem over F . For each f ∈ F \ { ′ } let arity(f) = max{n | f ′ t1

′ . . . ′ tn or
(f ′ t1

′ . . . ′ tn)♯ occurs in P∪R}. A term t is proper iff t ∈ V or t = f ′ t1
′ . . . ′ tn

or t = (f ′ t1 . . . ′ tn)♯ where in the last two cases, arity(f) = n and all ti are proper.
Moreover, (P,R, e) is proper iff all terms in P ∪R are proper.

The DP problems (14) and (15) for minus and div are proper. Here, minus and
div have arity 2, s has arity 1, and 0 has arity 0. But the problem ({(5), (6)}, ∅, i)
for map is not proper as (5) contains the subterm AP(α, x) with α ∈ V.

The following transformation translates proper terms from applicative to
functional form. To this end, f ′ t1

′ . . . ′ tn is replaced by fn(. . .), where n is f’s
arity (as defined in Def. 19) and fn is a new n-ary function symbol. In this way,
(14) and (15) were transformed into (16) and (17) in Ex. 18.

Definition 20 (A Transformation) A maps every proper term from T (F ∪
F ♯,V) to a term from T ({fn,Fn | f ∈ F \ { ′ }, arity(f) = n}, V):

• A(x) = x for all x ∈ V
• A(f ′ t1

′ . . . ′ tn) = fn(A(t1), . . . ,A(tn)) for all f ∈ F \ { ′ }
• A((f ′ t1

′ . . . ′ tn)♯) = Fn(A(t1), . . . ,A(tn)) for all f ∈ F \ { ′ }

For any TRS R with proper terms, let A(R) = {A(l) → A(r) | l → r ∈ R}.

In the following, we say that a substitution σ is proper if σ(x) is proper for
all x ∈ V and for a proper substitution σ we define A(σ) as the substitution
with A(σ)(x) = A(σ(x)). Moreover, let Tproper be the set of proper terms from
T (F ∪ F ♯,V) and let Tfunc = T ({fn,Fn | f ∈ F \ { ′ }, arity(f) = n}, V).

Lemma 21 (Properties of A) Let (P,R, e) be a proper DP problem and let
A−1 be the inverse mapping to A. For all t, s from Tproper, all u, v from Tfunc,
all substitutions σ : V → Tproper, and all substitutions δ : V → Tfunc, we have

(a) A(tσ) = A(t)A(σ) and A−1(pδ) = A−1(p)A−1(δ)
(b) t→m

R s implies A(t)→m
A(R)A(s), and u→m

A(R) v implies A−1(u)→m
RA−1(v)

(c) t i→m
R s implies A(t) i→m

A(R)A(s), and u i→m
A(R) v implies A−1(u) i→m

RA−1(v)

Proof. The claim in (a) is proved by straightforward structural inductions. For
(b), one easily shows that t →R s iff A(t) →A(R) A(s) by structural induction
on t. Then the claim for m > 1 follows by induction. The proof of (c) is as for
(b) since t is normal iff A(t) is normal for any t ∈ Tproper by (b). ⊓⊔

12

We want to define a DP processor which replaces proper DP problems
(P,R, e) by (A(P),A(R), e). For its soundness, we have to show that every
(P,R, e)-chain results in an (A(P),A(R), e)-chain, i.e., that tiσ →∗

R si+1σ im-
plies A(ti)σ

′ →∗
A(R) A(si+1)σ

′ for some substitution σ′. The problem is that
although all terms in P and R are proper, the substitution σ may introduce
non-proper terms.

Therefore, we now show that every (P,R, e)-chain which uses a substitution
σ can also be obtained by using a substitution Z(σ) with proper terms. Here,
Z transforms arbitrary terms t, s into proper ones such that t →∗

R s implies
Z(t) →∗

R Z(s). Z replaces terms where a variable is on the first argument of ′

or AP or where a function symbol f has too few arguments by a fresh variable
⊥. If f is applied to more arguments than its arity n, the first n arguments
are modified by applying them to the arguments on positions n + 1, n + 2, . . .
Afterwards, the arguments on the positions n + 1, n + 2, . . . are deleted.

As an example, regard the non-proper term t = minus ′ s ′ 0 ′ x where the
symbol minus with arity 2 is applied to 3 arguments. Z removes the argu-
ment x and modifies the arguments s and 0 by applying them to x. So t is
replaced by minus ′ (s ′ x) ′ (0 ′ x). Now Z is called recursively on the subterms
and therefore, the argument x of the symbol 0 with arity 0 is removed. Hence,
Z(t) = minus ′ (s ′ x) ′ 0. Note that for the original non-proper term t, we have
t →R s ′ x by the collapsing minus-rule (10). Similarly, we now also have Z(t) →R

Z(s ′ x) = s ′ x. In the following, let ?j denote function symbols from { ′ ,AP}
where we now use infix notation for both ′ and AP to ease readability.

Definition 22 (Z Transformation) Z is the following transformation from
terms of T (F ∪F ♯,V) to T (F ∪F ♯,V ∪{⊥}), where ⊥ is a fresh variable. Here,
x ∈ V and f ∈ {f,F} for some f ∈ F \ { ′ } with arity(f) = n.

– Z(x) = x
– Z(f ?1 t1

?2 . . . ?k tk) =
f ′ Z(t1

?n+1 tn+1
?n+2 . . . ?k tk)

′ . . . ′ Z(tn
?n+1 tn+1

?n+2 . . . ?k tk),
if k ≥ n and either ?n = ′ or both n = 0 and f ∈ F

– Z(f ?1 t1
?2 . . . ?k tk) =

(f ′Z(t1
?n+1 tn+1

?n+2 . . . ?k tk)
′ . . . ′ Z(tn

?n+1 tn+1
?n+2 . . . ?k tk))

♯,
if k ≥ n and either ?n = AP or both n = 0 and f ∈ F ♯

– Z(t) = ⊥, for all other t ∈ T (F ∪ F ♯,V)

Moreover, for any substitution σ, Z(σ) is the substitution with Z(σ)(x) =
Z(σ(x)).

Lemma 23 (Properties of Z) Let (P,R, e) be a proper DP problem over F ,
let t and s be from T (F ∪ F ♯,V), and let σ : V → T (F ∪ F ♯,V).

(a) Z(t) is proper
(b) If t is proper then Z(tσ) = tZ(σ)
(c) t →∗

R s implies Z(t) →∗
R Z(s)

Proof. The claims (a) and (b) are easily obtained by structural induction on
t. For (c), it suffices to show that t →R s implies Z(t) →∗

R Z(s). We use in-
duction on t with the embedding order as induction relation. Obviously, t /∈ V.
First let t = f ?1 t1

?2 . . . ?k tk, where arity(f) = n and k ≥ n. We only regard

13

the case where either ?n = ′ or both n = 0 and f ∈ F , since the other case
is analogous. First assume that s is obtained by reducing ti →R si. If i ≤ n,
then Z(ti

?n+1 tn+1
?n+2 . . . ?k tk) →∗

R Z(si
?n+1 tn+1

?n+2 . . . ?k tk) by the induc-
tion hypothesis. Hence, Z(t) →∗

R Z(s) by the definition of Z. If i > n, then
Z(tj

?n+1 tn+1
?n+2 ... ?i ti

?i+1 ... ?k tk) →
∗ Z(tj

?n+1 tn+1
?n+2 ... ?i si

?i+1 ... ?k tk) for
all 1 ≤ j ≤ n by the induction hypothesis. By the definition of Z we again get
Z(t) →∗

R Z(s). Otherwise, t = lσ ?n+1 tn+1
?n+2 ... ?k tk → rσ ?n+1 tn+1

?n+2 ... ?k tk
= s. Let σ be the substitution with σ(x) = σ(x) ?n+1 tn+1

?n+2 . . . ?k tk. Then
Z(qσ ?n+1 tn+1

?n+2 . . . ?k tk) = qZ(σ) can easily be shown by structural induc-
tion for any proper term q. Hence, l = f ′ l1

′ . . . ′ ln and

Z(t) = f ′ Z(l1σ
?n+1 tn+1

?n+2 . . . ?k tk)
′ . . . ′Z(lnσ ?n+1 tn+1

?n+2 . . . ?k tk)
= f ′ l1Z(σ) ′ . . . ′ lnZ(σ)
= lZ(σ)
→R rZ(σ)
= Z(rσ ?n+1 tn+1

?n+2 . . . ?k tk)
= Z(s).

Otherwise, we have t = x ?1 t1
?2 . . . ?k tk or t = f ?1 t1

?2 . . . ?k tk where k <
arity(f). Here, s is obtained by reducing ti →R si for some i, since (P,R, e) is
proper. Thus, Z(t) = ⊥ = Z(s). ⊓⊔

However, the transformation Z cannot be used in the innermost case, since
t i→R s does not imply Z(t) i→∗

R Z(s). To see this, regard the TRS with the rules
f ′ (g ′ x ′ y ′ z) → z and g ′ x ′ x ′ y → 0. We obtain t i→R 0 for the non-proper term
t = f ′ (g ′ (0 ′ x) ′ (0 ′ y) ′ 0), whereas Z(t) = f ′ (g ′ 0 ′ 0 ′ 0) only reduces innermost
to f ′ 0. So the problem is that Z can make different subterms equal by eliminating
“superfluous” arguments.

Therefore, we now introduce an alternative transformation I from arbitrary
to proper terms which simply replaces non-proper subterms t by a fresh variable
⊥t. So in the above example, we have I(t) = f ′ (g ′ ⊥0 ′ x

′⊥0 ′ y
′ 0). Since ⊥0 ′ x 6=

⊥0 ′ y, we now obtain I(t) i→R I(0) = 0, as desired. Now t i→R s indeed implies
I(t) i→∗

R I(s), provided that t has the form qσ for a proper term q and a normal
substitution σ, i.e., σ(x) is in normal form w.r.t. R for all x ∈ V.6

Definition 24 (I Transformation) I is the transformation from T (F∪F ♯,V)
to T (F ∪ F ♯,V ∪ V ′), where V ′ = {⊥t | t ∈ T (F ∪ F ♯,V)} are fresh variables.

– I(x) = x for all x ∈ V
– I(f ′ t1

′ . . . ′ tn) = f ′ I(t1)
′ . . . ′ I(tn) for all f ∈ F where arity(f) = n

– I((f ′ t1
′ . . . ′ tn)♯) = (f ′ I(t1)

′ . . . ′ I(tn))♯ for all f ∈ F where arity(f) = n
– I(t) = ⊥t, for all other t ∈ T (F ∪ F ♯,V)

Moreover, for any substitution σ, I(σ) is the substitution with I(σ)(x) = I(σ(x)).

Lemma 25 (Properties of I) Let (P,R, e) be a proper DP problem over F ,
let t and s be from T (F ∪ F ♯,V) and let σ : V → T (F ∪ F ♯,V).

6 This does not hold for arbitrary terms t as can be seen from t = minus ′ s ′ 0 ′ x. While
t i→R s ′ x using the rule (10), the term I(t) = ⊥minus ′ s ′ 0 ′ x is a normal form. Thus, the
transformation I cannot be used in the termination case where we have to consider arbitrary
(possibly non-normal) substitutions σ. So we really need two different transformations Z and
I for termination and innermost termination, respectively.

14

(a) I(t) is proper
(b) If t is proper then I(tσ) = tI(σ)
(c) If t is in normal form then I(t) is in normal form w.r.t. R
(d) If σ is normal and t is proper then tσ i→m

R s implies I(tσ) i→m
R I(s)

Proof. Again, the claims (a) and (b) can be proved by straightforward structural
induction on t. We prove (c) by induction on t. If I(t) is a variable then the
claim is trivial. Otherwise, let t = f ′ t1

′ . . . ′ tn (the case t = (f ′ t1
′ . . . ′ tn)♯

is analogous). We say that a term is normal if it is in normal form w.r.t. R.
Hence, all ti are normal and by induction all I(ti) are normal, too. Thus, I(t) =
f ′ I(t1)

′ . . . ′ I(tn) can only be reduced at the root, i.e., I(t) = lδ for some
l → r ∈ R. By induction on l, we now show that all δ(x) are proper and
that t = lI−1(δ). (I is injective and it is surjective on the proper terms of
T (F ∪ F ♯,V ∪ V ′).) This contradicts the prerequisite that t is normal.

If l = x then δ(x) = I(t) is proper by (a) and t = I−1(I(t)) = I−1(δ(x)) =
lI−1(δ). If l = f ′ l1

′ . . . ′ ln we have I(t) = f ′ l1δ
′ . . . ′ lnδ. Thus, t must be of the

form f ′ t1
′ . . . ′ tn and I(ti) = liδ. By the induction hypothesis, all δ(x) are proper

and ti = liI
−1(δ) which implies t = f ′ t1

′ . . . ′ tn = f ′ l1I
−1(δ) ′ . . . ′ lnI

−1(δ) =
(f ′ l1

′ . . . ′ ln)I−1(δ) = lI−1(δ).
For (d), we prove that tσ i→R s implies both I(tσ) i→R I(s) and s = uδ for

a proper term u and a normal substitution δ. Then (d) follows by induction.
As σ is normal, t is no variable. We only regard the case t = f ′ t1

′ . . . ′ tn since
the case t = (f ′ t1

′ . . . ′ tn)♯ is analogous. If s is obtained by reducing tiσ
i→R si

then by the induction hypothesis we conclude I(tiσ) i→R I(si) and si = uiδ
for some normal substitution δ and proper term ui. We may assume that ui is
variable disjoint from tj for all j 6= i. Then we can extend δ to behave like σ on
the variables of tj for all j 6= i. Hence, for u = f ′ t1

′ . . . ′ ui
′ . . . ′ tn we obtain

uδ = s. Moreover,

I(tσ) = f ′ I(t1σ) ′ . . . ′ I(tiσ) ′ . . . ′ I(tnσ)
i→R f ′ I(t1σ) ′ . . . ′ I(uiδ)

′ . . . I(tnσ)
= f ′ I(t1δ)

′ . . . ′ I(uiδ)
′ . . . ′ I(tnδ)

= I(f ′ t1δ
′ . . . ′ uiδ

′ . . . ′ tnδ)
= I(uδ)
= I(s).

Otherwise, the reduction is on the root position, i.e., tσ = lτ i→R rτ = s
where l = f ′ l1

′ . . . ′ ln. We choose u = r and δ = τ to obtain s = uδ. Then
I(tσ) = I(lτ) = lI(τ) i→R rI(τ) = I(rτ) = I(s) by (b). This is indeed an
innermost step since all liτ are normal and by (c) all I(liτ) are normal, too. ⊓⊔

Now we can formulate the desired processor which transforms proper applica-
tive DP problems into functional form.

Theorem 26 (DP Processor for Transformation in Functional Form)
For any DP problem (P,R, e), let Proc return {(A(P),A(R), e)} if (P,R, e) is
proper and {(P,R, e)} otherwise. Then Proc is sound and complete.

Proof. We first prove soundness in the termination case e = t. To this end, we
show that every infinite (P,R, e)-chain s1 → t1, s2 → t2, . . . corresponds to an in-
finite (A(P),A(R), e)-chain. There is some σ with tiσ →∗

R si+1σ for all i. Hence,

15

tiZ(σ) = Z(tiσ) →∗
R Z(si+1σ) = si+1Z(σ) by Lemma 23 (b) and (c), where ti,

si+1, and Z(σ) are proper by Lemma 23 (a). Thus, using Lemma 21 (a) and (b)
we obtain A(ti)A(Z(σ)) = A(tiZ(σ)) →∗

A(R) A(si+1Z(σ)) = A(si+1)A(Z(σ)).

Hence, A(s1) → A(t1), A(s2) → A(t2), . . . is an (A(P),A(R), t) chain.
For soundness in the innermost case we know that all siσ are normal and that

tiσ
i→R

∗ si+1σ. Hence, tiI(σ) = I(tiσ) i→∗
R I(si+1σ) = si+1I(σ) by Lemma 25

(b) and (d), where ti, si+1, and I(σ) are proper by Lemma 25 (a). As in the
termination case one can prove that A(s1) → A(t1), A(s2) → A(t2), . . . is an
(A(P),A(R), i)-chain by using the substitution A(I(σ)) (since A(si)A(I(σ)) is
normal by Lemma 25 (c) and Lemma 21 (b)).

For completeness let (A(P),A(R), e) be infinite. Thus, A(R) is not (inner-
most) terminating or there is an infinite (A(P),A(R), e)-chain. In the former case
we obtain that R is not (innermost) terminating either by Lemma 21 (b) and (c).
Otherwise, let A(s1) → A(t1), A(s2) → A(t2), . . . be an infinite (A(P),A(R), e)-
chain. If e = t then there is some substitution δ such that A(ti)δ →∗

A(R)

A(si+1)δ. By Lemma 21 (a) and (b) we obtain tiA
−1(δ) = A−1(A(ti)δ) →∗

R

A−1(A(si+1)δ) = si+1A
−1(δ) which shows that there is an infinite (P,R, t)-

chain. Otherwise, if e = i we know that A(ti)δ
i→∗
A(R) A(si+1)δ and all A(si)δ are

in normal form w.r.t. A(R). By Lemma 21 (a) and (c) we obtain tiA
−1(δ) i→∗

R

si+1A
−1(δ) as in the termination case. Moreover, siA

−1(δ) is in normal form
w.r.t. R, because otherwise A(siA

−1(δ)) = A(si)δ would be reducible w.r.t.
A(R) by Lemma 21 (b). Thus, there is an infinite (P,R, i)-chain. ⊓⊔

With the new processor of Thm. 26 and our new improved estimation of
dependency graphs (Def. 12), it does not matter anymore for the termination
proof whether first-order functions are represented in applicative or in ordinary
functional form. The reason is that if they are represented by applicative rules,
then all dependency pairs with non-proper right-hand sides are not in SCCs of
the improved estimated dependency graph. Hence, after applying the dependency
graph processor of Thm. 10, all remaining DP problems are proper and can be
transformed into functional form by Thm. 26.

As an alternative to the processor of Thm. 26, one can also couple the trans-
formation A with the reduction pair processor from Thm. 14. Then a DP problem
(P,R, e) is transformed into {(P \ {s → t | A(s) ≻ A(t)},R, e)} if (P,R, e) is
proper, if A(P)≻ ∪ A(P)% = A(P), and if A(R)% = A(R) holds for some re-
duction pair (%,≻). An advantage of this alternative processor is that it can
be combined with our results from [29] on applying usable rules for termination
instead of innermost termination proofs, cf. Sect. 3.2.

3.4 Comparison with Related Work

Most approaches for higher-order functions in term rewriting use higher-order
TRSs. However, the main automated termination techniques for such TRSs are
simplification orders (e.g., [19]) which fail on functions like div in Ex. 18.

Exceptions are the monotonic higher-order semantic path order [8] and the
existing variants of dependency pairs for higher-order TRSs. However, these vari-
ants require considerable restrictions (e.g., on the TRSs [28] or on the orders that
may be used [3, 23, 27].) So in contrast to our results, they are less powerful than
the original dependency pair technique when applied to first-order functions.

16

Termination techniques for higher-order TRSs often handle a richer language
than our results. But an efficient automation of these approaches is usually not
straightforward (there are hardly any implementations of these techniques avail-
able). In contrast, only minor modifications are needed to integrate our results
into termination provers for ordinary first-order TRSs that use dependency pairs.

Other approaches represent higher-order functions by first-order TRSs [1, 2,
18, 24, 30], similar to us. However, they mostly use monomorphic types without
type variables (this restriction is also imposed in some approaches for higher-
order TRSs [8]). Then terms like “map ′ minus ′ xs” and “map ′ (minus ′ x) ′ xs”
cannot both be well typed, but one needs different map-symbols for arguments
of different types. In contrast, our approach uses untyped term rewriting. Hence,
it can be applied for termination analysis of polymorphic or untyped functional
languages. Moreover, [24] and [30] only consider extensions of the lexicographic
path order, whereas we can also handle non-simply terminating TRSs like Ex. 18.

4 A DP Processor for Proving Non-Termination

Almost all techniques for automated termination analysis try to prove termina-
tion and there are hardly any methods to prove non-termination. But detecting
non-termination automatically would be very helpful when debugging programs.

We show that the DP framework is particularly suitable for combining both
termination and non-termination analysis. We introduce a DP processor which
tries to detect infinite DP problems in order to answer “no”. The processor also
handles higher-order functions if they are represented by first-order TRSs. Then,
if all previous processors were complete, we can conclude non-termination of
the original TRS. An important advantage of the DP framework is that it can
couple the search for a proof and a disproof of termination: Processors which
try to prove termination are also helpful for the non-termination proof because
they transform the initial DP problem into sub-problems, where most of them
can easily be proved finite. So they detect those sub-problems which could cause
non-termination. Therefore, the non-termination processors should only operate
on these sub-problems and thus, they only have to regard a subset of the rules
when searching for non-termination. On the other hand, processors that try to
disprove termination are also helpful for the termination proof, even if some
of the previous processors were incomplete. The reason is that there are many
indeterminisms in a termination proof attempt, since usually many DP processors
can be applied to a DP problem (possibly in several different ways). Thus, if one
can find out that a DP problem is infinite, one knows that one has reached a
“dead end” and should backtrack.

To prove non-termination within the DP framework, in Sect. 4.1 we introduce
looping DP problems and in Sect. 4.2 we show how to detect such DP problems
automatically. Finally, Sect. 4.3 is a comparison with related work.

4.1 A DP Processor Based on Looping DP Problems

An obvious approach to find infinite reductions is to search for a term s which
evaluates to a term C[sµ] containing an instance of s. A TRS with such reductions
is called looping. Clearly, a naive search for looping terms is very costly.

17

In contrast to “looping TRSs”, when adapting the concept of loopingness to
DP problems, we only have to consider terms s occurring in dependency pairs
and we do not have to regard any contexts C. The reason is that such contexts
are already removed by the construction of dependency pairs. In Thm. 29, we
will show that in this way one can indeed detect all looping TRSs.

Definition 27 (Looping DP Problems) A DP problem (P,R, t) is looping
iff there is a (P,R)-chain s1 → t1, s2 → t2, . . . with tiσ →∗

R si+1σ for all i such
that s1σ matches skσ for some k > 1 (i.e., s1σµ = skσ for a substitution µ).

To prove that loopingness of TRSs corresponds to loopingness of DP prob-
lems, we first need the following auxiliary lemma about the form of looping reduc-
tions. Let ☎ denote the subterm relation and ✄ is the proper subterm relation.
Any reduction of the form s = s0 ☎ t0 →R s1 ☎ t1 →R . . . →R sm−1 ☎ tm−1 →R

sm☎tm = sµ with m > 0 is called a cyclic reduction of R of length m. Obviously,
any looping TRS has such a cyclic reduction, since loopingness implies that there
is a term s and a substitution µ with s →+

R C[sµ]☎sµ. In the following, →R,ε de-
notes R-reductions at the root position and →R,>ε denotes R-reductions below
the root.

Lemma 28 (Form of Looping Reductions) Let R be a looping TRS and let
m be the length of the shortest cyclic reduction of R. Then there is some term s
and some substitution µ such that s ((→R,ε ◦ ☎) ∪→R,>ε)

m sµ, i.e., steps with
✄ can only take place after R-reductions at the root. Moreover, the reduction
contains at least one root reduction step (i.e., one step with →R,ε) and every
term in the reduction has a defined root.

Proof. Let s be a minimal term (w.r.t. ✄) that has a cyclic reduction of length m.
We show that in the cyclic reduction of s we can always exchange the sequence
→R,>ε ◦ ✄d by ✄d ◦ →R, where ✄d is the direct subterm relation. This proves
that we have s ☎ s′ ((→R,ε ◦ ☎) ∪→R,>ε)

m sµ for some term s′. So let u →R,>ε

v ✄d w be a reduction occurring in the cyclic reduction of s. Then we have
u = f(u1, . . . , un), v = f(v1, . . . , vn), w = vj , ui →R vi, and uk = vk for all k 6= i.
If j = i, then u ✄d ui →R vi = vj = w. Otherwise, u ✄d uj = vj = w which is a
contradiction to the minimality of m.

Now note that s = s′. The reason is that s ✄ s′ would imply that there
is a cyclic reduction s′ ((→R,ε ◦ ☎) ∪ →R,>ε)

m sµ ✄ s′µ of length m for the
term s′. This is a contradiction to the minimality of s. Hence, we indeed obtain
s ((→R,ε ◦ ☎) ∪→R,>ε)

m sµ.

Next we show that there must be at least one reduction step at the root. Oth-
erwise, we would obtain s →m

R,>ε sµ. Hence, s = f(s1, . . . , sn) →m
R,>ε f(s1µ, . . . ,

snµ). For all i, we have si →mi

R,>ε siµ for some mi with m1 + . . . + mn = m.
Since m > 0, there must be at least one mi > 0 which shows that si →

mi

R,>ε siµ
is a cyclic reduction with a length of at most m. Note that mi = m because of
minimality of m. But since s ✄ si, this is a contradiction to the minimality of s.

Finally, we show that all terms in the reduction have a defined root symbol.
First note that the root of s must be defined, since s starts a reduction w.r.t.
((→R,ε ◦ ☎) ∪→R,>ε)

∗ that contains a root step with →R,ε. Moreover, for any
term s′ with s′ ((→R,ε ◦ ☎) ∪ →R,>ε)

∗ sµ, the root of s′ must also be defined.

18

The reason is that otherwise, s′ can only be reduced by →R,>ε-steps, but then
one cannot obtain the term sµ which has a defined root. ⊓⊔

Now we can show the desired result that looping TRSs correspond to looping
DP problems.

Theorem 29 (Loopingness of TRSs and DP problems) A TRS R is loop-
ing iff the DP problem (DP (R),R, t) is looping.

Proof. We first prove that loopingness of (DP (R),R, t) implies that R is looping.
Let s1 → t1, s2 → t2, . . . be a looping (P,R)-chain, i.e., tiσ →∗

R si+1σ for all i and
s1σµ = skσ for some k > 1. For any term t whose root symbol is a tuple symbol,
let t♭ denote the term which results from replacing the tuple symbol by the
corresponding defined symbol (i.e., F(t1, . . . , tn)♭ = f(t1, . . . , tn)). As R does not
contain tuple symbols and as all si and ti have a tuple symbol on the root position,
we obtain t♭iσ →∗

R s♭
i+1σ for all i. Moreover, for each dependency pair si → ti,

there is a rule s♭
i → Ci[t

♭
i] ∈ R. Hence, s♭

1σ →R C1σ[t♭1σ] →∗
R C1σ[s♭

2σ] →R

C1σ[C2σ[t♭2σ]] →∗
R . . . →R C1σ[. . .Ck−1σ[t♭k−1σ]. . .] →∗

R C1σ[. . .Ck−1σ[s♭
kσ]. . .]

= C1σ[. . . Ck−1σ[s♭
1σµ] . . .]. Hence, R is looping.

For the other direction, let R be looping. By Lemma 28 there is a term s
such that s = s0 ((→R,ε ◦☎)∪→R,>ε) s1 ((→R,ε ◦☎)∪→R,>ε) . . . ((→R,ε ◦☎)∪
→R,>ε) sm = sµ where m is the length of the shortest cyclic reduction. Here, all
si have a defined root and we have used at least one (→R,ε ◦ ☎)-step. Obviously,

whenever we have si →R,>ε si+1, then we also obtain s♯
i →R s♯

i+1. Next we show

that si (→R,ε ◦ ☎) si+1 implies s♯
i = uσ and s♯

i+1 = vσ for some dependency pair
u → v ∈ DP (R). Thus, let si = lσ →R rσ ☎ rσ|p = si+1 for some rule l → r ∈ R
and some position p in rσ. First note that due to the minimality of m, the term
si+1 cannot be entirely in σ, i.e., p is a position of r and r|p is not a variable. The
reason is that otherwise, we would have si ☎ si+1 and thus, we could obtain a
cyclic reduction of shorter length. Thus, si+1 = r|pσ where r|p /∈ V. As the root

of si+1 is defined, r|p has a defined root as well and hence, l♯ → r|♯p ∈ DP (R).

Thus, s♯
i = l♯σ and s♯

i+1 = r|♯pσ.

So if s = s0 →∗
R,>ε si1 (→R,ε ◦ ☎) si1+1 →∗

R,>ε si2 (→R,ε ◦ ☎) . . . →∗
R,>ε

sik (→R,ε ◦ ☎) sik+1 →∗
R,>ε sik+1

= sm = sµ = s0µ, then by the above results

we know that s♯ = s♯
0 →∗

R s♯
i1

= u1σ →DP (R) v1σ = s♯
i1+1 →∗

R s♯
i2

= u2σ →DP (R)

. . . →∗
R s♯

ik
= ukσ →DP (R) vkσ = s♯

ik+1 →∗
R s♯

ik+1
= s♯µ = s♯

0µ →∗
R s♯

i1
µ = u1σµ

for some dependency pairs ui → vi ∈ DP (R). As there was at least one root
step in the original reduction, we know that k ≥ 1. Thus, the (P,R)-chain
u1 → v1, . . . , uk → vk, u1 → v1 shows that (DP (R),R, t) is looping. ⊓⊔

Example 30 Consider Toyama’s example R = {f(0, 1, x) → f(x, x, x), g(y, z) →
y, g(y, z) → z} and P = DP (R) = {F(0, 1, x) → F(x, x, x)}. We have the (P,R)-
chain F(0, 1, x1) → F(x1, x1, x1), F(0, 1, x2) → F(x2, x2, x2), since F(x1, x1, x1)σ
→∗

R F(0, 1, x2)σ for σ(x1) = σ(x2) = g(0, 1). As the term F(0, 1, x1)σ matches
F(0, 1, x2)σ (they are even identical), the DP problem (P,R, t) is looping.

Our goal is to detect looping DP problems. In the termination case, every
looping DP problem is infinite and hence, if all preceding DP processors were

19

complete, then termination is disproved. However, the definition of “looping”
from Def. 27 cannot be used for innermost termination: in Ex. 30, (DP (R),R, t)
is looping, but (DP (R),R, i) is finite and R is innermost terminating.7

Nevertheless, for non-overlapping DP problems, (P,R, i) is infinite whenever
(P,R, t) is infinite. So here loopingness of (P,R, t) indeed implies that (P,R, i)
is infinite. We call (P,R, e) non-overlapping if R is non-overlapping and no left-
hand side of R unifies with a non-variable subterm of a left-hand side of P.

Lemma 31 (Looping and Infinite DP Problems)

(a) If (P,R, t) is looping, then (P,R, t) is infinite.
(b) If (P,R, t) is infinite and non-overlapping, then (P,R, i) is infinite.

Proof. For (a), let s1 → t1, . . . , sk → tk be a chain where tiσ →∗
R si+1σ for all i

and s1σµ = skσ. Hence, s1 → t1, . . . , sk−1 → tk−1, s1 → t1, . . . , sk−1 → tk−1, . . .
is an infinite (P,R)-chain. To see this, one can use a substitution which behaves
like σ on the variables of the first k−1 dependency pairs, like σµ on the variables
of the next k− 1 pairs, like σµ2 on the next k− 1 pairs, etc. Then obviously, the
instantiated right-hand side of each pair in the chain reduces to the instantiated
left-hand side of the next pair.

For (b), let (P,R, t) be infinite. If R is not terminating then R is also not
innermost terminating since R is non-overlapping, and thus, (P,R, i) is infinite.
Otherwise, there is some infinite (P,R)-chain s1 → t1, s2 → t2 . . . with tiσ →∗

R

si+1σ. The chain is minimal (i.e., all tiσ are terminating), since R is terminating.
Hence, by [16, Thm. 32] there is also an infinite innermost (P,R)-chain. Thus,
(P,R, i) is infinite. ⊓⊔

Now we can define the DP processor for proving non-termination.

Theorem 32 (Non-Termination Processor) The following DP processor
Proc is sound and complete. For a DP problem (P,R, e), Proc returns

• “no”, if (P,R, t) is looping and (e = t or (P,R, e) is non-overlapping)
• {(P,R, e)}, otherwise

Proof. The theorem is an immediate consequence of Lemma 31. ⊓⊔

4.2 Detecting Looping DP Problems

Our criteria to detect looping DP problems automatically use narrowing.

Definition 33 (Narrowing) Let R be a TRS which may also have rules l → r
where V(r) 6⊆ V(l) or l ∈ V. A term t narrows to s, denoted t R,δ,p s, iff there is
a substitution δ, a (variable-renamed) rule l → r ∈ R and a non-variable position
p of t such that δ = mgu(t|p, l) and s = t[r]pδ. Let R,δ be the relation which

7 One can adapt “loopingness” to the innermost case: (P ,R, i) is looping iff there is an in-

nermost (P ,R)-chain s1 → t1, s2 → t2, . . . such that tiσµn i→∗

R si+1σµn, s1σµ = skσ, and
siσµn is in normal form for all i and all n ≥ 0. Then loopingness implies that the DP problem
is infinite, but since one has to examine infinitely many instantiations siσµn and tiσµn, in
general loopingness is hard to check. Nevertheless, for special TRSs (e.g., overlay systems),
one can also formulate sufficient conditions for loopingness in the innermost case which are
amenable to automation.

20

permits narrowing steps on all positions p. Let (P,R),δ denote P,δ,ε ∪ R,δ,
where ε is the root position. Moreover, let ∗

(P,R),δ be the smallest relation which
contains (P,R),δ1 ◦ . . . ◦ (P,R),δn

for all n ≥ 0 and all substitutions where
δ = δ1 . . . δn.

Example 34 Let R = {f(x, y, z) → g(x, y, z), g(s(x), y, z) → f(z, s(y), z)} and
let P = DP (R) = {F(x, y, z) → G(x, y, z), G(s(x), y, z) → F(z, s(y), z)}. The
term G(x, y, z) can only be narrowed by the rule G(s(x′), y′, z′) → F(z′, s(y′), z′) on
the root position and hence, we obtain G(x, y, z) P,[x/s(x′), y′/y, z′/z],ε F(z, s(y), z).

To find loops, we narrow the right-hand side t of a dependency pair s → t
until one reaches a term s′ such that sδ semi-unifies with s′ (i.e., sδµ1µ2 = s′µ1

for some substitutions µ1 and µ2). Here, δ is the substitution used for narrowing.
Then we indeed have a loop as in Def. 27 by defining σ = δµ1 and µ = µ2.
Semi-unification encompasses both matching and unification and algorithms for
semi-unification can for example be found in [20, 25].

Theorem 35 (Loop Detection by Forward Narrowing) Let (P,R, e) be a
DP problem. If there is an s → t ∈ P such that t ∗

(P,R),δ s′ and sδ semi-unifies

with s′, then (P,R, t) is looping.

Proof. We have sδµ1µ2 = s′µ1 for some substitutions µ1 and µ2. Let σ = δµ1.
We know that sσ →P tσ = tδµ1 →∗

P∪R s′µ1 = sσµ2 where P-rules are only used
on the root position. Thus, (P,R, t) is looping. ⊓⊔

Example 36 We continue with Ex. 34. We had G(x, y, z) (P,R),δ F(z, s(y), z)
where δ = [x/s(x′), y′/y, z′/z]. Applying δ to the left-hand side s = F(x, y, z)
of the first dependency pair yields F(s(x′), y, z). Now F(s(x′), y, z) semi-unifies
with F(z, s(y), z), since F(s(x′), y, z)µ1µ2 = F(z, s(y), z)µ1 for the substitutions
µ1 = [z/s(x′)] and µ2 = [y/s(y)]. (However, the first term does not match or
unify with the second.) Thus, (P,R, t) is looping and R does not terminate.

However, while the DP problem of Toyama’s example (Ex. 30) is looping,
this is not detected by Thm. 35. The reason is that the right-hand side F(x, x, x)
of the only dependency pair cannot be narrowed. Therefore, we now introduce
a variant of the above criterion which narrows with the reversed TRSs P−1 and
R−1.

Theorem 37 (Loop Detection by Backward Narrowing) Let (P,R, e) be
a DP problem. If there is an s → t ∈ P such that s ∗

(P−1,R−1),δ t′ and t′

semi-unifies with tδ, then (P,R, t) is looping.

Proof. We have t′µ1µ2 = tδµ1 for some substitutions µ1 and µ2. Let σ = δµ1.
From s ∗

(P−1,R−1),δ t′ we obtain sδ →∗
P−1∪R−1 t′ where all P−1-rules are only

used on the root position. Thus, t′ →∗
P∪R sδ which implies sσ →P tσ = tδµ1 =

t′µ1µ2 →∗
P∪R sδµ1µ2 = sσµ2 where P-rules are only used on the root position.

This shows that (P,R, t) is looping. ⊓⊔

Example 38 To detect that Toyama’s example (Ex. 30) is looping, we start with
the left-hand side s = F(0, 1, x) and narrow 0 to g(0, z) using y → g(y, z) ∈ R−1.

21

Then we narrow 1 to g(y′, 1) by z′ → g(y′, z′). Therefore we obtain F(0, 1, x)
 ∗

(P−1,R−1),[y/0, z′/1] F(g(0, z), g(y, 1), x). Now t′ = F(g(0, z), g(y, 1), x) (semi-)

unifies with the corresponding right-hand side t = F(x, x, x) using µ1 = [x/g(0, 1),
y/0, z/1]. Thus, (DP (R),R, t) is looping and the TRS is not terminating.

However, there are also TRSs where backward narrowing fails and forward
narrowing succeeds.

Example 39 Let R = {f(x, x) → f(0, 1), 0 → a, 1 → a} and P = DP (R) =
{F(x, x) → F(0, 1)}. For σ(x) = a we have an infinite (P,R)-chain. But the
left-hand side F(x, x) of P’s only pair cannot be narrowed backwards and thus,
Thm. 37 fails.

On the other hand, the right-hand side F(0, 1) can be narrowed to F(a, a).
This term obviously unifies with the left-hand side F(x, x) by µ1 = [x/a]. Thus,
with forward narrowing (Thm. 35) we can detect that this DP problem is looping
and that the TRS is not terminating.

Note that Ex. 30 where forward narrowing fails is not right-linear and that
Ex. 39 where backward narrowing fails is not left-linear.8 Therefore, we imple-
mented the non-termination processor of Thm. 32 with the following heuristic in
our system AProVE [15]:

• If P ∪R is right- and not left-linear, then use forward narrowing (Thm. 35).

• Otherwise, we use backward narrowing (Thm. 37). If P ∪R is not left-linear,
then moreover we also permit narrowing steps in variables (i.e., t|p ∈ V is
permitted in Def. 33). The reason is that then there are looping DP problems
which otherwise cannot be detected by forward or backward narrowing.9

• Moreover, to obtain a finite search space, we use an upper bound on the
number of times that a rule from P ∪R can be used for narrowing.

4.3 Comparison with Related Work

We use narrowing to identify looping DP problems. This is related to the con-
cept of forward closures of a TRS R [10]. However, our approach differs from
forward closures by starting from the rules of another TRS P and by also al-
lowing narrowings with P’s rules on root level. (The reason is that we prove
non-termination within the DP framework.) Moreover, we also regard backward
narrowing.

There are only few papers on automatically proving non-termination of TRSs.
An early work is [26] which detects TRSs that are not simply terminating (but

8 In fact, we conjecture that all looping DP problems can be detected by forward narrowing if
P ∪R is right-linear and by backward narrowing if P ∪R is left-linear.

9 An example is the well-known TRS of Drosten [11] (cf. also [5, Ex. 4.13]). Nevertheless,
then there are also looping DP problems which cannot even be found when narrowing into
variables. An example is (P ,R, t) where P = {F(x, x, y) → F(c(g(y, y)), c(h(y, y)), y)} and
R = {g(c(0), c(1)) → b, h(c(0), c(1)) → b, a → 0, a → 1}. We have an infinite chain
since F(c(b), c(b), c(a)) →P F(c(g(c(a), c(a))), c(h(c(a), c(a))), c(a)) →∗

R F(c(g(c(0), c(1))),
c(h(c(0), c(1))), c(a)) →∗

R F(c(b), c(b), c(a)) →P . . . However, an infinite chain can only be
obtained if one instantiates y by c(a). But this instantiation cannot be found by narrowing,
not even when narrowing into variables (since no left-hand side of a rule starts with c).

22

they may still terminate). Recently, [31, 33] presented methods for proving non-
termination of string rewrite systems (i.e., TRSs where all function symbols have
arity 1). Similar to our approach, [31] uses (forward) narrowing and [33] uses an-
cestor graphs which correspond to (backward) narrowing. However, our approach
differs substantially from [31, 33]: our technique works within the DP framework,
whereas [31, 33] operate on the whole set of rules. Therefore, we can benefit from
all previous DP processors which decompose the initial DP problem into smaller
sub-problems and identify those parts which could cause non-termination. More-
over, we regard full term rewriting instead of string rewriting. Therefore, we use
semi-unification to detect loops, whereas for string rewriting, matching is suffi-
cient. Finally, we also presented a condition to disprove innermost termination,
whereas [31, 33] only try to disprove full termination.

5 Experiments and Conclusion

The DP framework is a general concept for combining termination techniques in a
modular way. We presented two important improvements: First, we extended the
framework in order to handle higher-order functions, represented as applicative
first-order TRSs. To this end, we developed three new contributions: a refined
approximation of dependency graphs, an improved definition of usable rules, and
a new processor to transform applicative DP problems into functional form. The
advantages of our approach, also compared to related work, are the following: it
is simple and very easy to integrate into any termination prover based on depen-
dency pairs (e.g., AProVE [15], CiME [9], TTT [18]). Moreover, it encompasses
the original DP framework, e.g., it is at least as successful on ordinary first-order
functions as the original dependency pair technique. Finally, our approach treats
untyped higher-order functions, i.e., it can be used for termination analysis of
polymorphic and untyped functional languages.

As a second extension within the DP framework, we introduced a new proces-
sor for disproving termination automatically (an important problem which had
hardly been tackled up to now). A major advantage of our approach is that it
combines techniques for proving and for disproving termination in the DP frame-
work, which is beneficial for both termination and non-termination analysis.

We implemented all these contributions in the newest version of our termi-
nation prover AProVE [15]. Due to the results of this paper, AProVE 1.2 was the
most powerful tool for both termination and non-termination proofs of TRSs at
the Annual International Competition of Termination Tools 2005 [32]. In the fol-
lowing table, we compare AProVE 1.2 with its predecessor AProVE 1.1d-γ, which
was the winning tool for TRSs at the competition in 2004. While AProVE 1.1d-γ
already contained our results on non-termination analysis, the contributions on
handling applicative TRSs from Sect. 3 were missing. For the experiments, we
used the same setting as in the competition with a timeout of 60 seconds for
each example (where however most proofs take less than two seconds).

higher-order (61 TRSs) non-term (90 TRSs) TPDB (838 TRSs)
t n t n t n

AProVE 1.2 43 8 25 61 639 95

AProVE 1.1d-γ 13 7 24 60 486 92

23

Here, “higher-order” is a collection of untyped versions of typical higher-order
functions from [2, 3, 7, 23, 24, 30] and “non-term” contains particularly many
non-terminating examples. “TPDB” is the Termination Problem Data Base
used in the annual termination competition [32]. It consists of 838 (innermost)
termination problems for TRSs from different sources. In the tables, t and n are
the numbers of TRSs where termination resp. non-termination could be proved.

AProVE 1.2 solves the vast majority of the examples in the “higher-order”-
and the “non-term”-collection. This shows that our results for higher-order func-
tions and non-termination are indeed successful in practice. In contrast, the first
column demonstrates that previous techniques for automated termination proofs
often fail on applicative TRSs representing higher-order functions. Finally, the
last two columns show that our contributions also increase power substantially
on ordinary non-applicative TRSs (which constitute most of the TPDB). For fur-
ther details on our experiments and to download AProVE, the reader is referred
to http://www-i2.informatik.rwth-aachen.de/AProVE/1.2/.

References

1. T. Aoto and T. Yamada. Termination of simply typed term rewriting systems by translation
and labelling. In Proc. RTA ’03, LNCS 2706, pages 380–394, 2003.

2. T. Aoto and T. Yamada. Termination of simply-typed applicative term rewriting systems.
In Proc. HOR ’04, Technical Report AIB-2004-03, RWTH Aachen, Germany, pages 61–65,
2004.

3. T. Aoto and T. Yamada. Dependency pairs for simply typed term rewriting. In Proc.

RTA ’05, LNCS 3467, pages 120–134, 2005.
4. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical

Computer Science, 236:133–178, 2000.
5. T. Arts and J. Giesl. A collection of examples for termination of term rewriting using

dependency pairs. Technical Report AIB-2001-09, RWTH Aachen, 2001. Available from
http://aib.informatik.rwth-aachen.de.

6. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge, 1998.
7. R. Bird. Introduction to Functional Programming using Haskell. Prentice Hall, 1998.
8. C. Borralleras and A. Rubio. A monotonic higher-order semantic path ordering. In Proc.

LPAR ’01, LNAI 2250, pages 531–547, 2001.
9. E. Contejean, C. Marché, B. Monate, and X. Urbain. CiME. http://cime.lri.fr.

10. N. Dershowitz. Termination of rewriting. J. Symb. Comp., 3:69–116, 1987.
11. K. Drosten. Termersetzungssysteme: Grundlagen der Prototyp-Generierung algebraischer

Spezifikationen. Springer, 1989.
12. J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs. Appl. Algebra

in Engineering, Communication and Computing, 12(1,2):39–72, 2001.

13. J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting using de-
pendency pairs. Journal of Symbolic Computation, 34(1):21–58, 2002.

14. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Improving dependency pairs. In
Proc. LPAR ’03, LNAI 2850, pages 165–179, 2003.

15. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated termination proofs
with AProVE. In Proc. RTA ’04, LNCS 3091, pages 210–220, 2004.

16. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework: Combin-
ing techniques for automated termination proofs. In Proc. LPAR ’04, LNAI 3452, pages
301–331, 2005.

17. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In Proc.

CADE ’03, LNAI 2741, pages 32–46, 2003. Full version to appear in Information and

Computation.
18. N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool. In Proc. RTA ’05, LNCS

3467, pages 175–184, 2005.

24

19. J.-P. Jouannaud and A. Rubio. Higher-order recursive path orderings. In Proc. LICS ’99,
pages 402–411, 1999.

20. D. Kapur, D. Musser, P. Narendran, and J. Stillman. Semi-unification. Theoretical Com-

puter Science, 81(2):169–187, 1991.
21. R. Kennaway, J. W. Klop, R. Sleep, and F.-J. de Vries. Comparing curried and uncurried

rewriting. Journal of Symbolic Computation, 21(1):15–39, 1996.
22. K. Kusakari, M. Nakamura, and Y. Toyama. Argument filtering transformation. In Proc.

PPDP ’99, LNCS 1702, pages 48–62, 1999.
23. K. Kusakari. On proving termination of term rewriting systems with higher-order variables.

IPSJ Transactions on Programming, 42(SIG 7 (PRO 11)):35–45, 2001.
24. M. Lifantsev and L. Bachmair. An LPO-based termination ordering for higher-order terms

without λ-abstraction. In Proc. TPHOLs ’98, LNCS 1479, 1998.
25. A. Oliart and W. Snyder. A fast algorithm for uniform semi-unification. In Proc. CADE ’98,

LNCS 1421, pages 239–253, 1998.
26. D. A. Plaisted. A simple non-termination test for the Knuth-Bendix method. In Proc.

CADE ’86, LNCS 230, pages 79–88, 1986.
27. M. Sakai, Y. Watanabe, and T. Sakabe. An extension of dependency pair method for

proving termination of higher-order rewrite systems. IEICE Transactions on Information

and Systems, E84-D(8):1025–1032, 2001.
28. M. Sakai and K. Kusakari. On dependency pair method for proving termination of higher-

order rewrite systems. IEICE Trans. on Inf. & Sys., 2005. To appear.
29. R. Thiemann, J. Giesl, and P. Schneider-Kamp. Improved modular termination proofs

using dependency pairs. In Proc. IJCAR ’04, LNAI 3097, pages 75–90, 2004.
30. Y. Toyama. Termination of S-expression rewriting systems: Lexicographic path ordering

for higher-order terms. In Proc. RTA ’04, LNCS 3091, pages 40–54, 2004.
31. J. Waldmann. Matchbox: A tool for match-bounded string rewriting. In Proc. 15th RTA,

LNCS 3091, pages 85–94, 2004.
32. TPDB web page. http://www.lri.fr/~marche/termination-competition/.
33. H. Zantema. TORPA: Termination of string rewriting proved automatically. Journal of

Automated Reasoning, 2005. To appear.

25

26

Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports

please consult http://aib.informatik.rwth-aachen.de/ or send your request

to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

1987-01 ∗ Fachgruppe Informatik: Jahresbericht 1986

1987-02 ∗ David de Frutos Escrig, Klaus Indermark: Equivalence Relations of Non-

Deterministic Ianov-Schemes

1987-03 ∗ Manfred Nagl: A Software Development Environment based on Graph

Technology

1987-04 ∗ Claus Lewerentz, Manfred Nagl, Bernhard Westfechtel: On Integration

Mechanisms within a Graph-Based Software Development Environment

1987-05 ∗ Reinhard Rinn: Über Eingabeanomalien bei verschiedenen Inferenzmod-

ellen

1987-06 ∗ Werner Damm, Gert Döhmen: Specifying Distributed Computer Archi-

tectures in AADL*

1987-07 ∗ Gregor Engels, Claus Lewerentz, Wilhelm Schäfer: Graph Grammar En-

gineering: A Software Specification Method

1987-08 ∗ Manfred Nagl: Set Theoretic Approaches to Graph Grammars

1987-09 ∗ Claus Lewerentz, Andreas Schürr: Experiences with a Database System

for Software Documents

1987-10 ∗ Herbert Klaeren, Klaus Indermark: A New Implementation Technique

for Recursive Function Definitions

1987-11 ∗ Rita Loogen: Design of a Parallel Programmable Graph Reduction Ma-

chine with Distributed Memory

1987-12 J. Börstler, U. Möncke, R. Wilhelm: Table compression for tree automata

1988-01 ∗ Gabriele Esser, Johannes Rückert, Frank Wagner: Gesellschaftliche As-

pekte der Informatik

1988-02 ∗ Peter Martini, Otto Spaniol: Token-Passing in High-Speed Backbone

Networks for Campus-Wide Environments

1988-03 ∗ Thomas Welzel: Simulation of a Multiple Token Ring Backbone

1988-04 ∗ Peter Martini: Performance Comparison for HSLAN Media Access Pro-

tocols

1988-05 ∗ Peter Martini: Performance Analysis of Multiple Token Rings

1988-06 ∗ Andreas Mann, Johannes Rückert, Otto Spaniol: Datenfunknetze

1988-07 ∗ Andreas Mann, Johannes Rückert: Packet Radio Networks for Data Ex-

change

1988-08 ∗ Andreas Mann, Johannes Rückert: Concurrent Slot Assignment Protocol

for Packet Radio Networks

1988-09 ∗ W. Kremer, F. Reichert, J. Rückert, A. Mann: Entwurf einer Netz-

werktopologie für ein Mobilfunknetz zur Unterstützung des öffentlichen

Straßenverkehrs

1988-10 ∗ Kai Jakobs: Towards User-Friendly Networking

1988-11 ∗ Kai Jakobs: The Directory - Evolution of a Standard

1988-12 ∗ Kai Jakobs: Directory Services in Distributed Systems - A Survey

1988-13 ∗ Martine Schümmer: RS-511, a Protocol for the Plant Floor

27

1988-14 ∗ U. Quernheim: Satellite Communication Protocols - A Performance

Comparison Considering On-Board Processing

1988-15 ∗ Peter Martini, Otto Spaniol, Thomas Welzel: File Transfer in High Speed

Token Ring Networks: Performance Evaluation by Approximate Analysis

and Simulation

1988-16 ∗ Fachgruppe Informatik: Jahresbericht 1987

1988-17 ∗ Wolfgang Thomas: Automata on Infinite Objects

1988-18 ∗ Michael Sonnenschein: On Petri Nets and Data Flow Graphs

1988-19 ∗ Heiko Vogler: Functional Distribution of the Contextual Analysis in

Block-Structured Programming Languages: A Case Study of Tree Trans-

ducers

1988-20 ∗ Thomas Welzel: Einsatz des Simulationswerkzeuges QNAP2 zur Leis-

tungsbewertung von Kommunikationsprotokollen

1988-21 ∗ Th. Janning, C. Lewerentz: Integrated Project Team Management in a

Software Development Environment

1988-22 ∗ Joost Engelfriet, Heiko Vogler: Modular Tree Transducers

1988-23 ∗ Wolfgang Thomas: Automata and Quantifier Hierarchies

1988-24 ∗ Uschi Heuter: Generalized Definite Tree Languages

1989-01 ∗ Fachgruppe Informatik: Jahresbericht 1988

1989-02 ∗ G. Esser, J. Rückert, F. Wagner (Hrsg.): Gesellschaftliche Aspekte der

Informatik

1989-03 ∗ Heiko Vogler: Bottom-Up Computation of Primitive Recursive Tree

Functions

1989-04 ∗ Andy Schürr: Introduction to PROGRESS, an Attribute Graph Gram-

mar Based Specification Language

1989-05 J. Börstler: Reuse and Software Development - Problems, Solutions, and

Bibliography (in German)

1989-06 ∗ Kai Jakobs: OSI - An Appropriate Basis for Group Communication?

1989-07 ∗ Kai Jakobs: ISO’s Directory Proposal - Evolution, Current Status and

Future Problems

1989-08 ∗ Bernhard Westfechtel: Extension of a Graph Storage for Software Doc-

uments with Primitives for Undo/Redo and Revision Control

1989-09 ∗ Peter Martini: High Speed Local Area Networks - A Tutorial

1989-10 ∗ P. Davids, Th. Welzel: Performance Analysis of DQDB Based on Simu-

lation

1989-11 ∗ Manfred Nagl (Ed.): Abstracts of Talks presented at the WG ’89 15th

International Workshop on Graphtheoretic Concepts in Computer Sci-

ence

1989-12 ∗ Peter Martini: The DQDB Protocol - Is it Playing the Game?

1989-13 ∗ Martine Schümmer: CNC/DNC Communication with MAP

1989-14 ∗ Martine Schümmer: Local Area Networks for Manufactoring Environ-

ments with hard Real-Time Requirements

1989-15 ∗ M. Schümmer, Th. Welzel, P. Martini: Integration of Field Bus and

MAP Networks - Hierarchical Communication Systems in Production

Environments

1989-16 ∗ G. Vossen, K.-U. Witt: SUXESS: Towards a Sound Unification of Ex-

tensions of the Relational Data Model

28

1989-17 ∗ J. Derissen, P. Hruschka, M.v.d. Beeck, Th. Janning, M. Nagl: Integrat-

ing Structured Analysis and Information Modelling

1989-18 A. Maassen: Programming with Higher Order Functions

1989-19 ∗ Mario Rodriguez-Artalejo, Heiko Vogler: A Narrowing Machine for Syn-

tax Directed BABEL

1989-20 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Graph-based Implementation of a Functional Logic Language

1990-01 ∗ Fachgruppe Informatik: Jahresbericht 1989

1990-02 ∗ Vera Jansen, Andreas Potthoff, Wolfgang Thomas, Udo Wermuth: A

Short Guide to the AMORE System (Computing Automata, MOnoids

and Regular Expressions)

1990-03 ∗ Jerzy Skurczynski: On Three Hierarchies of Weak SkS Formulas

1990-04 R. Loogen: Stack-based Implementation of Narrowing

1990-05 H. Kuchen, A. Wagener: Comparison of Dynamic Load Balancing Strate-

gies

1990-06 ∗ Kai Jakobs, Frank Reichert: Directory Services for Mobile Communica-

tion

1990-07 ∗ Kai Jakobs: What’s Beyond the Interface - OSI Networks to Support

Cooperative Work

1990-08 ∗ Kai Jakobs: Directory Names and Schema - An Evaluation

1990-09 ∗ Ulrich Quernheim, Dieter Kreuer: Das CCITT - Signalisierungssystem

Nr. 7 auf Satellitenstrecken; Simulation der Zeichengabestrecke

1990-11 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Lazy Narrowing in a Graph Machine

1990-12 ∗ Kai Jakobs, Josef Kaltwasser, Frank Reichert, Otto Spaniol: Der Com-

puter fährt mit

1990-13 ∗ Rudolf Mathar, Andreas Mann: Analyzing a Distributed Slot Assign-

ment Protocol by Markov Chains

1990-14 A. Maassen: Compilerentwicklung in Miranda - ein Praktikum in funk-

tionaler Programmierung (written in german)

1990-15 ∗ Manfred Nagl, Andreas Schürr: A Specification Environment for Graph

Grammars

1990-16 A. Schürr: PROGRESS: A VHL-Language Based on Graph Grammars

1990-17 ∗ Marita Möller: Ein Ebenenmodell wissensbasierter Konsultationen - Un-

terstützung für Wissensakquisition und Erklärungsfähigkeit

1990-18 ∗ Eric Kowalewski: Entwurf und Interpretation einer Sprache zur Beschrei-

bung von Konsultationsphasen in Expertensystemen

1990-20 Y. Ortega Mallen, D. de Frutos Escrig: A Complete Proof System for

Timed Observations

1990-21 ∗ Manfred Nagl: Modelling of Software Architectures: Importance, No-

tions, Experiences

1990-22 H. Fassbender, H. Vogler: A Call-by-need Implementation of Syntax Di-

rected Functional Programming

1991-01 Guenther Geiler (ed.), Fachgruppe Informatik: Jahresbericht 1990

1991-03 B. Steffen, A. Ingolfsdottir: Characteristic Formulae for Processes with

Divergence

1991-04 M. Portz: A new class of cryptosystems based on interconnection net-

works

29

1991-05 H. Kuchen, G. Geiler: Distributed Applicative Arrays

1991-06 ∗ Ludwig Staiger: Kolmogorov Complexity and Hausdorff Dimension

1991-07 ∗ Ludwig Staiger: Syntactic Congruences for w-languages

1991-09 ∗ Eila Kuikka: A Proposal for a Syntax-Directed Text Processing System

1991-10 K. Gladitz, H. Fassbender, H. Vogler: Compiler-based Implementation

of Syntax-Directed Functional Programming

1991-11 R. Loogen, St. Winkler: Dynamic Detection of Determinism in Func-

tional Logic Languages

1991-12 ∗ K. Indermark, M. Rodriguez Artalejo (Eds.): Granada Workshop on the

Integration of Functional and Logic Programming

1991-13 ∗ Rolf Hager, Wolfgang Kremer: The Adaptive Priority Scheduler: A More

Fair Priority Service Discipline

1991-14 ∗ Andreas Fasbender, Wolfgang Kremer: A New Approximation Algorithm

for Tandem Networks with Priority Nodes

1991-15 J. Börstler, A. Zündorf: Revisiting extensions to Modula-2 to support

reusability

1991-16 J. Börstler, Th. Janning: Bridging the gap between Requirements Anal-

ysis and Design

1991-17 A. Zündorf, A. Schürr: Nondeterministic Control Structures for Graph

Rewriting Systems

1991-18 ∗ Matthias Jarke, John Mylopoulos, Joachim W. Schmidt, Yannis Vassil-

iou: DAIDA: An Environment for Evolving Information Systems

1991-19 M. Jeusfeld, M. Jarke: From Relational to Object-Oriented Integrity

Simplification

1991-20 G. Hogen, A. Kindler, R. Loogen: Automatic Parallelization of Lazy

Functional Programs

1991-21 ∗ Prof. Dr. rer. nat. Otto Spaniol: ODP (Open Distributed Processing):

Yet another Viewpoint

1991-22 H. Kuchen, F. Lücking, H. Stoltze: The Topology Description Language

TDL

1991-23 S. Graf, B. Steffen: Compositional Minimization of Finite State Systems

1991-24 R. Cleaveland, J. Parrow, B. Steffen: The Concurrency Workbench: A

Semantics Based Tool for the Verification of Concurrent Systems

1991-25 ∗ Rudolf Mathar, Jürgen Mattfeldt: Optimal Transmission Ranges for Mo-

bile Communication in Linear Multihop Packet Radio Networks

1991-26 M. Jeusfeld, M. Staudt: Query Optimization in Deductive Object Bases

1991-27 J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem

1991-28 J. Knoop, B. Steffen: Unifying Strength Reduction and Semantic Code

Motion

1991-30 T. Margaria: First-Order theories for the verification of complex FSMs

1991-31 B. Steffen: Generating Data Flow Analysis Algorithms from Modal Spec-

ifications

1992-01 Stefan Eherer (ed.), Fachgruppe Informatik: Jahresbericht 1991

1992-02 ∗ Bernhard Westfechtel: Basismechanismen zur Datenverwaltung in struk-

turbezogenen Hypertextsystemen

1992-04 S. A. Smolka, B. Steffen: Priority as Extremal Probability

1992-05 ∗ Matthias Jarke, Carlos Maltzahn, Thomas Rose: Sharing Processes:

Team Coordination in Design Repositories

30

1992-06 O. Burkart, B. Steffen: Model Checking for Context-Free Processes

1992-07 ∗ Matthias Jarke, Klaus Pohl: Information Systems Quality and Quality

Information Systems

1992-08 ∗ Rudolf Mathar, Jürgen Mattfeldt: Analyzing Routing Strategy NFP in

Multihop Packet Radio Networks on a Line

1992-09 ∗ Alfons Kemper, Guido Moerkotte: Grundlagen objektorientierter Daten-

banksysteme

1992-10 Matthias Jarke, Manfred Jeusfeld, Andreas Miethsam, Michael Gocek:

Towards a logic-based reconstruction of software configuration manage-

ment

1992-11 Werner Hans: A Complete Indexing Scheme for WAM-based Abstract

Machines

1992-12 W. Hans, R. Loogen, St. Winkler: On the Interaction of Lazy Evaluation

and Backtracking

1992-13 ∗ Matthias Jarke, Thomas Rose: Specification Management with CAD

1992-14 Th. Noll, H. Vogler: Top-down Parsing with Simultaneous Evaluation on

Noncircular Attribute Grammars

1992-15 A. Schuerr, B. Westfechtel: Graphgrammatiken und Graphersetzungssys-

teme(written in german)

1992-16 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Forschungsprojekte

des Graduiertenkollegs Informatik und Technik

1992-17 M. Jarke (ed.): ConceptBase V3.1 User Manual

1992-18 ∗ Clarence A. Ellis, Matthias Jarke (Eds.): Distributed Cooperation in

Integrated Information Systems - Proceedings of the Third International

Workshop on Intelligent and Cooperative Information Systems

1992-19-00 H. Kuchen, R. Loogen (eds.): Proceedings of the 4th Int. Workshop on

the Parallel Implementation of Functional Languages

1992-19-01 G. Hogen, R. Loogen: PASTEL - A Parallel Stack-Based Implementation

of Eager Functional Programs with Lazy Data Structures (Extended

Abstract)

1992-19-02 H. Kuchen, K. Gladitz: Implementing Bags on a Shared Memory MIMD-

Machine

1992-19-03 C. Rathsack, S.B. Scholz: LISA - A Lazy Interpreter for a Full-Fledged

Lambda-Calculus

1992-19-04 T.A. Bratvold: Determining Useful Parallelism in Higher Order Func-

tions

1992-19-05 S. Kahrs: Polymorphic Type Checking by Interpretation of Code

1992-19-06 M. Chakravarty, M. Köhler: Equational Constraints, Residuation, and

the Parallel JUMP-Machine

1992-19-07 J. Seward: Polymorphic Strictness Analysis using Frontiers (Draft Ver-

sion)

1992-19-08 D. Gärtner, A. Kimms, W. Kluge: pi-Redˆ+ - A Compiling Graph-

Reduction System for a Full Fledged Lambda-Calculus

1992-19-09 D. Howe, G. Burn: Experiments with strict STG code

1992-19-10 J. Glauert: Parallel Implementation of Functional Languages Using

Small Processes

1992-19-11 M. Joy, T. Axford: A Parallel Graph Reduction Machine

1992-19-12 A. Bennett, P. Kelly: Simulation of Multicache Parallel Reduction

31

1992-19-13 K. Langendoen, D.J. Agterkamp: Cache Behaviour of Lazy Functional

Programs (Working Paper)

1992-19-14 K. Hammond, S. Peyton Jones: Profiling scheduling strategies on the

GRIP parallel reducer

1992-19-15 S. Mintchev: Using Strictness Information in the STG-machine

1992-19-16 D. Rushall: An Attribute Grammar Evaluator in Haskell

1992-19-17 J. Wild, H. Glaser, P. Hartel: Statistics on storage management in a lazy

functional language implementation

1992-19-18 W.S. Martins: Parallel Implementations of Functional Languages

1992-19-19 D. Lester: Distributed Garbage Collection of Cyclic Structures (Draft

version)

1992-19-20 J.C. Glas, R.F.H. Hofman, W.G. Vree: Parallelization of Branch-and-

Bound Algorithms in a Functional Programming Environment

1992-19-21 S. Hwang, D. Rushall: The nu-STG machine: a parallelized Spineless

Tagless Graph Reduction Machine in a distributed memory architecture

(Draft version)

1992-19-22 G. Burn, D. Le Metayer: Cps-Translation and the Correctness of Opti-

mising Compilers

1992-19-23 S.L. Peyton Jones, P. Wadler: Imperative functional programming (Brief

summary)

1992-19-24 W. Damm, F. Liu, Th. Peikenkamp: Evaluation and Parallelization of

Functions in Functional + Logic Languages (abstract)

1992-19-25 M. Kesseler: Communication Issues Regarding Parallel Functional Graph

Rewriting

1992-19-26 Th. Peikenkamp: Charakterizing and representing neededness in func-

tional loginc languages (abstract)

1992-19-27 H. Doerr: Monitoring with Graph-Grammars as formal operational Mod-

els

1992-19-28 J. van Groningen: Some implementation aspects of Concurrent Clean on

distributed memory architectures

1992-19-29 G. Ostheimer: Load Bounding for Implicit Parallelism (abstract)

1992-20 H. Kuchen, F.J. Lopez Fraguas, J.J. Moreno Navarro, M. Rodriguez

Artalejo: Implementing Disequality in a Lazy Functional Logic Language

1992-21 H. Kuchen, F.J. Lopez Fraguas: Result Directed Computing in a Func-

tional Logic Language

1992-22 H. Kuchen, J.J. Moreno Navarro, M.V. Hermenegildo: Independent

AND-Parallel Narrowing

1992-23 T. Margaria, B. Steffen: Distinguishing Formulas for Free

1992-24 K. Pohl: The Three Dimensions of Requirements Engineering

1992-25 ∗ R. Stainov: A Dynamic Configuration Facility for Multimedia Commu-

nications

1992-26 ∗ Michael von der Beeck: Integration of Structured Analysis and Timed

Statecharts for Real-Time and Concurrency Specification

1992-27 W. Hans, St. Winkler: Aliasing and Groundness Analysis of Logic Pro-

grams through Abstract Interpretation and its Safety

1992-28 ∗ Gerhard Steinke, Matthias Jarke: Support for Security Modeling in In-

formation Systems Design

1992-29 B. Schinzel: Warum Frauenforschung in Naturwissenschaft und Technik

32

1992-30 A. Kemper, G. Moerkotte, K. Peithner: Object-Orientation Axiomatised

by Dynamic Logic

1992-32 ∗ Bernd Heinrichs, Kai Jakobs: Timer Handling in High-Performance

Transport Systems

1992-33 ∗ B. Heinrichs, K. Jakobs, K. Lenßen, W. Reinhardt, A. Spinner: Euro-

Bridge: Communication Services for Multimedia Applications

1992-34 C. Gerlhof, A. Kemper, Ch. Kilger, G. Moerkotte: Partition-Based Clus-

tering in Object Bases: From Theory to Practice

1992-35 J. Börstler: Feature-Oriented Classification and Reuse in IPSEN

1992-36 M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, Y. Vassiliou: Theories Un-

derlying Requirements Engineering: An Overview of NATURE at Gen-

esis

1992-37 ∗ K. Pohl, M. Jarke: Quality Information Systems: Repository Support for

Evolving Process Models

1992-38 A. Zuendorf: Implementation of the imperative / rule based language

PROGRES

1992-39 P. Koch: Intelligentes Backtracking bei der Auswertung funktional-

logischer Programme

1992-40 ∗ Rudolf Mathar, Jürgen Mattfeldt: Channel Assignment in Cellular Radio

Networks

1992-41 ∗ Gerhard Friedrich, Wolfgang Neidl: Constructive Utility in Model-Based

Diagnosis Repair Systems

1992-42 ∗ P. S. Chen, R. Hennicker, M. Jarke: On the Retrieval of Reusable Soft-

ware Components

1992-43 W. Hans, St.Winkler: Abstract Interpretation of Functional Logic Lan-

guages

1992-44 N. Kiesel, A. Schuerr, B. Westfechtel: Design and Evaluation of GRAS,

a Graph-Oriented Database System for Engineering Applications

1993-01 ∗ Fachgruppe Informatik: Jahresbericht 1992

1993-02 ∗ Patrick Shicheng Chen: On Inference Rules of Logic-Based Information

Retrieval Systems

1993-03 G. Hogen, R. Loogen: A New Stack Technique for the Management of

Runtime Structures in Distributed Environments

1993-05 A. Zuendorf: A Heuristic for the Subgraph Isomorphism Problem in Ex-

ecuting PROGRES

1993-06 A. Kemper, D. Kossmann: Adaptable Pointer Swizzling Strategies in

Object Bases: Design, Realization, and Quantitative Analysis

1993-07 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Graduiertenkolleg In-

formatik und Technik

1993-08 ∗ Matthias Berger: k-Coloring Vertices using a Neural Network with Con-

vergence to Valid Solutions

1993-09 M. Buchheit, M. Jeusfeld, W. Nutt, M. Staudt: Subsumption between

Queries to Object-Oriented Databases

1993-10 O. Burkart, B. Steffen: Pushdown Processes: Parallel Composition and

Model Checking

1993-11 ∗ R. Große-Wienker, O. Hermanns, D. Menzenbach, A. Pollacks, S. Repet-

zki, J. Schwartz, K. Sonnenschein, B. Westfechtel: Das SUKITS-Projekt:

A-posteriori-Integration heterogener CIM-Anwendungssysteme

33

1993-12 ∗ Rudolf Mathar, Jürgen Mattfeldt: On the Distribution of Cumulated

Interference Power in Rayleigh Fading Channels

1993-13 O. Maler, L. Staiger: On Syntactic Congruences for omega-languages

1993-14 M. Jarke, St. Eherer, R. Gallersdoerfer, M. Jeusfeld, M. Staudt: Con-

ceptBase - A Deductive Object Base Manager

1993-15 M. Staudt, H.W. Nissen, M.A. Jeusfeld: Query by Class, Rule and Con-

cept

1993-16 ∗ M. Jarke, K. Pohl, St. Jacobs et al.: Requirements Engineering: An In-

tegrated View of Representation Process and Domain

1993-17 ∗ M. Jarke, K. Pohl: Establishing Vision in Context: Towards a Model of

Requirements Processes

1993-18 W. Hans, H. Kuchen, St. Winkler: Full Indexing for Lazy Narrowing

1993-19 W. Hans, J.J. Ruz, F. Saenz, St. Winkler: A VHDL Specification of a

Shared Memory Parallel Machine for Babel

1993-20 ∗ K. Finke, M. Jarke, P. Szczurko, R. Soltysiak: Quality Management for

Expert Systems in Process Control

1993-21 M. Jarke, M.A. Jeusfeld, P. Szczurko: Three Aspects of Intelligent Co-

operation in the Quality Cycle

1994-01 Margit Generet, Sven Martin (eds.), Fachgruppe Informatik: Jahres-

bericht 1993

1994-02 M. Lefering: Development of Incremental Integration Tools Using Formal

Specifications

1994-03 ∗ P. Constantopoulos, M. Jarke, J. Mylopoulos, Y. Vassiliou: The Software

Information Base: A Server for Reuse

1994-04 ∗ Rolf Hager, Rudolf Mathar, Jürgen Mattfeldt: Intelligent Cruise Control

and Reliable Communication of Mobile Stations

1994-05 ∗ Rolf Hager, Peter Hermesmann, Michael Portz: Feasibility of Authenti-

cation Procedures within Advanced Transport Telematics

1994-06 ∗ Claudia Popien, Bernd Meyer, Axel Kuepper: A Formal Approach to

Service Import in ODP Trader Federations

1994-07 P. Peters, P. Szczurko: Integrating Models of Quality Management Meth-

ods by an Object-Oriented Repository

1994-08 ∗ Manfred Nagl, Bernhard Westfechtel: A Universal Component for the

Administration in Distributed and Integrated Development Environ-

ments

1994-09 ∗ Patrick Horster, Holger Petersen: Signatur- und Authentifikationsver-

fahren auf der Basis des diskreten Logarithmusproblems

1994-11 A. Schürr: PROGRES, A Visual Language and Environment for PRO-

gramming with Graph REwrite Systems

1994-12 A. Schürr: Specification of Graph Translators with Triple Graph Gram-

mars

1994-13 A. Schürr: Logic Based Programmed Structure Rewriting Systems

1994-14 L. Staiger: Codes, Simplifying Words, and Open Set Condition

1994-15 ∗ Bernhard Westfechtel: A Graph-Based System for Managing Configura-

tions of Engineering Design Documents

1994-16 P. Klein: Designing Software with Modula-3

1994-17 I. Litovsky, L. Staiger: Finite acceptance of infinite words

34

1994-18 G. Hogen, R. Loogen: Parallel Functional Implementations: Graphbased

vs. Stackbased Reduction

1994-19 M. Jeusfeld, U. Johnen: An Executable Meta Model for Re-Engineering

of Database Schemas

1994-20 ∗ R. Gallersdörfer, M. Jarke, K. Klabunde: Intelligent Networks as a Data

Intensive Application (INDIA)

1994-21 M. Mohnen: Proving the Correctness of the Static Link Technique Using

Evolving Algebras

1994-22 H. Fernau, L. Staiger: Valuations and Unambiguity of Languages, with

Applications to Fractal Geometry

1994-24 ∗ M. Jarke, K. Pohl, R. Dömges, St. Jacobs, H. W. Nissen: Requirements

Information Management: The NATURE Approach

1994-25 ∗ M. Jarke, K. Pohl, C. Rolland, J.-R. Schmitt: Experience-Based Method

Evaluation and Improvement: A Process Modeling Approach

1994-26 ∗ St. Jacobs, St. Kethers: Improving Communication and Decision Making

within Quality Function Deployment

1994-27 ∗ M. Jarke, H. W. Nissen, K. Pohl: Tool Integration in Evolving Informa-

tion Systems Environments

1994-28 O. Burkart, D. Caucal, B. Steffen: An Elementary Bisimulation Decision

Procedure for Arbitrary Context-Free Processes

1995-01 ∗ Fachgruppe Informatik: Jahresbericht 1994

1995-02 Andy Schürr, Andreas J. Winter, Albert Zündorf: Graph Grammar En-

gineering with PROGRES

1995-03 Ludwig Staiger: A Tight Upper Bound on Kolmogorov Complexity by

Hausdorff Dimension and Uniformly Optimal Prediction

1995-04 Birgitta König-Ries, Sven Helmer, Guido Moerkotte: An experimental

study on the complexity of left-deep join ordering problems for cyclic

queries

1995-05 Sophie Cluet, Guido Moerkotte: Efficient Evaluation of Aggregates on

Bulk Types

1995-06 Sophie Cluet, Guido Moerkotte: Nested Queries in Object Bases

1995-07 Sophie Cluet, Guido Moerkotte: Query Optimization Techniques Ex-

ploiting Class Hierarchies

1995-08 Markus Mohnen: Efficient Compile-Time Garbage Collection for Arbi-

trary Data Structures

1995-09 Markus Mohnen: Functional Specification of Imperative Programs: An

Alternative Point of View of Functional Languages

1995-10 Rainer Gallersdörfer, Matthias Nicola: Improving Performance in Repli-

cated Databases through Relaxed Coherency

1995-11 ∗ M.Staudt, K.von Thadden: Subsumption Checking in Knowledge Bases

1995-12 ∗ G.V.Zemanek, H.W.Nissen, H.Hubert, M.Jarke: Requirements Analy-

sis from Multiple Perspectives: Experiences with Conceptual Modeling

Technology

1995-13 ∗ M.Staudt, M.Jarke: Incremental Maintenance of Externally Materialized

Views

1995-14 ∗ P.Peters, P.Szczurko, M.Jeusfeld: Oriented Information Management:

Conceptual Models at Work

35

1995-15 ∗ Matthias Jarke, Sudha Ram (Hrsg.): WITS 95 Proceedings of the 5th

Annual Workshop on Information Technologies and Systems

1995-16 ∗ W.Hans, St.Winkler, F.Saenz: Distributed Execution in Functional Logic

Programming

1996-01 ∗ Jahresbericht 1995

1996-02 Michael Hanus, Christian Prehofer: Higher-Order Narrowing with Defi-

nitional Trees

1996-03 ∗ W.Scheufele, G.Moerkotte: Optimal Ordering of Selections and Joins in

Acyclic Queries with Expensive Predicates

1996-04 Klaus Pohl: PRO-ART: Enabling Requirements Pre-Traceability

1996-05 Klaus Pohl: Requirements Engineering: An Overview

1996-06 ∗ M.Jarke, W.Marquardt: Design and Evaluation of Computer–Aided Pro-

cess Modelling Tools

1996-07 Olaf Chitil: The Sigma-Semantics: A Comprehensive Semantics for Func-

tional Programs

1996-08 ∗ S.Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics

1996-09 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP96 - Fifth

International Conference on Algebraic and Logic Programming

1996-09-0 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP 96 -

Fifth International Conference on Algebraic and Logic Programming:

Introduction and table of contents

1996-09-1 Ilies Alouini: An Implementation of Conditional Concurrent Rewriting

on Distributed Memory Machines

1996-09-2 Olivier Danvy, Karoline Malmkjær: On the Idempotence of the CPS

Transformation

1996-09-3 Victor M. Gulias, José L. Freire: Concurrent Programming in Haskell

1996-09-4 Sébastien Limet, Pierre Réty: On Decidability of Unifiability Modulo

Rewrite Systems

1996-09-5 Alexandre Tessier: Declarative Debugging in Constraint Logic Program-

ming

1996-10 Reidar Conradi, Bernhard Westfechtel: Version Models for Software Con-

figuration Management

1996-11 ∗ C.Weise, D.Lenzkes: A Fast Decision Algorithm for Timed Refinement

1996-12 ∗ R.Dömges, K.Pohl, M.Jarke, B.Lohmann, W.Marquardt: PRO-

ART/CE* — An Environment for Managing the Evolution of Chemical

Process Simulation Models

1996-13 ∗ K.Pohl, R.Klamma, K.Weidenhaupt, R.Dömges, P.Haumer, M.Jarke: A

Framework for Process-Integrated Tools

1996-14 ∗ R.Gallersdörfer, K.Klabunde, A.Stolz, M.Eßmajor: INDIA — Intelligent

Networks as a Data Intensive Application, Final Project Report, June

1996

1996-15 ∗ H.Schimpe, M.Staudt: VAREX: An Environment for Validating and Re-

fining Rule Bases

1996-16 ∗ M.Jarke, M.Gebhardt, S.Jacobs, H.Nissen: Conflict Analysis Across Het-

erogeneous Viewpoints: Formalization and Visualization

1996-17 Manfred A. Jeusfeld, Tung X. Bui: Decision Support Components on the

Internet

36

1996-18 Manfred A. Jeusfeld, Mike Papazoglou: Information Brokering: Design,

Search and Transformation

1996-19 ∗ P.Peters, M.Jarke: Simulating the impact of information flows in net-

worked organizations

1996-20 Matthias Jarke, Peter Peters, Manfred A. Jeusfeld: Model-driven plan-

ning and design of cooperative information systems

1996-21 ∗ G.de Michelis, E.Dubois, M.Jarke, F.Matthes, J.Mylopoulos, K.Pohl,

J.Schmidt, C.Woo, E.Yu: Cooperative information systems: a manifesto

1996-22 ∗ S.Jacobs, M.Gebhardt, S.Kethers, W.Rzasa: Filling HTML forms simul-

taneously: CoWeb architecture and functionality

1996-23 ∗ M.Gebhardt, S.Jacobs: Conflict Management in Design

1997-01 Michael Hanus, Frank Zartmann (eds.): Jahresbericht 1996

1997-02 Johannes Faassen: Using full parallel Boltzmann Machines for Optimiza-

tion

1997-03 Andreas Winter, Andy Schürr: Modules and Updatable Graph Views for

PROgrammed Graph REwriting Systems

1997-04 Markus Mohnen, Stefan Tobies: Implementing Context Patterns in the

Glasgow Haskell Compiler

1997-05 ∗ S.Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-

tische Spezifikation inkrementeller Integrationswerkzeuge

1997-06 Matthias Nicola, Matthias Jarke: Design and Evaluation of Wireless

Health Care Information Systems in Developing Countries

1997-07 Petra Hofstedt: Taskparallele Skelette für irregulär strukturierte Pro-

bleme in deklarativen Sprachen

1997-08 Dorothea Blostein, Andy Schürr: Computing with Graphs and Graph

Rewriting

1997-09 Carl-Arndt Krapp, Bernhard Westfechtel: Feedback Handling in Dy-

namic Task Nets

1997-10 Matthias Nicola, Matthias Jarke: Integrating Replication and Commu-

nication in Performance Models of Distributed Databases

1997-11 ∗ R. Klamma, P. Peters, M. Jarke: Workflow Support for Failure Manage-

ment in Federated Organizations

1997-13 Markus Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs

1997-14 Roland Baumann: Client/Server Distribution in a Structure-Oriented

Database Management System

1997-15 George Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms

1998-01 ∗ Fachgruppe Informatik: Jahresbericht 1997

1998-02 Stefan Gruner, Manfred Nagl, Andy Schürr: Fine-grained and Structure-

Oriented Document Integration Tools are Needed for Development Pro-

cesses

1998-03 Stefan Gruner: Einige Anmerkungen zur graphgrammatischen Spezifika-

tion von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und

Schürr

1998-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments

1998-05 Martin Leucker, Stephan Tobies: Truth - A Verification Platform for

Distributed Systems

37

1998-06 ∗ Matthias Oliver Berger: DECT in the Factory of the Future

1998-07 M. Arnold, M. Erdmann, M. Glinz, P. Haumer, R. Knoll, B. Paech, K.

Pohl, J. Ryser, R. Studer, K. Weidenhaupt: Survey on the Scenario Use

in Twelve Selected Industrial Projects

1998-08 ∗ H. Aust: Sprachverstehen und Dialogmodellierung in natürlichsprachli-

chen Informationssystemen

1998-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am

Beispiel intraoraler Radiographien

1998-10 ∗ M. Nicola, M. Jarke: Performance Modeling of Distributed and Repli-

cated Databases

1998-11 ∗ Ansgar Schleicher, Bernhard Westfechtel, Dirk Jäger: Modeling Dynamic

Software Processes in UML

1998-12 ∗ W. Appelt, M. Jarke: Interoperable Tools for Cooperation Support using

the World Wide Web

1998-13 Klaus Indermark: Semantik rekursiver Funktionsdefinitionen mit Strikt-

heitsinformation

1999-01 ∗ Jahresbericht 1998

1999-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version

1999-03 ∗ R. Gallersdörfer, M. Jarke, M. Nicola: The ADR Replication Manager

1999-04 Maria Alpuente, Michael Hanus, Salvador Lucas, Germán Vidal: Spe-

cialization of Functional Logic Programs Based on Needed Narrowing

1999-05 ∗ W. Thomas (Ed.): DLT 99 - Developments in Language Theory Fourth

International Conference

1999-06 ∗ Kai Jakobs, Klaus-Dieter Kleefeld: Informationssysteme für die ange-

wandte historische Geographie

1999-07 Thomas Wilke: CTL+ is exponentially more succinct than CTL

1999-08 Oliver Matz: Dot-Depth and Monadic Quantifier Alternation over Pic-

tures

2000-01 ∗ Jahresbericht 1999

2000-02 Jens Vöge, Marcin Jurdzinski: A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-04 Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 Mareike Schoop: Cooperative Document Management

2000-06 Mareike Schoop, Christoph Quix (eds.): Proceedings of the Fifth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2000-07 ∗ Markus Mohnen, Pieter Koopman (Eds.): Proceedings of the 12th Inter-

national Workshop of Functional Languages

2000-08 Thomas Arts, Thomas Noll: Verifying Generic Erlang Client-Server Im-

plementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

38

2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

39

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

40

