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Abstrat. Context-sensitive rewriting is a restrition of term rewriting used to

model evaluation strategies in funtional programming and in programming lan-

guages like OBJ. For example, under ertain onditions termination of an OBJ

program is equivalent to innermost termination of the orresponding ontext-

sensitive rewrite system [25℄. To prove termination of ontext-sensitive rewriting,

several methods have been proposed in the literature whih transform ontext-

sensitive rewrite systems into ordinary rewrite systems suh that termination

of the transformed ordinary system implies termination of the original ontext-

sensitive system. Most of these transformations are not very satisfatory when

it omes to proving innermost termination. We investigate the relationship be-

tween termination and innermost termination of ontext-sensitive rewriting and

we examine the appliability of the di�erent transformations for innermost ter-

mination proofs. Finally, we present a simple transformation whih is both sound

and omplete for innermost termination.

1 Introdution

Evaluation in funtional languages is often guided by spei� evaluation strate-

gies. For example, in the program onsisting of the rules

from(x)! x : from(s(x)) nth(0; x : y)! x nth(s(n); x : y)! nth(n; y)

a term like nth(s(0); from(0)) admits a �nite redution to s(0) as well as in-

�nite redutions. The in�nite redutions an for instane be avoided by always

ontrating the outermost redex. Context-sensitive rewriting (Luas [23, 24℄) pro-

vides an alternative way of solving the non-termination problem and of dealing

with in�nite data objets. Rather than speifying whih redexes may be on-

trated, in ontext-sensitive rewriting every n-ary funtion symbol f is equipped

with a replaement map �(f) � f1; : : : ; ng whih indiates whih arguments of f

may be evaluated and a ontration of a redex is allowed only if it does not take

plae in a forbidden argument of a funtion symbol somewhere above it. So by
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de�ning �(:) = f1g, ontrations in the argument t of a term s : t are forbidden.

Now in the example in�nite redutions are no longer possible while normal forms

an still be omputed. (See [27℄ for the relationship between normalization under

ordinary and under ontext-sensitive rewriting.) Context-sensitive rewriting an

also model the usual evaluation strategy for onditionals.

Example 1. 0 6 y! true p(0)! 0

s(x) 6 0! false p(s(x))! x

s(x) 6 s(y)! x 6 y if(true; x; y)! x

x� y! if(x 6 y; 0; s(p(x)� y)) if(false; x; y)! y

Beause of the rule for \�", this system is not terminating. However, in funtional

languages typially if's �rst argument is evaluated �rst and depending on the

result either the seond or third argument is evaluated afterwards. Again, this

an easily be modeled with ontext-sensitive rewriting by the replaement map

�(if) = f1g whih forbids all redutions in the arguments t

2

and t

3

of if(t

1

; t

2

; t

3

).

In programming languages like OBJ [6, 8, 16, 17℄, the user an supply strategy

annotations to ontrol the evaluation [9, 28, 29℄. For every n-ary symbol f , a (pos-

itive) strategy annotation is a list '(f) of numbers (i

1

; : : : ; i

k

) from f0; 1; : : : ; ng.

When reduing a term f(t

1

; : : : ; t

n

) one �rst has to evaluate the i

1

-th argument

of f (if i

1

> 0), then one evaluates the i

2

-th argument (if i

2

> 0), and so on, until

a 0 is enountered. At this point one tries to evaluate the whole term f(: : : ) at

its root position. So in order to enfore the desired evaluation strategy for if in

Example 1, it has to be equipped with the strategy annotation (1; 0).

Context-sensitive rewriting an simulate the evaluation strategy of OBJ. A

strategy is alled elementary if for every de�ned

1

symbol f , '(f) ontains a single

ourrene of 0, at the end. Luas [25℄ showed that for elementary strategies, the

OBJ program is terminating if and only if the orresponding ontext-sensitive

rewrite system is innermost terminating.

2

Here �(f) is de�ned to onsist of all

numbers greater than 0 in '(f). For example, the program with the rules

f(a)! f(a) a! b

is terminating if '(f) = (1; 0) and '(a) = (0). The orresponding ontext-

sensitive system with �(f) = f1g is not terminating, but it is innermost ter-

minating. Thus, to simulate OBJ evaluations with ontext-sensitive rewriting,

we have to restrit ourselves to innermost redutions where (allowed) arguments

to a funtion are evaluated before evaluating the funtion.

Beause of this onnetion to OBJ programs and also beause for rewrite

systems innermost termination is easier to prove automatially than termination

[1℄, it is worthwhile to investigate innermost termination of ontext-sensitive

1

Every symbol on the root position of a left-hand side of a rule is alled de�ned. In Example 1

the de�ned symbols are \6", \�", p, and if. All remaining funtion symbols are alled

onstrutors.

2

The \if" diretion even holds without the restrition to elementary strategies [25℄.
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rewriting. (As an alternative approah, in [11℄ a method to prove termination

of OBJ-like programs by diret indution proofs is proposed.) Termination of

ontext-sensitive rewriting has been studied in a number of papers (e.g., [5,

10, 14, 15, 20, 23, 24, 27, 32℄). Apart from a diret semanti haraterization [32℄

and some reent extensions of standard termination methods for term rewrit-

ing to ontext-sensitive rewriting [5, 20℄, all other proposed methods transform

ontext-sensitive rewrite systems (CSRSs) into ordinary term rewrite systems

(TRSs) suh that termination of the transformed TRS implies termination of

the original CSRS (i.e., all these transformations are sound). Diret approahes

to termination analysis of CSRSs and transformational approahes both have

their advantages. Tehniques for proving termination of ordinary term rewrit-

ing have been studied extensively (e.g., [21, 22, 7, 3, 30, 31, 1, 4℄) and the main

advantage of the transformational approah is that in this way, all termination

tehniques for ordinary TRSs inluding future developments an be used to infer

termination of CSRSs. For instane, the methods of [5, 20℄ are unable to handle

systems like Example 1. Of the �ve transformations desribed in [10, 14, 23, 32℄

only the seond one of [14℄ is also omplete: Termination of the original CSRS

implies termination of the transformed TRS.

After introduing the termination problem of ontext-sensitive rewriting in

Setion 2, in Setion 3 we review the results of Luas [25℄ on innermost termina-

tion of ontext-sensitive rewriting and we show that the two transformations �

1

and �

2

of [14℄ are sound for innermost termination as well. Despite its soundness

�

2

is not very useful for proving innermost termination, beause termination and

innermost termination oinide for the TRSs it produes. In Setion 4 we show

that for the lass of orthogonal CSRSs, innermost termination already implies

termination. This result is independent from the transformation framework and

is of general interest when investigating the termination behavior of CSRSs. A

onsequene of this result is that for this partiular lass, �

1

is omplete for in-

nermost termination. In Setion 5 we present a new transformation �

3

whih is

both sound and omplete for innermost termination, for arbitrary CSRSs. Sur-

prisingly, suh a transformation an be obtained by just a small modi�ation

of �

1

. In spite of the similarity between the two transformations, the new om-

pleteness proof is non-trivial. We make some remarks on a possible simpli�ation

of �

3

and on ground innermost termination in Setion 6. In Setion 7 we show

that �

3

is equally powerful as �

1

when it omes to (non-innermost) termina-

tion. Finally, Appendix A demonstrates how innermost termination of the TRSs

resulting from our new transformation is proved with dependeny pairs [1℄.

2 Termination of Context-Sensitive Rewriting

Familiarity with the basis of term rewriting [2℄ is assumed. We require that every

signature F ontains a onstant. A funtion � : F ! P(N ) is a replaement map

if �(f) is a subset of f1; : : : ; arity(f)g for all f 2 F . A CSRS (R; �) is a TRS R

over a signature F equipped with a replaement map �. The ontext-sensitive

5



rewrite relation !

R;�

is de�ned as the restrition of the usual rewrite relation

!

R

to ontrations of redexes at ative positions. A position � in a term t is

ative if � = � (the root position), or t = f(t

1

; : : : ; t

n

), � = i�

0

, i 2 �(f), and �

0

is ative in t

i

. So s!

R;�

t if and only if there is a rule l! r in R, a substitution

�, and an ative position � in s suh that sj

�

= l� and t = s[r�℄

�

. If all ative

arguments of l� are in �-normal form, then the redution step is innermost and

we write s

i

!

R;�

t. Here a �-normal form is a normal form with respet to!

R;�

.

We abbreviate !

R;�

to !

�

and

i

!

R;�

to

i

!

�

if R is lear from the ontext. A

CSRS (R; �) is left-linear if the left-hand sides of the rewrite rules in R are linear

terms (i.e., they do not ontain multiple ourrenes of the same variable). Let

l! r and l

0

! r

0

be renamed versions of rewrite rules ofR suh that they have no

variables in ommon and suppose lj

�

and l

0

are uni�able with most general uni�er

� for some non-variable ative position � in l. The pair of terms hl[r

0

℄

�

�; r�i is

a ritial pair of (R; �), exept when l ! r and l

0

! r

0

are renamed versions of

the same rewrite rule and � = �. A non-overlapping CSRS has no ritial pairs

and an overlay CSRS has no ritial pairs with � 6= �. A CSRS is orthogonal

if it is left-linear and non-overlapping. Notions like \termination" for a CSRS

(R; �) always onern the relation !

�

(i.e., they orrespond to \�-termination"

in [24℄).

To prove termination of CSRSs, several transformations from CSRSs to or-

dinary TRSs were suggested. We reall the transformations �

1

and �

2

of Giesl

& Middeldorp and refer to [14, 15℄ for motivations. The main idea of �

1

is to

use new unary symbols ative and mark to indiate ative positions in a term

on the objet level. If l ! r is a rule in the CSRS then the transformed TRS

ontains the rule ative(l)! mark(r). The symbol mark is used to traverse a term

top-down in order to plae the symbol ative at all ative positions.

De�nition 2 (�

1

). Let (R; �) be a CSRS over a signature F . The TRS R

1

�

over the signature F

1

= F [fative;markg onsists of the following rewrite rules:

ative(l)! mark(r) for all l! r 2 R

mark(f(x

1

; : : : ; x

n

))! ative(f([x

1

℄

f

1

; : : : ; [x

n

℄

f

n

)) for all f 2 F

ative(x)! x

Here [t℄

f

i

= mark(t) if i 2 �(f) and [t℄

f

i

= t otherwise. We denote the subset of

R

1

�

onsisting of all rules of the form

mark(f(x

1

; : : : ; x

n

))! ative(f([x

1

℄

f

1

; : : : ; [x

n

℄

f

n

))

by M. The transformation (R; �) 7! R

1

�

is denoted by �

1

and we shorten !

R

1

�

to !

1

.

Beause every in�nite redution of a term t in the original CSRS would

orrespond to an in�nite redution of mark(t) in the transformed TRS, �

1

is

sound for termination: Termination of the transformed TRS implies termination

of the original CSRS.
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In �

2

, ative an be shifted downwards to any ative position. Here, the root

of a term is marked with the symbol top and the symbol proper is used to hek

that terms only ontain funtion symbols from the original signature.

De�nition 3 (�

2

). Let (R; �) be a CSRS over a signature F . The TRS R

2

�

over

the signature F

2

= F[fative;mark; top; proper; okg onsists of the following rules

(for all l! r 2 R, f 2 F of arity n > 0, i 2 �(f), and onstants  2 F):

ative(l)! mark(r)

ative(f(x

1

; : : : ; x

i

; : : : ; x

n

))! f(x

1

; : : : ; ative(x

i

); : : : ; x

n

)

f(x

1

; : : : ;mark(x

i

); : : : ; x

n

)! mark(f(x

1

; : : : ; x

i

; : : : ; x

n

))

proper()! ok()

proper(f(x

1

; : : : ; x

n

))! f(proper(x

1

); : : : ; proper(x

n

))

f(ok(x

1

); : : : ; ok(x

n

))! ok(f(x

1

; : : : ; x

n

))

top(mark(x))! top(proper(x))

top(ok(x))! top(ative(x))

The transformation (R; �) 7! R

2

�

is denoted by �

2

and we shorten !

R

2

�

to !

2

.

Transformation �

2

as well as the transformations

3

�

L

of Luas [23℄, �

Z

of

Zantema [32℄, and �

FR

of Ferreira & Ribeiro [10℄ are sound for termination.

However, only �

2

is omplete, i.e., the other four transformations do not trans-

form every terminating CSRS into a terminating TRS. The following example

demonstrates the reason for the inompleteness of �

1

.

Example 4 ([14℄). Consider the non-terminating TRS R onsisting of the rules

f(b; ; x)! f(x; x; x) d! b d! 

If �(f) = f3g then the CSRS is terminating beause the yli redution of

f(b; ; d) to f(d; d; d) and further to f(b; ; d) annot be done, as one would have

to redue the �rst and seond argument of f. However, the transformed TRS R

1

�

ative(f(b; ; x))! mark(f(x; x; x)) mark(f(x; y; z))! ative(f(x; y;mark(z)))

ative(d)! mark(b) mark(b)! ative(b)

ative(d)! mark() mark()! ative()

ative(x)! x mark(d)! ative(d)

is not terminating:

mark(f(b; ; d))!

1

ative(f(b; ;mark(d)))!

1

ative(f(b; ; ative(d)))

!

1

mark(f(ative(d); ative(d); ative(d)))!

+

1

mark(f(mark(b);mark(); d))

!

+

1

mark(f(ative(b); ative(); d))!

+

1

mark(f(b; ; d))

3

Details of the transformations �

L

, �

Z

, and �

FR

are not needed for a proper understanding

of the present paper. The interested reader is referred to [15℄.

7



Note that in the third step the `ative' subterm ative(d) is opied to the �rst

and seond argument positions of f, whih are inative aording to �(f). This

an only happen if the redution step is non-innermost.

One should remark that transformation �

2

does not render the other trans-

formations superuous, sine in pratial examples, termination of �

2

(R; �) an

be harder to show than termination of the TRSs resulting from the other trans-

formations. In Figure 1 we ompare the power of the �ve transformations for

proving termination. Here, \Transformation 1 ! Transformation 2" means that

Transformation 2 is more powerful than Transformation 1, i.e., if Transforma-

tion 1 yields a terminating TRS, then so does Transformation 2, but not vie

versa. The proofs of the various impliations an be found in [15℄.

�

2

�

1

OO

�

FR

CC�����

�

Z

CC�����

�

L

[[77777777777777

Fig. 1. Comparison of existing transformations for proving termination.

3 Innermost Termination of Context-Sensitive Rewriting

Now we examine the usefulness of the �ve transformations for innermost termi-

nation of CSRSs. Luas [25℄ showed that �

L

and �

Z

are unsound

4

for innermost

termination, i.e., innermost termination of the transformed TRS does not imply

innermost termination of the original CSRS. The example showing the latter ([25,

Example 12℄) also demonstrates that �

FR

is unsound for innermost termination.

Moreover, none of these transformations is omplete for innermost termination.

The following new result shows that �

1

is sound for innermost termination.

5

Theorem 5. Let (R; �) be a CSRS. If R

1

�

is innermost terminating then (R; �)

is innermost terminating.

4

�

L

is sound for the sublass of left-linear CSRSs with the property that all funtion symbols

in the left-hand sides are on ative positions [25℄.

5

The same laim is made in [25, Theorem 11℄. However, Luas only proved the soundness of

�

1

and �

2

for ground innermost termination (f. Setion 6) and later laimed that �

1

and

�

2

are unsound for innermost termination [26℄.
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Proof. Let F be the signature of R and let  be an arbitrary onstant in F .

We show that every innermost redution step s

i

!

�

t in (R; �) orresponds to

an innermost redution sequene mark(s�)#

M

i

!

+

1

mark(t�)#

M

in R

1

�

. Here � is

the substitution that maps all variables to .

6

Note that sine M is onuent

and terminating, every term u has a uniqueM-normal form u#

M

. First we show

by indution on u 2 T (F ;V) that mark(u�)#

M

i

!

�

1

ative(u�). If u is a variable

then u� =  and thus mark(u�)#

M

= ative(u�). If u = f(u

1

; : : : ; u

n

) then

mark(u�)#

M

= ative(f(u

0

1

; : : : ; u

0

n

)) with u

0

i

= mark(u

i

�)#

M

if i 2 �(f) and u

0

i

=

u

i

� if i =2 �(f). Let i 2 �(f). The indution hypothesis yields u

0

i

i

!

�

1

ative(u

i

�).

Sine u

i

� is anR

1

�

-normal form, ative(u

i

�)

i

!

1

u

i

� and thus u

0

i

i

!

�

1

u

i

�. It follows

that mark(u�)#

M

i

!

�

1

ative(f(u

1

�; : : : ; u

n

�)) = ative(u�).

Now let � be the position of the redex ontrated in the redution step s

i

!

�

t.

We prove the lemma by indution on �. If � = � then s! t and thus also s� ! t�

is an instane of a rule in R. We have mark(s�)#

M

i

!

�

1

ative(s�) by the above

observation. Moreover, ative(s�)

i

!

1

mark(t�) sine ative(s�)! mark(t�) is an

instane of a rule in R

1

�

. We also have mark(t�)

i

!

�

1

mark(t�)#

M

. Combining all

redutions yields mark(s�)#

M

i

!

+

1

mark(t�)#

M

.

If � = i�

0

then s = f(s

1

; : : : ; s

i

; : : : ; s

n

) and t = f(s

1

; : : : ; t

i

; : : : ; s

n

) with

s

i

i

!

�

t

i

. Note that we have i 2 �(f) due to the de�nition of ontext-sensitive

rewriting. For 1 6 j 6 n de�ne s

0

j

= mark(s

j

�)#

M

if j 2 �(f) and s

0

j

=

s

j

� if j =2 �(f). The indution hypothesis yields s

0

i

i

!

+

1

mark(t

i

�)#

M

. The re-

sult follows sine mark(s�)#

M

= ative(f(s

0

1

; : : : ; s

0

i

; : : : ; s

0

n

)) and mark(t�)#

M

=

ative(f(s

0

1

; : : : ;mark(t

i

�)#

M

; : : : ; s

0

n

)). ut

Not surprisingly, �

1

is inomplete for innermost termination.

Example 6 ([25℄). Consider the CSRS (R; �) with R onsisting of the rules

f(a)! f(a) a! b

and �(f) = f1g. The CSRS (R; �) is innermost terminating but R

1

�

ative(f(a))! mark(f(a)) mark(f(x))! ative(f(mark(x)))

ative(a)! mark(b) mark(a)! ative(a)

ative(x)! x mark(b)! ative(b)

is not:

ative(f(a))

i

!

1

mark(f(a))

i

!

1

ative(f(mark(a)))

i

!

1

ative(f(ative(a)))

i

!

1

ative(f(a))

Observe that applying the rule ative(a) ! mark(b) instead of ative(x) ! x

in the fourth step would break the yle. So the rule ative(x) ! x an delete

innermost redexes, ausing non-innermost ative redexes of the underlying CSRS

to beome innermost. We ome bak to this in Setion 5.

6

It is interesting to note that the instantiated ontext-sensitive redution step s� !

�

t� need

not be innermost.
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Transformation �

2

is sound for innermost termination as well. However, it is

also inomplete and (in ontrast to �

1

) rather useless for innermost termination.

These observations are onsequenes of the following new result. In partiular,

�

2

annot prove innermost termination of non-terminating CSRSs.

Theorem 7. Let (R; �) be a CSRS. The TRS R

2

�

is innermost terminating if

and only if it is terminating.

Proof. Let F be the signature of R. The \if" diretion is trivial. For the \only if"

diretion suppose R

2

�

is non-terminating. Sine �

2

is omplete for termination,

(R; �) is non-terminating. So there exists an in�nite redution t

1

!

�

t

2

!

�

� � �

onsisting of ground terms from T (F). The soundness proof in [14, Theorem 3℄

and [15, Theorem 27℄ transforms this in�nite redution into the following in�nite

redution in R

2

�

: top(ative(t

1

)) !

+

2

top(ative(t

2

)) !

+

2

� � � . It is easy to prove

that this latter redution is atually innermost. Hene R

2

�

is not innermost ter-

minating. ut

The soundness of �

2

for innermost termination is an immediate onsequene

of Theorem 7 and the soundness of �

2

for termination.

So �

1

is the only sound and useful transformation for innermost termination

of CSRSs so far. In the remainder of this setion we show that it is omplete for

an important sublass of CSRSs. More preisely, while in general termination of a

CSRS (R; �) does not imply termination of the transformed TRS R

1

�

(as demon-

strated by Example 4), we show that it at least implies innermost termination

of R

1

�

. This implies that for sublasses of CSRSs where innermost termination

is equivalent to termination, �

1

is omplete for innermost termination. In Se-

tion 4 we show that this sublass ontains all orthogonal systems (e.g., CSRSs

like Example 1 from the introdution).

We �rst show the desired result on innermost termination of R

1

�

for those

terms ontaining the new symbols ative andmark on ative positions only, exept

that subterms of the form mark

n

(x) with n > 1 and x a variable may our at

inative positions as well.

Lemma 8. Let (R; �) be a terminating CSRS over a signature F . Let t 2

T (F

1

;V) where ative and mark our on ative positions in t only (here the

argument positions of ative and mark are also onsidered ative), exept that t

may ontain subterms of the form mark

n

(x) with x 2 V at inative positions.

Then t is R

1

�

-terminating.

Proof. Let M

1

= M [ fative(x) ! xg. Note that M

1

is onuent and ter-

minating. Hene, every in�nite R

1

�

-redution ontains in�nitely many redution

steps with rules from R

1

�

nM

1

. Let T

1

be the set of all terms t desribed above.

It is not diÆult to see that t !

1

u and t 2 T

1

imply u 2 T

1

. Let M

0

be

the onuent and terminating TRS onsisting of the rules ative(x) ! x and

mark(x) ! x. Clearly, t !

M

1

u implies t#

M

0

= u#

M

0

. We show that for all

10



t 2 T

1

, t!

R

1

�

nM

1

u implies t#

M

0

!

�

u#

M

0

. Sine M

1

is terminating, every in�-

nite R

1

�

-redution starting from T

1

an be transformed into an in�nite redution

in (R; �), whih proves the lemma. From t !

R

1

�

nM

1

u we infer the existene

of a position � in t, a rewrite rule l ! r 2 R, and a substitution � suh that

tj

�

= ative(l�) and u = t[mark(r�)℄

�

. Sine t 2 T

1

, � is an ative position in t.

We have t#

M

0

= t#

M

0

[l�

0

℄

�

0

and u#

M

0

= t#

M

0

[r�

0

℄

�

0

for some ative position �

0

and the substitution �

0

with �

0

(x) = �(x)#

M

0

. Therefore, t#

M

0

!

�

u#

M

0

. ut

Now we an show that for a terminating CSRS, the transformed TRS is at

least innermost terminating.

Theorem 9. Let (R; �) be a CSRS. If (R; �) is terminating then R

1

�

is inner-

most terminating.

Proof. Let F be the signature of R. Let #(t) denote the number of ative and

mark-symbols ourring in the term t 2 T (F

1

;V), exept that we do not ount

the ourrenes of mark in subterms of the form mark

n

(x). We prove that t is

innermost R

1

�

-terminating by indution on #(t). If #(t) = 0 then t is an R

1

�

-

normal form. If #(t) > 0 then t must ontain an innermost R

1

�

-redex, say at

position �. We have tj

�

= ative(t

0

) or tj

�

= mark(t

0

) suh that t

0

does not

ontain any ative-symbols and the only mark-symbols ourring in t

0

are in

subterms of the form mark

n

(x) (hene, #(tj

�

) = 1). It follows that Lemma 8

is appliable to tj

�

. So tj

�

does not admit in�nite R

1

�

-redutions. To onlude

that t is innermostR

1

�

-terminating, it suÆes to show that t[u℄

�

is innermostR

1

�

-

terminating for every normal form u of tj

�

reahable by innermostR

1

�

-redutions.

Sine #(u) = 0, #(t) > #(t[u℄

�

) and thus the result follows from the indution

hypothesis. ut

So for a terminating CSRS (R; �), non-termination of R

1

�

an only be due

to the rewriting strategy. This provides further evidene for the power of �

1

.

Note that this result does not hold for the transformations of Luas, Zantema,

and Ferreira & Ribeiro. The CSRS (R; �) with the rules R = fg(x)! h(x); !

d; h(d) ! g()g and �(g) = �(h) = ? from [32℄ is terminating, but none of the

TRSs �

L

(R; �), �

Z

(R; �), and �

FR

(R; �) is even innermost terminating. On the

other hand, �

1

(R; �) = R

1

�

is (innermost) terminating [14℄.

4 Termination versus Innermost Termination

There are two motivations for studying innermost termination of CSRSs. First,

innermost ontext-sensitive rewriting models evaluation in OBJ and related lan-

guages and thus, tehniques for innermost termination analysis of CSRSs an

be used for termination analysis of OBJ-programs. But seond, tehniques for

innermost termination analysis of CSRSs an also be helpful for (non-innermost)

termination proofs of CSRSs. This is similar to the situation with ordinary term

11



rewriting: Proving innermost termination is muh easier than proving termina-

tion, f. [1℄. There are lasses of TRSs where innermost termination already im-

plies termination and therefore for suh systems, one should rather use innermost

termination tehniques for investigating their termination behavior.

In order to use a orresponding approah for ontext-sensitive rewriting, in

this setion we examine the onnetion between termination and innermost ter-

mination for CSRSs. In general, termination implies innermost termination, but

not vie versa as demonstrated by Example 6. For ordinary TRSs, Gramlih [18,

Theorem 3.23℄ showed that termination and innermost termination oinide for

the lass of loally onuent overlay systems. Non-overlapping rewrite systems

are loally onuent overlay systems. Hene, this provides a simple syntati

riterion to identify lasses of TRSs where innermost termination suÆes for

termination. Unfortunately, as noted by Luas [26℄, this riterion annot be ex-

tended to ontext-sensitive systems.

Example 10 ([26℄). Consider the CSRS (R; �) with R onsisting of the rules

f(x; x)! b f(x; g(x))! f(x; x) ! g()

and �(f) = f1; 2g, �(g) = ?. The CSRS (R; �) is non-overlapping and innermost

terminating, but not terminating sine f(; )!

�

f(; g())!

�

f(; )!

�

� � � . On

the other hand, in an innermost redution we would have f(; )

i

!

�

f(; g())

i

!

�

f(g(); g())

i

!

�

b.

So non-overlappingness is not suÆient for CSRSs in order to use innermost

termination tehniques for termination analysis. Below we show the new result

that the desired equivalene between innermost and full termination at least

holds for orthogonal CSRSs. Thus, this inludes all CSRSs whih orrespond to

typial funtional programs like Example 1. Theorem 13 states that for suh

systems we only have to prove innermost termination in order to verify their

termination.

In order to prove the theorem, we need some preliminaries. For non-overlap-

ping CSRSs (R; �) the relation

i

!

�

is onuent. Hene, for every term s there is

at most one �-normal form reahable by innermost redutions. We all this term

the innermost �-normal form of s and denote it by s#

i

�

. Now for any term s, let

r(s) be the set of those terms whih result from repeatedly replaing subterms

of s by their innermost �-normal form (if it exists). Here, one may also onsider

subterms on inative positions. However, the replaement must go \from the

inside to the outside" (i.e., after replaing at position � one annot replae at

positions below � any more). Moreover, one may only perform replaements on

suh positions � where the original term sj

�

is terminating.

De�nition 11. Let (R; �) be a non-overlapping CSRS. For any term s we de�ne

non-empty sets r(s) and r

0

(s) as follows. If s is terminating, then r(s) =

r

0

(s) [ fu#

i

�

j u 2 r

0

(s) is innermost terminatingg. Otherwise, we have r(s) =

r

0

(s). Moreover, r

0

(s) = ff(u

1

; : : : ; u

n

) j u

i

2 r(s

i

)g if s = f(s

1

; : : : ; s

n

) and

r

0

(s) = fsg if s is a variable.

12



The following auxiliary lemma desribes how r operates on instantiated sub-

terms of left-hand sides.

Lemma 12. Let (R; �) be an orthogonal CSRS, let t be a proper subterm of

a left-hand side of a rule, and let u 2 r(t�) for a substitution �. Then we

have u = t�

0

for some substitution �

0

. Moreover, for all x 2 Var(t) we have

x�

0

2 r(x�) and if u 2 r

0

(t�) then we also have x�

0

2 r

0

(x�).

Proof. The lemma is proved by strutural indution on t. If t = x 2 V then

the laim is obvious for the substitution �

0

that replaes x by u. Now let t =

f(t

1

; : : : ; t

n

). We �rst regard the ase where u 2 r

0

(t�). So u = f(u

1

; : : : ; u

n

)

and u

i

2 r(t

i

�) for all i. The indution hypothesis states that u

i

= t

i

�

0

for all

i. Note that we an use the same substitution �

0

for every i sine t is linear due

to the orthogonality of (R; �). The indution hypothesis also implies that we

have x�

0

2 r

0

(x�) for all x 2 Var(t

1

) [ � � � [ Var(t

n

) = Var(t). In the remaining

ase t� is terminating and u = v#

i

�

for some v 2 r

0

(t�) whih is innermost

terminating. Similar as in the previous ase, the indution hypothesis states that

v = t�

0

for some substitution �

0

and x�

0

2 r

0

(x�) for all x 2 Var(t). We de�ne

the substitution �

00

as

�

00

(x) =

(

x�

0

#

i

�

if x is at an ative position in t

x�

0

otherwise

The substitution �

00

is well de�ned, beause if x ours at an ative position in t,

then x�

0

ours at an ative position in t�

0

= v and hene, innermost termination

of v implies innermost termination of x�

0

. Sine non-variable subterms at ative

positions in t do not unify with left-hand sides due to the orthogonality of (R; �),

we have u = v#

i

�

= t�

0

#

i

�

= t�

00

. Let x 2 Var(t). If x ours at an ative

position in t then termination of x� follows from termination of t�. Thus, x�

00

=

x�

0

#

i

�

2 r(x�) sine x�

0

2 r

0

(x�). If x ours only at inative positions in t

then x�

0

2 r

0

(x�) trivially implies x�

00

= x�

0

2 r

0

(x�) � r(x�). Thus, �

00

is a

substitution as required in the lemma. ut

Now we show the desired theorem on the equivalene of innermost and full

termination.

Theorem 13. An orthogonal CSRS (R; �) is terminating if and only if it is

innermost terminating.

Proof. The \only if" diretion is trivial. We prove the \if" diretion. Let s!

�

t

where the ontrated redex is either terminating or a minimal non-terminating

term (i.e., all proper subterms of the redex on ative positions are terminating).

We prove the following statements for all innermost terminating s

0

2 r(s):

(1) There exists a t

0

2 r(t) suh that s

0

i

!

�

�

t

0

.

(2) If the ontrated redex in s!

�

t is not terminating, then there even exists a

t

0

2 r(t) suh that s

0

i

!

+

�

t

0

.

13



With (1) and (2) one an prove the theorem: If (R; �) is not terminating,

then there is an in�nite redution s

0

!

�

s

1

!

�

: : : in whih only terminat-

ing or minimal non-terminating redexes are ontrated. Assume that (R; �)

is innermost terminating. Then all r(s

i

) ontain only innermost terminating

terms and sine s

0

2 r(s

0

), we an onstrut an in�nite innermost redution

s

0

i

!

�

�

t

1

i

!

�

�

t

2

i

!

�

�

: : : with t

i

2 r(s

i

). However, sine the redution ontains

in�nitely many steps of type (2), this gives rise to an in�nite innermost redution,

ontraditing our assumption.

Now we prove (1) and (2) by strutural indution on s. Sine s!

�

t, s must

have the form f(s

1

; : : : ; s

n

). We �rst regard the ase where s!

�

t is not a root

redution step. Then we have t = f(s

1

; : : : ; t

i

; : : : ; s

n

) with s

i

!

�

t

i

for some

i 2 �(f). Let s

0

2 r(s) be innermost terminating. First, let s

0

= f(u

1

; : : : ; u

n

)

with u

j

2 r(s

j

) for all j. Beause i 2 �(f), u

i

is innermost terminating. Hene

by the indution hypothesis, u

i

2 r(s

i

) implies that there exists a v

i

2 r(t

i

)

suh that u

i

i

!

�

�

v

i

. Therefore, we also have s

0

= f(u

1

; : : : ; u

i

; : : : ; u

n

)

i

!

�

�

f(u

1

; : : : ; v

i

; : : : ; u

n

) 2 r(t). Moreover, if the ontrated redex in s !

�

t and

hene, in s

i

!

�

t

i

is not terminating, then by the indution hypothesis we even

have u

i

i

!

+

�

v

i

and therefore s

0

i

!

+

�

f(u

1

; : : : ; v

i

; : : : ; u

n

) 2 r(t).

Now let s

0

= f(u

1

; : : : ; u

n

)#

i

�

with u

j

2 r(s

j

) for all j. Hene, s is terminating

and thus, we only have to prove (1). As before, there is a v

i

2 r(t

i

) suh that

u

i

i

!

�

�

v

i

and f(u

1

; : : : ; v

i

; : : : ; u

n

) 2 r(t). Sine innermost redution is onuent,

we have s

0

= f(u

1

; : : : ; u

i

; : : : ; u

n

)#

i

�

= f(u

1

; : : : ; v

i

; : : : ; u

n

)#

i

�

2 r(t), sine t

inherits termination from s.

Finally, we regard the ase where s = f(s

1

; : : : ; s

n

) and s !

�

t is a root

redution step. Hene, there must be a rule l ! r 2 R with l = f(l

1

; : : : ; l

n

)

and a substitution � suh that s

i

= l

i

� and t = r�. First let s

0

= f(u

1

; : : : ; u

n

)

with u

i

2 r(s

i

) for all i. Sine (R; �) is orthogonal and sine s

i

= l

i

�, due to

Lemma 12 there must be a substitution �

0

suh that u

i

= l

i

�

0

for all i. Beause s

0

is innermost terminating, x�

0

must also be innermost terminating for all variables

x whih our on ative positions of l. Let �

00

be the substitution where x�

00

=

x�

0

#

i

�

for all x in ative positions of l and x�

00

= x�

0

for all other x. Then we have

the innermost redution s

0

= f(l

1

�

0

; : : : ; l

n

�

0

)

i

!

�

�

f(l

1

�

00

; : : : ; l

n

�

00

)

i

!

�

r�

00

. We

laim that r�

00

2 r(t) = r(r�). To this end, it suÆes to show that x�

00

2 r(x�)

for all variables x in r, beause in the onstrution of r arbitrary subterms q an

be replaed by terms from r(q). Eah variable x ours in some l

i

and we have

l

i

�

0

2 r(l

i

�). From Lemma 12 we obtain x�

0

2 r(x�) for all variables x. If x is

on an inative position of l, then x�

00

= x�

0

2 r(x�). If x is on an ative position

of l, then x�

00

= x�

0

#

i

�

2 r(x�), sine x�

0

is innermost terminating and beause

in this ase, x� is terminating due to the fat that s is either a terminating or a

minimal non-terminating term.

Now let s

0

= f(u

1

; : : : ; u

n

)#

i

�

with u

i

2 r(s

i

) for all i. Hene, s is terminating

and thus we only have to prove (1). As before, u

i

= l

i

�

0

and f(l

1

�

0

; : : : ; l

n

�

0

)

i

!

�

�

f(l

1

�

00

; : : : ; l

n

�

00

)

i

!

�

r�

00

with r�

00

2 r(t). Sine innermost redution is onuent

and t inherits termination from s, s

0

= f(u

1

; : : : ; u

n

)#

i

�

= r�

00

#

i

�

2 r(t). ut
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Very reently, Gramlih and Luas [19℄ showed that termination and inner-

most termination oinide for loally onuent overlay CSRSs with the addition-

ally property that variables that our at an ative position in a left-hand side

l of a rewrite rule l ! r do not our at inative positions in l or r. The latter

ondition is quite restritive, e.g., it is not satis�ed by the CSRS of Example 1,

sine in the rule for \�" the variables x and y our on ative positions in the

left-hand side, but also on inative positions in the right-hand side.

5 A Sound and Complete Transformation

In Setion 3 we have seen that none of the existing transformations is omplete for

innermost termination and that only �

1

and�

2

are sound. Beause of Theorem 7,

�

2

annot distinguish innermost termination from termination. So when trying

to develop a sound and omplete transformation for innermost termination, we

take �

1

as starting point. As observed in Example 6, we must make sure that in

innermost redutions, rules of the form ative(l) ! mark(r) get preferene over

the rule ative(x)! x, beause then this ounterexample no longer works. Hene,

we modify the rule ative(x) ! x in suh a way that the innermost redution

strategy ensures that ative(l) ! mark(r) is applied with higher preferene. In

the modi�ation, ative(l) ! mark(r) no longer overlaps with the root position

of ative(x)! x, but with a non-root position of the new modi�ed rule(s).

De�nition 14 (�

3

). Let (R; �) be a CSRS over a signature F . The TRS R

3

�

over the signature F

1

= F [fative;markg onsists of the following rewrite rules

(for all l! r 2 R, f 2 F , and 1 6 i 6 arity(f)):

ative(l)! mark(r)

mark(f(x

1

; : : : ; x

n

))! ative(f([x

1

℄

f

1

; : : : ; [x

n

℄

f

n

))

f(x

1

; : : : ; ative(x

i

); : : : ; x

n

)! f(x

1

; : : : ; x

i

; : : : ; x

n

)

f(x

1

; : : : ;mark(x

i

); : : : ; x

n

)! f(x

1

; : : : ; x

i

; : : : ; x

n

) ([)

Again, [t℄

f

i

= mark(t) if i 2 �(f) and [t℄

f

i

= t otherwise. We denote the transfor-

mation (R; �) 7! R

3

�

by �

3

and we abbreviate !

R

3

�

to !

3

and

i

!

R

3

�

to

i

!

3

.

For the CSRS (R; �) of Example 6, R

3

�

di�ers from R

1

�

in two respets:

ative(x) ! x is replaed by f(ative(x)) ! f(x) and moreover, the rule

f(mark(x)) ! f(x) is added. As a onsequene, the yle ative(f(a))

i

!

+

ative(f(a)) an no longer be obtained with R

3

�

, sine ative(f(ative(a))) !

ative(f(a)) is not an innermost rewrite step in R

3

�

. Indeed, R

3

�

is innermost

terminating and in general, �

3

is sound and omplete for innermost termination.

With the new rules f(x

1

; : : : ; ative(x

i

); : : : ; x

n

) ! f(x

1

; : : : ; x

n

) we an re-

move almost every ative-symbol, ompensating to a large extent the lak of the

rule ative(x) ! x. The ([)-marked rules an never be used in an innermost re-

dution if x

i

is instantiated to a non-variable term from T (F ;V). However, they
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are required if x

i

is instantiated by a variable or by terms ontaining the symbols

mark and ative. As a matter of fat, the transformation without these rules is

neither sound nor omplete for innermost termination.

Example 15. Consider the CSRS (R; �) with R onsisting of the four rules

g(f(x; x))! g(f(x; x)) f(b; x)! b

f(g(x); y)! b f(f(x; y); z)! b

and �(f) = �(g) = f1g. The CSRS (R; �) is not innermost terminating as

g(f(x; x))

i

!

�

g(f(x; x)). The transformed TRS R

3

�

ative(g(f(x; x)))! mark(g(f(x; x))) mark(b)! ative(b)

ative(f(b; x))! mark(b) mark(f(x; y))! ative(f(mark(x); y))

ative(f(g(x); y))! mark(b) mark(g(x))! ative(g(mark(x)))

ative(f(f(x; y); z))! mark(b)

f(ative(x); y)! f(x; y) f(mark(x); y)! f(x; y) (�)

f(x; ative(y))! f(x; y) f(x;mark(y))! f(x; y) (�)

g(ative(x))! g(x) g(mark(x))! g(x) (�)

also fails to be innermost terminating:

ative(g(f(x; x)))

i

!

3

mark(g(f(x; x)))

i

!

3

ative(g(mark(f(x; x))))

i

!

3

ative(g(ative(f(mark(x); x))))

i

!

3

ative(g(ative(f(x; x))))

i

!

3

ative(g(f(x; x)))

However, the TRS without the three rules marked with (�) is innermost termi-

nating. In other words, if the ([)-rules were missing, then the transformation �

3

would be unsound for innermost termination.

Termination of R

3

�

without the (�)-rules an be proved as follows. By a min-

imality argument, it is suÆient to show that all terms t whose arguments are

in normal form are innermost terminating. Let #(t) denote the number of o-

urrenes of the funtion symbols b, f, and g in t. Inspetion of the rewrite rules

reveals that this number does not inrease along a redution. We use indution

on #(t). If #(t) = 0 then t is a normal form. Suppose #(t) > 0. We distinguish

the following �ve ases, depending on the root symbol of t.

1. If t = b then t is a normal form.

2. If t = f(t

1

; t

2

) is not in normal form then t an only be redued by the

rule f(ative(x); y) ! f(x; y) or the rule f(x; ative(y)) ! f(x; y). After an

appliation of one of these rules, the arguments of the resulting term remain

in normal form. It follows that any (innermost) redution starting from t

onsists entirely of root redution steps. Sine the two rules derease the size

of terms, it follows that t is (innermost) terminating.
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3. If t = g(t

1

) then we obtain the innermost termination of t as in the previous

ase.

4. If t = ative(t

1

) is not a normal form then t

1

= f(b; u), t

1

= f(g(u

1

); u

2

),

t

1

= f(f(u

1

; u

2

); u

3

), or t

1

= g(f(u; u)). In the �rst three ases there are at

most two (innermost) redution steps: t

i

! mark(b)

i

! ative(b). In the fourth

ase, any in�nite innermost redution starting from t begins as follows:

t

i

!

1

mark(g(f(u; u)))

i

!

1

ative(g(mark(f(u; u))))

i

!

1

ative(g(ative(f(mark(u); u))))

If mark(u) is a normal form then ative(g(ative(f(mark(u); u)))) redues only

to the normal form ative(g(f(mark(u); u)))). So suppose that mark(u) is re-

duible, whih implies root(u) 2 fb; f; gg. We have #(t) > #(mark(u)) and

hene mark(u) is innermost terminating by the indution hypothesis. Let

u

0

be an arbitrary normal form of mark(u). It suÆes to show that t

0

=

ative(g(ative(f(u

0

; u)))) is innermost terminating. We have u

0

= ative(b),

u

0

= ative(f(v

1

; v

2

)), or u

0

= ative(g(v)). Hene, by two innermost redution

steps, we obtain ative(g(mark(b))). Sine #(t) > 2 = #(ative(g(mark(b)))),

the result follows from the indution hypothesis.

5. If t = mark(t

1

) is not in normal form then by performing one (innermost)

redution step we obtain a term of the form u = ative(u

1

) with #(t) = #(u).

Hene innermost termination of t redues to the previous ase.

Example 16. Consider the CSRS (R; �) with the rules

f(x; x)! b g(f(x; y))! g(f(y; y))

and �(f) = �(g) = f1g. The CSRS (R; �) is innermost terminating. The trans-

formed TRS R

3

�

ative(f(x; x))! mark(b) mark(b)! ative(b)

ative(g(f(x; y)))! mark(g(f(y; y))) mark(f(x; y))! ative(f(mark(x); y))

mark(g(x))! ative(g(mark(x)))

f(ative(x); y)! f(x; y) f(mark(x); y)! f(x; y) (�)

f(x; ative(y))! f(x; y) f(x;mark(y))! f(x; y) (�)

g(ative(x))! g(x) g(mark(x))! g(x) (�)

is also innermost terminating. However, the TRS without the three rules marked

with (�) is not innermost terminating as an be seen from the following yle,

with t = mark(ative(b)):

mark(g(f(t; t)))

i

!

+

ative(g(ative(f(mark(t); t))))

i

! ative(g(f(mark(t); t)))

i

! mark(g(f(t; t)))

Thus, without the ([)-marked rules, the transformation �

3

would be inomplete

for innermost termination.
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Now we prove that �

3

is sound and omplete for innermost termination. For

soundness we show that every ontext-sensitive innermost redution step s

i

!

�

t

orresponds to a redutionmark(s)#

M

i

!

+

3

mark(t)#

M

in the transformed system.

The next lemma is used when s is an innermost �-redex.

Lemma 17. If s 2 T (F ;V) n V suh that all ative arguments of s are in �-

normal form then mark(s)#

M

i

!

�

3

ative(s).

Proof. We prove the lemma by strutural indution on s. Let s = f(s

1

; : : : ; s

n

).

We have mark(s)#

M

= ative(f([s

1

℄

f

1

#

M

; : : : ; [s

n

℄

f

n

#

M

)). If i 2 �(f) and s

i

=2 V

then [s

i

℄

f

i

#

M

= mark(s

i

)#

M

i

!

�

3

ative(s

i

) aording to the indution hypothesis,

whih is appliable sine s

i

is an ative argument of s. Note that in this ase

ative(s

i

) is an R

3

�

-normal form beause s

i

is not a redex (with respet to R).

If i 2 �(f) and s

i

2 V then [s

i

℄

f

i

#

M

= mark(s

i

), whih is learly an R

3

�

-normal

form. If i =2 �(f) then [s

i

℄

f

i

#

M

= s

i

#

M

= s

i

. So we obtain mark(s)#

M

i

!

�

3

ative(f(t

1

; : : : ; t

n

)) where, for all 1 6 i 6 n, either t

i

= ative(s

i

), t

i

= mark(s

i

),

or t

i

= s

i

. Moreover, in the �rst two ases, t

i

is an R

3

�

-normal form. Hene, by

appliations of the rules

f(x

1

; : : : ; ative(x

i

); : : : ; x

n

)! f(x

1

; : : : ; x

i

; : : : ; x

n

)

f(x

1

; : : : ;mark(x

i

); : : : ; x

n

)! f(x

1

; : : : ; x

i

; : : : ; x

n

)

we obtain ative(f(t

1

; : : : ; t

n

))

i

!

�

3

ative(f(s

1

; : : : ; s

n

)), and hene mark(s)#

M

i

!

�

3

ative(s) as desired. ut

Now we an prove the soundness of �

3

for innermost termination.

Theorem 18. Let (R; �) be a CSRS. If R

3

�

is innermost terminating then (R; �)

is innermost terminating.

Proof. The proof is similar to the soundness proof of �

1

(Theorem 5), but there

are also some ruial di�erenes. Let F be the signature ofR. To prove the sound-

ness of �

1

, we showed that for all s; t 2 T (F ;V), s

i

!

�

t implies mark(s�)#

M

i

!

+

1

mark(t�)#

M

. Here � substitutes all variables by an arbitrary onstant  from

F .

7

In ontrast, we now show that s

i

!

�

t implies mark(s)#

M

i

!

+

3

mark(t)#

M

.

In general, mark(s�)#

M

i

!

+

mark(t�)#

M

holds for R

1

�

, but not for R

3

�

and

mark(s)#

M

i

!

+

mark(t)#

M

holds for R

3

�

, but not for R

1

�

. So the soundness

proofs of the two transformations are really di�erent.

7

This proof relied on the fat that mark(u�)#

M

i

!

�

1

ative(u�) for all u 2 T (F ;V). However, in

order to redue mark(u�)#

M

to ative(u�), one has to redue subterms ative(u

i

�) in a term

f(: : : ; ative(u

i

�); : : :) to u

i

�. In R

1

�

this is an innermost step, but in R

3

�

this is not the ase

if u

i

� is an (R; �)-redex. For that reason we now use Lemma 17 instead. Thus, in the present

proof we have to transform the redution step s

i

!

�

t into an R

3

�

-redution step where ative

arguments below the redex are in (R; �)-normal form. Consequently, we may not apply a

substitution � to s any more, sine s

i

!

�

t does not imply that the ontext-sensitive redution

s� !

�

t� is innermost.
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If s

i

!

�

t then there is a rule l ! r 2 R, a substitution �, and an ative

position � in s suh that sj

�

= l� and t = s[r�℄

�

. We prove the lemma by

indution on �. If � = � then s = l� and t = r�. Sine the step from s to

t is innermost, all ative arguments of s are in �-normal form. Hene we an

apply Lemma 17 to s, whih yields mark(s)#

M

i

!

�

3

ative(s). Sine ative(s) !

mark(t) is an instane of a rule in R

3

�

, we have ative(s)

i

!

3

mark(t). We also

have mark(t)

i

!

�

3

mark(t)#

M

. Combining all redutions yields mark(s)#

M

i

!

+

3

mark(t)#

M

.

If � = i�

0

then s = f(s

1

; : : : ; s

i

; : : : ; s

n

) and t = f(s

1

; : : : ; t

i

; : : : ; s

n

) with

s

i

i

!

�

t

i

. Note that we have i 2 �(f) due to the de�nition of ontext-sensitive

rewriting. For 1 6 j 6 n de�ne s

0

j

= mark(s

j

)#

M

if j 2 �(f) and s

0

j

=

s

j

if j =2 �(f). The indution hypothesis yields s

0

i

i

!

+

3

mark(t

i

)#

M

. The re-

sult follows sine mark(s)#

M

= ative(f(s

0

1

; : : : ; s

0

i

; : : : ; s

0

n

)) and mark(t)#

M

=

ative(f(s

0

1

; : : : ;mark(t

i

)#

M

; : : : ; s

0

n

)). ut

The struture of the ompleteness proof is similar to the proof that (full,

i.e. non-innermost) termination of a CSRS (R; �) implies innermost termination

of R

1

�

(Theorem 9). In Lemma 20 we �rst show the result for a speial set of

terms T , whih inludes all terms that are reahable from terms of the form

mark(t) with t 2 T (F ;V) by innermost R

3

�

-rewrite steps. Afterwards we extend

this result to arbitrary terms in Theorem 21.

De�nition 19. A position � in a term t 2 T (F

1

;V) is ativated if either

root(t) 2 fative;markg or root(t) 2 F and there is a mark-symbol at a posi-

tion above � or an ative-symbol at the position diretly above �. Let T be the set

onsisting of all terms t 2 T (F

1

;V) that satisfy the following properties:

(a) mark and ative only our on ative positions,

(b) mark does not our above ative or mark,

() if an ative position � in t is not ativated then tj

�

is not an R-redex,

(d) if � is an ativated position in t, then all positions above � are also ativated.

Here, the argument positions of ative and mark are also onsidered ative.

Lemma 20. Let (R; �) be an innermost terminating CSRS. All terms in T are

innermost R

3

�

-terminating.

Proof. Let F be the signature of R. We �rst show that t

i

!

3

u and t 2 T imply

u 2 T . For that purpose we onsider the di�erent forms of rules in R

3

�

that an

be used in the redution step from t to u. Let � be the position of the redex

ontrated in t

i

!

3

u. Note that to prove onditions () and (d) for the term u,

it is suÆient only to onsider positions below �. The reason is that the ontext

surrounding uj

�

is unhanged in the redution step from t to u and, due to

ondition (d), � and all positions above � are always ativated.

1. First we regard the ase where tj

�

= ative(l�) and u = t[mark(r�)℄

�

. Sine

the redution step from t to u is innermost, l� annot ontain any R

3

�

-redex.
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As root(l) 2 F , this implies that l� does not ontain any ative or mark-

symbols. Hene this is also true for r�. Consequently, u inherits properties

(a) and (b) from t. Sine all positions below � in u have a mark-symbol above

them (at position �), u satis�es also properties () and (d).

2. Now let tj

�

= mark(f(t

1

; : : : ; t

n

)) and u = t[ative(f([t

1

℄

f

1

; : : : ; [t

n

℄

f

n

))℄

�

. Sine

t satis�es properties (a) and (b), u satis�es these properties, too. Sine all

ative positions in the subterms t

1

; : : : ; t

n

of u have a mark-symbol above

them, u satis�es property (). For property (d) we observe that in u, the

positions in t

i

for i =2 �(f) are not ativated (sine t

1

; : : : ; t

n

2 T (F ;V), as t

satis�es property (b)).

3. Next we regard the ase where tj

�

= f(t

1

; : : : ; ative(t

i

); : : : ; t

n

) and u =

t[f(t

1

; : : : ; t

i

; : : : ; t

n

)℄

�

. The term u learly satis�es properties (a) and (b).

In order to onlude property (), it suÆes to show that t

i

is not an R-

redex. Suppose to the ontrary that t

i

is an R-redex. This implies that

ative(t

i

) = ative(l�) !

3

mark(r�) for some l ! r 2 R and substitution

�, whih ontradits the assumption that the redution step from t to u is

innermost. We onlude that u satis�es property (). The term u satis�es

also property (d), beause if t

i

ontains ative or mark, then there annot

be a funtion symbol from F above it (otherwise the redution step is not

innermost).

4. Finally, we onsider the ase where tj

�

= f(t

1

; : : : ;mark(t

i

); : : : ; t

n

) and u =

t[f(t

1

; : : : ; t

i

; : : : ; t

n

)℄

�

. Sine the step from t to u is innermost and t

i

does

not ontain ative or mark-symbols aording to property (b), t

i

must be a

variable. But then it trivially follows that u inherits the four properties of t.

Let erase: T (F

1

;V)! T (F ;V) remove all ative and mark-symbols, i.e.,

erase(x) = x for all variables x

erase(f(t

1

; : : : ; t

n

)) = f(erase(t

1

); : : : ; erase(t

n

)) for all f 2 F

erase(ative(t)) = erase(mark(t)) = erase(t)

We want to transform every in�nite innermost R

3

�

-redution of a term t 2 T

into an in�nite innermost ontext-sensitive redution of erase(t). Let M

0

be the

subset of R

3

�

onsisting of M together with all rules of the form

f(x

1

; : : : ; ative(x

i

); : : : ; x

n

)! f(x

1

; : : : ; x

i

; : : : ; x

n

)

f(x

1

; : : : ;mark(x

i

); : : : ; x

n

)! f(x

1

; : : : ; x

i

; : : : ; x

n

)

Clearly t !

M

0

u implies erase(t) = erase(u). Sine M

0

is terminating (whih is

shown by RPO using the preedene mark > ative), every in�nite R

3

�

-redution

ontains in�nitely many redution steps with rules from R

3

�

nM

0

. We now show

that for all t 2 T , if t

i

!

3

u by applying a rule from R

3

�

nM

0

then erase(t)

i

!

�

erase(u). Thus, every in�nite innermost R

3

�

-redution starting from T an be

transformed into an in�nite redution in (R; �), whih proves the lemma.
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There exist a position � in t, a rewrite rule l ! r 2 R, and a substitution

� suh that tj

�

= ative(l�) and u = t[mark(r�)℄

�

. In ase 1 above we already

observed that l� and r� belong to T (F ;V). Hene erase(t) = erase(t)[l�℄

�

0

and

erase(u) = erase(u)[r�℄

�

0

for some position �

0

whih is ative (sine � is ative in

t due to property (a) in the de�nition of T ). Therefore, erase(t)!

�

erase(u). It

remains to show that this is really an innermost ontext-sensitive rewrite step.

Suppose that l� ontains an R-redex on an ative position �

00

> �. Then this

R-redex ours in t = t[ative(l�)℄

�

at the ative position �1�

00

. Aording to

property (), this position has to be ativated, whih means that there is a

mark-symbol above it or an ative-symbol diretly above it. Sine l� 2 T (F ;V)

the seond alternative is impossible and the �rst alternative would ontradit

property (b). Hene we indeed have erase(t)

i

!

�

erase(u). ut

Now we an show the desired ompleteness result.

Theorem 21. Let (R; �) be a CSRS. If (R; �) is innermost terminating then

R

3

�

is innermost terminating.

Proof. Let F be the signature of R. Suppose that R

3

�

is not innermost ter-

minating. Then there exists a minimal term s 2 T (F

1

;V) with an in�nite

innermost R

3

�

-redution (i.e., all proper subterms of s only have �nite inner-

most R

3

�

-redutions). So every in�nite innermost R

3

�

-redution from s ontains

a root redution step. Let t

i

!

3

u be the �rst suh root redution step. So

all proper subterms of t admit only �nite innermost R

3

�

-redutions. Note that

we annot have t = f(t

1

; : : : ; ative(t

i

); : : : ; t

n

) or t = f(t

1

; : : : ;mark(t

i

); : : : ; t

n

)

and u = f(t

1

; : : : ; t

n

). The reason is that then u an only have an in�nite in-

nermost redution if one of its subterms has an in�nite innermost redution,

but this would ontradit the minimality of t. If t = mark(f(t

1

; : : : ; t

n

)) and

u = ative(f([t

1

℄

f

1

; : : : ; [t

n

℄

f

n

)) then t

1

; : : : ; t

n

2 T (F ;V) as the step from t to u is

innermost and f 2 F . Thus, t 2 T . But sine all terms in T are innermost R

3

�

-

terminating by Lemma 20 this is impossible. So t = ative(l�) and u = mark(r�)

for some rule l! r 2 R and substitution �. We again infer that l� and r� belong

to T (F ;V), and thus we obtain u 2 T whih ontradits Lemma 20. Hene R

3

�

is innermost terminating. ut

To demonstrate the use of �

3

, in Appendix A we show for several CSRS

(R; �) inluding Example 1 how innermost termination of R

3

�

an be proved

with dependeny pairs.

6 Ground Innermost Termination

Unlike for termination, to onlude innermost termination it is not suÆient to

prove that all ground terms are innermost terminating.

Example 22. This is witnessed by the TRS ff(f(x)) ! f(f(x)); f(a) ! ag. This

TRS is not innermost terminating but ground innermost terminating over the

signature ff; ag, i.e., all ground terms only permit �nite innermost redutions.
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It is well known that innermost termination of a TRS R over a signature

F is equivalent to ground innermost termination of R over the signature F [

f; hg where  is a fresh onstant and h is a fresh unary funtion symbol. The

reason is that a term t with the variables x

1

; : : : ; x

n

starts an in�nite innermost

redution i� the ground term t� starts an in�nite innermost redution where

�(x

i

) = h

i

(). So the fresh symbols  and h are needed to reate arbitrarily many

di�erent ground terms (in order to handle non-linear rewrite rules). A similar

orrespondene holds for innermost ontext-sensitive redutions with �(h) = ?

or �(h) = f1g.

The following results state that �

1

and �

2

annot distinguish ground inner-

most termination from innermost termination. This provides further explanation

for the inompleteness of these transformation for innermost termination. Be-

ause �

1

and �

2

are sound for innermost termination, it follows that they are

sound for ground innermost termination, too.

Theorem 23. Let (R; �) be a CSRS. The TRS R

1

�

is ground innermost termi-

nating if and only if it is innermost terminating.

Proof. The \if" diretion is trivial. For the \only if" diretion we reason as

follows. Let F be the signature of R, let  be any onstant in F , and let M be

the set onsisting of all terms mark

n

(x) with x 2 V and n > 0. For any term

t 2 T (F

1

;V) we let '(t) denote the result of replaing in t all maximal subterms

belonging to M by . Note that '(t) 2 T (F

1

). We show that if s

i

!

1

t with

s; t 2 T (F

1

;V) then '(s)

i

!

+

1

'(t). So any in�nite innermost redution gives

rise to an in�nite ground innermost redution, whih proves the theorem. We

distinguish three ases.

1. First suppose that sj

�

= �(ative(l)�) and t = s[�(mark(r)�)℄

�

for some

position �, substitution �, rule l ! r 2 R, and sequene � of mark-symbols

(where we ignore parentheses around funtion arguments) suh that there is

no mark-symbol diretly above the position � in s. Let the substitution �

0

be

de�ned by �

0

(x) = '(�(x)) for all variables x. Then we have

'(s) = '(s)[�(ative(l)�

0

)℄

�

(l does not ontain mark-symbols)

i

!

1

'(s)[�(mark(r)�

0

)℄

�

(ative(l)�

0

is an innermost redex)

i

!

�

1

'(s)['(�(mark(r)�))℄

�

(see explanation below)

= '(t)

It remains to show that �(mark(r)�

0

)

i

!

�

1

'(�(mark(r)�)). We distinguish

two ases. If r� =2 M then �(mark(r)�

0

) = '(�(mark(r)�)). If r� 2 M then

�(mark(r)�) 2 M and r 2 V and thus r�

0

=  = '(�(mark(r)�)). An easy

indution proof on the length of � reveals that �(mark())

i

!

+

1

 and hene

we are done.
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2. Let sj

�

= mark(f(u

1

; : : : ; u

n

)) and t = s[ative(f([u

1

℄

f

1

; : : : ; [u

n

℄

f

n

))℄

�

for some

position �, n-ary funtion symbol f 2 F , and terms u

1

; : : : ; u

n

. Then we have

'(s) = '(s)[mark(f('(u

1

); : : : ; '(u

n

)))℄

�

i

!

1

'(s)[ative(f(['(u

1

)℄

f

1

; : : : ; ['(u

n

)℄

f

n

))℄

�

i

!

�

1

'(s)[ative(f('([u

1

℄

f

1

); : : : ; '([u

n

℄

f

n

)))℄

�

(see explanation below)

= '(t)

We show that we always have ['(u

i

)℄

f

i

i

!

�

1

'([u

i

℄

f

i

). For i =2 �(f) this is lear,

sine ['(u

i

)℄

f

i

= '(u

i

) = '([u

i

℄

f

i

). If i 2 �(f) then ['(u

i

)℄

f

i

= mark('(u

i

)) and

'([u

i

℄

f

i

) = '(mark(u

i

)). We distinguish two ases. If u

i

=2M then mark(u

i

) =2

M and thus mark('(u

i

)) = '(mark(u

i

)). If u

i

2 M then mark(u

i

) 2 M

and thus mark('(u

i

)) = mark() and '(mark(u

i

)) = . Sine mark()

i

!

1

ative()

i

!

1

, the result follows.

3. Finally, let sj

�

= �(ative(u)) and t = s[�(u)℄

�

for some position �, term u,

and � as in ase 1 of this proof. Then we have

'(s) = '(s)[�(ative('(u)))℄

�

i

!

1

'(s)[�('(u))℄

�

('(u) is a normal form)

and '(t) = '(s)['(�(u))℄

�

. If u =2 M then �('(u)) = '(�(u)). If u 2 M

then �(u) 2 M and thus �('(u)) = �() and '(�(u)) = . It is easy to

show by indution on the length of � that �()

i

!

�

1

.

ut

Theorem 24. Let (R; �) be a CSRS. The TRS R

2

�

is ground innermost termi-

nating if and only if it is innermost terminating.

Proof. The \if" diretion is trivial. For the \only if" diretion suppose R

2

�

is

ground innermost terminating. From the proof of Theorem 7 it follows that

(R; �) is terminating. Sine �

2

is omplete for termination, R

2

�

is terminating

and thus also innermost terminating. ut

Beause �

3

is sound and omplete for innermost termination, ground inner-

most termination of R

3

�

does not imply innermost termination of R

3

�

in general.

In fat, �

3

is also sound and omplete for ground innermost termination.

Theorem 25. A CSRS (R; �) is ground innermost terminating if and only if

R

3

�

is ground innermost terminating.

Proof. The proofs of Theorems 18 and 21 an easily be adapted. It is worth

remarking that the restrition to ground terms does not simplify the proofs

signi�antly. The main di�erene is that one an immediately onlude that an

innermost R

3

�

-redex has no mark stritly below the root if one is restrited to

ground terms. ut
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ground innermost innermost

termination termination termination

sound omplete sound omplete sound omplete

�

L

X � � � � �

�

Z

X � � � � �

�

FR

X � � � � �

�

1

X � X � X �

�

2

X X X � X �

�

3

X � X X X X

Fig. 2. Summary.

One might think that the ([)-marked rules in De�nition 14 are not needed to

obtain a sound and omplete transformation for ground innermost termination.

While soundness is easily proved, ompleteness does not hold.

Example 26. Consider the (ground) innermost terminating CSRS (R; �) from

Example 16 again. Sine the innermost yle only involves ground terms, the

transformed TRS without the ([)-marked rules is not ground innermost termi-

nating.

As explained above, a transformation that is sound for ground innermost

termination an also be used for innermost termination analysis by adding fresh

funtion symbols to the signature. However, for ompleteness the situation is

di�erent. Here, it is desirable that the transformation is not only omplete for

ground, but also for full innermost termination. The reason is that while there do

exist tehniques to analyze ground innermost termination [11℄, the best-known

tehnique for automated innermost termination analysis [1℄ really heks full

(non-ground) innermost termination of TRSs. A omplete transformation for

innermost termination transforms every innermost terminating CSRS into an

innermost terminating TRS and hene, innermost termination of this TRS an

potentially be heked by every tehnique for innermost termination analysis of

ordinary TRSs. But if the transformed TRS is only ground innermost terminat-

ing, (full) innermost termination analysis tehniques for TRSs annot be applied

suessfully.

7 Comparison

Figure 2 ontains a summary of the soundness and ompleteness results overed

in the preeding setions. The negative results for ground innermost termination

for �

L

, �

Z

, and �

FR

are shown by the same examples used to demonstrate

the orresponding results for innermost termination, f. the �rst paragraph of

Setion 3. The results on termination for �

3

follow from Theorem 34 below.

Moreover, in order to assess the relative power of our transformations, we

illustrate in Figure 3 the relationship between the following twelve properties:
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(2)

+3
KS

��

(1)

+3
KS

��

(6)

+3
KS

��

(5)

+3
KS

��

(9)

KS

��
(4) (3)

KS

��

(10) (8) (12)

(7)

KS

��
(11)

Fig. 3. Comparison.

(1) (R; �) is terminating

(2) R

1

�

is terminating

(3) R

2

�

is terminating

(4) R

3

�

is terminating

(5) (R; �) is innermost terminating

(6) R

1

�

is innermost terminating

(7) R

2

�

is innermost terminating

(8) R

3

�

is innermost terminating

(9) (R; �) is ground innermost terminating

(10) R

1

�

is ground innermost terminating

(11) R

2

�

is ground innermost terminating

(12) R

3

�

is ground innermost terminating

Impliation (2)) (1) is the soundness of transformation �

1

for termination [14℄,

impliation (1) ) (6) is Theorem 9, impliation (6) ) (5) is Theorem 5, and

impliation (5)) (9) is trivial.

Equivalene (1), (3) is the soundness and ompleteness of �

2

for termina-

tion [14℄, equivalene (3) , (7) is Theorem 7, equivalene (10) , (6) is The-

orem 23, equivalene (11) , (7) is Theorem 24, and equivalene (9) , (12) is

Theorem 25. The equivalene of (5) and (8) amounts to the soundness and om-

pleteness of transformation �

3

for innermost termination (Theorems 18 and 21).

The equivalene of (2) and (4) means that �

1

and �

3

are equally powerful when

it omes to proving termination. This may not ome as a surprise but the proof,

whih is given below, is surprisingly diÆult.

None of the missing impliations in Figure 3 hold, exept those that follow by

transitivity: (1) 6) (2) and (5) 6) (6) are the inompleteness of �

1

for termina-

tion (Example 4) and innermost termination (Example 6). Moreover, (6) 6) (1)

follows by using �(f) = f1; 2; 3g in Example 4 and (9) 6) (5) follows from Exam-

ple 22 with �(f) = f1g.

In the next few pages we prove that the transformations �

1

and �

3

are

equivalent when it omes to termination. First we show that termination of R

1

�

implies termination of R

3

�

. For termination it suÆes to regard ground terms (as

noted in Setion 6 this is di�erent from innermost termination). The problem

when simulating R

3

�

-steps with R

1

�

are the last rules of R

3

�

whih allow the
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elimination of mark-symbols below symbols from F . However, for ground terms

t without adjaent ative or mark-symbols and without suh symbols at the root,

one an show mark(t)!

+

1

t. So instead of regarding arbitrary ground terms, our

aim is to transform every redution sequene into a redution between terms t of

this speial form. More preisely, we show that every ground redution step s!

3

t in R

3

�

orresponds to a redution s#

A

!

�

1

t#

A

where A removes adjaent ative

and mark-symbols by replaing them by the rightmost suh symbol. Moreover,

if s !

3

t by applying a rule of the form ative(l) ! mark(r) then s#

A

!

+

1

t#

A

.

Sine the remaining rules onstitute a terminating subset of R

3

�

, any in�nite

R

3

�

-redution would then give rise to an in�nite R

1

�

-redution.

De�nition 27. Let A be the rewrite system onsisting of the following rules:

ative(ative(x))! ative(x) ative(mark(x))! mark(x)

mark(ative(x))! ative(x) mark(mark(x))! mark(x)

It is easy to see that A is terminating and onuent.

The following two preliminary results will ome in handy. Lemma 28 states

that if t ontains no adjaent ative and mark-symbols and root(t) is from F ,

then mark(t) an always be redued to ative(t) in R

1

�

.

Lemma 28. Let (R; �) be a CSRS over a signature F and let t 2 T (F

1

) with

root(t) 2 F . If t#

A

= t then mark(t)!

+

1

ative(t).

Proof. The lemma is proved by indution on the term struture of t. If t is a

onstant, then the rule mark(t)! ative(t) is ontained in R

1

�

. Otherwise, t has

the form f(t

1

; : : : ; t

n

) for some f 2 F . De�ne terms s

1

; : : : ; s

n

as follows:

s

i

=

(

u

i

if i 2 �(f) and either t

i

= ative(u

i

) or t

i

= mark(u

i

)

t

i

otherwise

Let 1 6 i 6 n. We laim that t

i

!

�

1

s

i

. If s

i

= t

i

this is trivial. If t

i

= ative(u

i

)

and s

i

= u

i

this follows by applying the rule ative(x)! x. If t

i

= mark(u

i

) and

s

i

= u

i

then root(u

i

) 2 F beause t is an A-normal form and hene we an apply

the indution hypothesis. This yields t

i

!

�

1

ative(u

i

) and thus t

i

!

�

1

u

i

by an

appliation of the rule ative(x)! x. We obtain

mark(t)!

�

1

mark(f(s

1

; : : : ; s

n

))

!

1

ative(f([s

1

℄

f

1

; : : : ; [s

n

℄

f

n

))

!

�

1

ative(f(t

1

; : : : ; t

n

)) (see explanation below)

We show that [s

i

℄

f

i

!

�

3

t

i

for all 1 6 i 6 n.

If i 2 �(f) and t

i

= mark(u

i

) then [s

i

℄

f

i

= mark(u

i

) = t

i

. If i 2 �(f)

and t

i

= ative(u

i

) then [s

i

℄

f

i

= mark(u

i

) !

�

1

ative(u

i

) = t

i

by the indu-

tion hypothesis (whih is appliable beause root(u

i

) 2 F due to the require-

ments on t). Otherwise we have s

i

= t

i

and root(t

i

) 2 F . If i 2 �(f) then
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[s

i

℄

f

i

= mark(s

i

) !

�

1

ative(s

i

) !

1

s

i

= t

i

by the indution hypothesis and an

appliation of the rule ative(x)! x. If i =2 �(f) then [s

i

℄

f

i

= s

i

= t

i

. ut

The next lemma shows how to eliminate ative or mark-symbols at the root of

terms by R

1

�

-redutions. Together with Lemma 28 this implies mark(t)!

+

1

t for

ground terms t with root(t) 2 F and without adjaent ative or mark-symbols.

Hene, for suh (sub)terms, the last rules of R

3

�

an also be simulated in R

1

�

.

Lemma 29. For every t 2 T (F

1

), ative(t)#

A

!

�

1

t#

A

and mark(t)#

A

!

�

1

t#

A

.

Proof. We distinguish three ases. If root(t) 2 F then ative(t)#

A

= ative(t#

A

)

!

1

t#

A

and mark(t)#

A

= mark(t#

A

) !

+

1

ative(t#

A

) !

1

t#

A

by Lemma 28. Let

� denote an arbitrary sequene of ative and mark-symbols. If t = �(ative(u))

and root(u) 2 F , then ative(t)#

A

= mark(t)#

A

= ative(u#

A

) = t#

A

. In the

remaining ase we have t = �(mark(u)) with � and u as before, and therefore

ative(t)#

A

= mark(t)#

A

= mark(u#

A

) = t#

A

. ut

Using the two previous lemmata, we an now show that R

3

�

is not more

powerful than R

1

�

for proving termination of CSRSs.

Theorem 30. Let (R; �) be a CSRS. If R

1

�

is terminating then R

3

�

is terminat-

ing.

Proof. Let F be the signature of R. We show that if s !

3

t with s; t 2 T (F

1

)

then s#

A

!

�

1

t#

A

. Moreover, if s!

3

t by applying a rule of the form ative(l)!

mark(r) then s#

A

!

+

1

t#

A

. As explained before, the remaining rules of R

3

�

ter-

minate and therefore, this proves the theorem.

1. First suppose that sj

�

= �(ative(l))� and t = s[�(mark(r))�℄

�

for some

position �, substitution �, and rule l ! r 2 R, suh that there is no ative or

mark-symbol diretly above the position � in s. Again, � denotes an arbitrary

sequene of ative and mark-symbols. Moreover, let the substitution �

0

be

de�ned by �

0

(x) = �(x)#

A

for all variables x. Then we have

s#

A

= s#

A

[ative(l)�

0

)℄

�

0

(l does not ontain ative or mark-symbols)

!

1

s#

A

[mark(r)�

0

℄

�

0

!

�

1

s#

A

[mark(r)�#

A

℄

�

0

(see explanation below)

= s[mark(r)�℄

�

#

A

(neither ative nor mark diretly above �)

= s[�(mark(r))�℄

�

#

A

= t#

A

It remains to show that mark(r)�

0

!

�

1

mark(r)�#

A

. We distinguish three

ases. If r� = �

0

(ative(u)) with root(u) 2 F then r�

0

= ative(u#

A

) and
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hene

mark(r)�

0

= mark(ative(u#

A

))

!

1

mark(u#

A

)

!

+

1

ative(u#

A

) (due to Lemma 28)

= mark(�

0

(ative(u)))#

A

= mark(r)�#

A

If r� = �

0

(mark(u)) with root(u) 2 F then r�

0

= mark(u#

A

) and hene

mark(r)�

0

= mark(mark(u#

A

))

!

+

1

mark(ative(u#

A

)) (due to Lemma 28)

!

1

mark(u#

A

)

= mark(�

0

(mark(u)))#

A

= mark(r)�#

A

Finally, if root(r�) 2 F then we learly have mark(r)�

0

= mark(r)�#

A

.

2. Let sj

�

= �(mark(f(u

1

; : : : ; u

n

))) and t = s[�(ative(f([u

1

℄

f

1

; : : : ; [u

n

℄

f

n

)))℄

�

for some position �, terms u

1

; : : : ; u

n

, and f 2 F , suh that there is no ative

or mark-symbol diretly above the position � in s. Then we have

s#

A

= s#

A

[mark(f(u

1

#

A

; : : : ; u

n

#

A

))℄

�

0

!

1

s#

A

[ative(f([u

1

#

A

℄

f

1

; : : : ; [u

n

#

A

℄

f

n

))℄

�

0

!

�

1

s#

A

[ative(f([u

1

℄

f

1

#

A

; : : : ; [u

n

℄

f

n

#

A

))℄

�

(see explanation below)

= s[�(ative(f([u

1

℄

f

1

; : : : ; [u

n

℄

f

n

)))℄

�

#

A

= t#

A

We show that we always have [u

i

#

A

℄

f

i

!

�

1

[u

i

℄

f

i

#

A

. For i =2 �(f) this is lear,

sine [u

i

#

A

℄

f

i

= u

i

#

A

= [u

i

℄

f

i

#

A

. If i 2 �(f) then [u

i

#

A

℄

f

i

= mark(u

i

#

A

) and

[u

i

℄

f

i

#

A

= mark(u

i

)#

A

. We distinguish three ases. If u

i

= �

0

(ative(u)) with

root(u) 2 F then

mark(u

i

#

A

) = mark(ative(u#

A

))

!

1

mark(u#

A

)

!

+

1

ative(u#

A

) (by Lemma 28)

= mark(u

i

)#

A

If u

i

= �

0

(mark(u)) with root(u) 2 F then

mark(u

i

#

A

) = mark(mark(u#

A

))

!

+

1

mark(ative(u#

A

)) (by Lemma 28)

!

1

mark(u#

A

)

= mark(u

i

)#

A

Finally, if root(u

i

) 2 F then learly mark(u

i

#

A

) = mark(u

i

)#

A

.
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3. Next let sj

�

= f(u

1

; : : : ;mark(u

i

); : : : ; u

n

) and t = s[f(u

1

; : : : ; u

n

)℄

�

for some

position �, terms u

1

; : : : ; u

n

, and f 2 F . Then we have

s#

A

= s#

A

[f(u

1

#

A

; : : : ;mark(u

i

)#

A

; : : : ; u

n

#

A

)℄

�

0

!

�

1

s#

A

[f(u

1

#

A

; : : : ; u

i

#

A

; : : : ; u

n

#

A

)℄

�

0

(Lemma 29)

= t#

A

4. Finally, let sj

�

= f(u

1

; : : : ; ative(u

i

); : : : ; u

n

) and t = s[f(u

1

; : : : ; u

n

)℄

�

for

some position �, terms u

1

; : : : ; u

n

, and f 2 F . Then we have

s#

A

= s#

A

[f(u

1

#

A

; : : : ; ative(u

i

)#

A

; : : : ; u

n

#

A

)℄

�

0

!

�

1

s#

A

[f(u

1

#

A

; : : : ; u

i

#

A

; : : : ; u

n

#

A

)℄

�

0

(Lemma 29)

= t#

A

ut

Next we show that termination ofR

3

�

implies termination ofR

1

�

. The problem

when simulating R

1

�

-steps in R

3

�

is that R

3

�

does not allow the elimination of

ative unless there is a symbol from F diretly above it. Thus, our aim is again

to restrit ourselves to ground terms without adjaent ative or mark-symbols.

We show that every ground rewrite step s !

1

t an be transformed into a

redution ative(s)#

B

!

�

3

ative(t)#

B

. Moreover, if the step s !

1

t is done by a

rule of the form ative(l) ! mark(r) then ative(s)#

B

!

+

3

ative(t)#

B

. (This is

suÆient to transform in�nite R

1

�

-redutions into in�nite R

3

�

-redutions.) Here

B replaes every sequene � of adjaent ative and mark-symbols by mark, if �

ontains any mark-symbol, and by ative, otherwise. Moreover, mark-symbols

are propagated downwards to ative positions using the rules of M. Hene,

ative(s)#

B

ontains no mark-symbols and it has an ative-symbol diretly above

every ative position of s and diretly above those positions whih were onsid-

ered ative due to the ative and mark-symbols in s. Thus, we use the rewrite

system de�ned below.

De�nition 31. Let B be the rewrite system onsisting of the rules ofM together

with the following rules:

ative(ative(x))! ative(x) ative(mark(x))! mark(x)

mark(ative(x))! mark(x) mark(mark(x))! mark(x)

It is easy to show that B is terminating and onuent.

We start with two preliminary lemmata. Lemma 32 shows that for ertain

terms, the result of normalizing with B an also be ahieved with the rules of

R

3

�

.

Lemma 32. Let t 2 T (F

1

) be in B-normal form. If root(t) 2 F then mark(t)

!

�

3

mark(t)#

B

.
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Proof. The lemma is proved by indution on the term struture of t. Write t =

f(t

1

; : : : ; t

n

). We de�ne terms s

1

; u

1

; : : : ; s

n

; u

n

as follows:

s

i

=

(

t

0

i

if i 2 �(f) and t

i

= ative(t

0

i

)

t

i

otherwise

and

u

i

=

(

mark(s

i

)#

B

if i 2 �(f)

s

i

otherwise

We have

mark(t)!

�

3

mark(f(s

1

; : : : ; s

n

)) (see explanation below)

!

3

ative(f([s

1

℄

f

1

; : : : ; [s

n

℄

f

n

))

!

�

3

ative(f(u

1

; : : : ; u

n

)) (see explanation below)

The initial redution mark(t)!

�

3

mark(f(s

1

; : : : ; s

n

)) is obtained by appliations

of rules of the form f(x

1

; : : : ; ative(x

i

); : : : ; x

n

) ! f(x

1

; : : : ; x

n

). For the �nal

part of the above redution it is suÆient to show [s

i

℄

f

i

!

�

3

u

i

for all 1 6 i 6 n.

If i 2 �(f) and t

i

= ative(t

0

i

) then s

i

= t

0

i

starts with a funtion symbol of F

(beause t

i

is in B-normal form) and thus we an apply the indution hypothesis

whih yields [s

i

℄

f

i

= mark(s

i

) !

�

3

mark(s

i

)#

B

= u

i

. If i 2 �(f) and root(t

i

) 6=

ative then s

i

= t

i

and root(t

i

) 2 F (beause ground B-normal forms do not

ontain any mark-symbols) and thus [s

i

℄

f

i

= mark(s

i

)!

�

3

mark(s

i

)#

B

= u

i

by the

indution hypothesis. If i =2 �(f) then [s

i

℄

f

i

= s

i

= t

i

= u

i

.

Obviously, ative(f(u

1

; : : : ; u

n

)) is in B-normal form. In order to onlude

that ative(f(u

1

; : : : ; u

n

)) is the B-normal form of mark(t), it suÆes to show

mark(t)!

�

B

ative(f(u

1

; : : : ; u

n

)). We have mark(t)!

B

ative(f([t

1

℄

f

1

; : : : ; [t

n

℄

f

n

))

and [s

i

℄

f

i

!

�

B

u

i

for all 1 6 i 6 n. Hene, it remains to show that [t

i

℄

f

i

!

�

B

[s

i

℄

f

i

for all 1 6 i 6 n. If i 2 �(f) and t

i

= ative(t

0

i

) then we have [t

i

℄

f

i

=

mark(ative(t

0

i

))!

B

mark(t

0

i

) = [s

i

℄

f

i

. Otherwise t

i

= s

i

and thus [t

i

℄

f

i

= [s

i

℄

f

i

. ut

Lemma 33 proves that the R

3

�

-redution skethed in Lemma 32 an be ex-

tended to obtain the root symbol ative.

Lemma 33. Let t 2 T (F

1

) with root(t) 2 F . If t#

B

= t then mark(t)#

B

!

�

3

ative(t).

Proof. We again use indution on the term struture of t. Write t = f(t

1

; : : : ; t

n

).

We de�ne terms u

1

; v

1

; : : : ; u

n

; v

n

as follows:

u

i

=

8

>

<

>

:

mark(t

0

i

)#

B

if i 2 �(f) and t

i

= ative(t

0

i

)

mark(t

i

)#

B

if i 2 �(f) and root(t

i

) 2 F

t

i

otherwise
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and

v

i

=

8

>

<

>

:

ative(t

0

i

) if i 2 �(f) and t

i

= ative(t

0

i

)

ative(t

i

) if i 2 �(f) and root(t

i

) 2 F

t

i

otherwise

Let 1 6 i 6 n. We laim that u

i

!

�

3

v

i

. For i =2 �(f) this is obvious. If i 2 �(f)

and root(t

i

) 2 F then u

i

= mark(t

i

)#

B

!

�

3

ative(t

i

) = v

i

by the indution

hypothesis. If i 2 �(f) and t

i

= ative(t

0

i

) then root(t

0

i

) 2 F beause t is in

B-normal form. Hene we obtain u

i

!

�

3

v

i

as in the previous ase. Using this

observation, now we an prove the lemma. We have

mark(t)#

B

= ative(f(u

1

; : : : ; u

n

)) (as in the proof of Lemma 32)

!

�

3

ative(f(v

1

; : : : ; v

n

))

!

�

3

ative(f(t

1

; : : : ; t

n

))

= ative(t)

The �nal part of the above redution follows by suitable appliations of rules of

the form f(x

1

; : : : ; ative(x

i

); : : : ; x

n

)! f(x

1

; : : : ; x

n

). ut

With the two previous lemmata we an now prove the desired theorem.

Theorem 34. Let (R; �) be a CSRS. If R

3

�

is terminating then R

1

�

is terminat-

ing.

Proof. Let F be the signature of R. We laim that for terms s; t 2 T (F

1

), if

s!

1

t then ative(s)#

B

!

�

3

ative(t)#

B

. Moreover, if a rule of the form ative(l)!

mark(r) is used then ative(s)#

B

!

+

3

ative(t)#

B

. Sine M[ fative(x) ! xg is

terminating (whih an be shown by RPO using the preedene mark > ative),

every in�nite R

1

�

-redution is transformed into an in�nite R

3

�

-redution, whih

proves the theorem.

To prove the laim, we distinguish three ases depending on the form of the

rewrite rule applied in s!

1

t.

1. Suppose that sj

�

= �(ative(l�)) and t = s[�(mark(r�))℄

�

for some posi-

tion �, substitution �, and rule l ! r 2 R, suh that there is no ative

or mark-symbol diretly above the position � in s. As usual, � denotes an

arbitrary sequene of ative and mark-symbols. Moreover, let the substitu-

tion �

0

be de�ned by �

0

(x) = �(x)#

B

for all variables x. First we show that

ative(s)#

B

!

�

3

ative(s)#

B

[ative(l�

0

)℄

�

. We distinguish two ases.

(a) Suppose � = �

0

�

00

suh that root(sj

�

0

) = mark and �

00

is an ative position

in sj

�

0

. (As usual, the argument positions of ative and mark are also

onsidered ative.) In this ase, when B-normalizing ative(s), the mark-

symbol at position �

0

is propagated to the root of sj

�

and subsequently
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onsumes all ative and mark-symbols in front of l�. Hene

ative(s)#

B

= ative(s)#

B

[mark(l�)#

B

℄

�

= ative(s)#

B

[mark(l�

0

)#

B

℄

�

(l� !

�

B

l�

0

)

!

�

3

ative(s)#

B

[ative(l�

0

)℄

�

(Lemma 33)

Note that Lemma 33 is appliable beause l�

0

#

B

= l�

0

and root(l�

0

) 2 F .

(b) If there is no mark-symbol above position � suh that � is in its \ative

range" then we learly have

ative(s)#

B

= ative(s)#

B

[ative(l�)#

B

℄

�

= ative(s)#

B

[ative(l�

0

)℄

�

It remains to prove that ative(s)#

B

[ative(l�

0

)℄

�

!

+

3

ative(t)#

B

. We again

distinguish two ases.

(a) If root(r�

0

) 2 F then

ative(s)#

B

[ative(l�

0

)℄

�

!

3

ative(s)#

B

[mark(r�

0

)℄

�

!

�

3

ative(s)#

B

[mark(r�

0

)#

B

℄

�

(Lemma 32)

= ative(s)#

B

[mark(r�)#

B

℄

�

(r� !

�

B

r�

0

)

= ative(t)#

B

(b) The ase where root(r�

0

) =2 F requires some more e�ort. We must have

r 2 V . Beause r�

0

is in B-normal form, r�

0

= ative(u) with root(u) 2 F .

We de�ne the substitution � as follows:

�(x) =

(

u if x = r

�

0

(x) otherwise

By suitable appliations of rules of the form f(x

1

; : : : ; ative(x

i

); : : : ; x

n

)

! f(x

1

; : : : ; x

n

) we obtain l�

0

!

�

3

l� . We have

mark(r�

0

) = mark(ative(u))!

B

mark(u) = mark(r�)

and thus mark(r�

0

)#

B

= mark(r�)#

B

. Therefore

ative(s)#

B

[ative(l�

0

)℄

�

!

�

3

ative(s)#

B

[ative(l�)℄

�

!

3

ative(s)#

B

[mark(r�)℄

�

!

�

3

ative(s)#

B

[mark(r�)#

B

℄

�

(Lemma 32)

= ative(s)#

B

[mark(r�

0

)#

B

℄

�

= ative(s)#

B

[mark(r�)#

B

℄

�

(r� !

�

B

r�

0

)

= ative(t)#

B
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2. Next let sj

�

= mark(f(u

1

; : : : ; u

n

))) and t = s[ative(f([u

1

℄

f

1

; : : : ; [u

n

℄

f

n

))℄

�

for

some position �, terms u

1

; : : : ; u

n

, and f 2 F . In this ase we have s !

B

t

and thus trivially ative(s)#

B

= ative(t)#

B

.

3. Finally, let sj

�

= �(ative(u)) and t = s[�(u)℄

�

for some position � and term

u, suh that there is no ative or mark-symbol diretly above the position

� in s. If � is not empty then �(ative(u))#

B

= �(u)#

B

and hene also

ative(s)#

B

= ative(t)#

B

. So suppose that � is empty. We distinguish two

further ases.

(a) Suppose � = �

0

�

00

suh that root(sj

�

0

) = mark and �

00

is an ative

position in sj

�

0

. In this ase, when B-normalizing ative(s), the mark-

symbol at position �

0

is propagated to the root of sj

�

and the ative-

symbol at position � is subsequently onsumed by an appliation of

the rule mark(ative(x)) ! mark(x) of B. It follows that ative(s)#

B

=

ative(s)#

B

[mark(u)#

B

℄

�

= ative(t)#

B

.

(b) In the remaining ase there is nomark-symbol above position � suh that �

is in its \ative range". If � = � then ative(s)#

B

= ative(ative(u))#

B

=

ative(u)#

B

= ative(t)#

B

. If � > � then we must have � = �

0

j with

sj

�

0

= f(s

1

; : : : ; s

n

) and s

j

= ative(u). Hene

ative(s)#

B

= ative(s)#

B

[f(s

1

#

B

; : : : ; ative(u)#

B

; : : : ; s

n

#

B

)℄

�

and

ative(t)#

B

= ative(s)#

B

[f(s

1

#

B

; : : : ; u#

B

; : : : ; s

n

#

B

)℄

�

If root(u) 2 fative;markg then ative(u)#

B

= u#

B

and thus ative(s)#

B

=

ative(t)#

B

. Otherwise, root(u) 2 F and thus ative(u)#

B

= ative(u#

B

).

In this latter ase we apply the rewrite rule f(x

1

; : : : ; ative(x

j

); : : : ; x

n

)!

f(x

1

; : : : ; x

n

) to onlude ative(s)#

B

!

3

ative(t)#

B

.

ut

8 Conlusion

We investigated �ve existing transformations from ontext-sensitive to ordinary

rewrite systems. Of these �ve transformations, only the transformations �

1

and

�

2

from [14℄ are sound for proving innermost termination of CSRSs. We showed

that �

2

is not very useful when it omes to innermost termination, but that ter-

mination of a CSRS (R; �) already implies innermost termination of �

1

(R; �).

So for lasses of CSRSs where termination and innermost termination are equiv-

alent, �

1

is sound and omplete for innermost termination. While in general �

1

is still inomplete, we developed a new transformation �

3

whih is sound and

omplete for innermost termination. As far as (non-innermost) termination is

onerned, �

3

and �

1

are equally powerful.
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So with our new transformation, innermost termination of ontext-sensitive

rewriting an be fully redued to innermost termination of ordinary rewriting.

Moreover, for orthogonal CSRSs innermost termination already suÆes for ter-

mination. So for suh systems, innermost termination of the transformed TRS

even implies termination of the CSRS. The existing methods for innermost ter-

mination analysis of TRSs are muh more powerful than the ones for termina-

tion. Hene, our result now enables the use of these methods for (innermost)

termination of ontext-sensitive rewriting, f. Appendix A, where we use our

transformation in ombination with the dependeny pair tehnique for TRSs in

order to verify (innermost) termination of CSRSs.

Aknowledgments. We thank Salvador Luas and anonymous referees for
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A Examples

In this setion, we demonstrate how our transformation �

3

an be used in ombi-

nation with dependeny pairs in order to prove innermost termination of ontext-

sensitive rewrite systems. For an introdution to dependeny pairs we refer to

[1℄.

The TRSs R

3

�

resulting from our transformation have a speial form and

hene, to ease their innermost termination proof, the following re�nements an
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be used when applying dependeny pairs. (Re�nement (E) an even be used for

arbitrary TRSs, but the other re�nements are due to the speial form of R

3

�

.)

(A) If s ! t is a dependeny pair with root(s) 2 fACTIVE;MARKg, then no

narrowing is needed whih would instantiate variables with terms ontaining

ative or mark.

(B) If s ! t is a dependeny pair with root(s) 2 fACTIVE;MARKg, then s ! t

an be replaed by all pairs of the form s� ! w� for all dependeny pairs

v ! w where � is the most general uni�er of ap

0

(t) and v. Here, ap

0

replaes all subterms built with mark or ative by pairwise di�erent fresh

variables. (In other words, one an ombine s! t with all pairs v ! w whih

possibly follow this pair in an innermost hain.)

(C) In any dependeny pair of the form

ACTIVE(C[x℄)! C

0

[f(: : : ;mark(x); : : :)℄

where x is on an ative position of C[x℄, the subterm mark(x) an be replaed

by x, i.e., one an replae the dependeny pair by

ACTIVE(C[x℄)! C

0

[f(: : : ; x; : : :)℄

(D) If onstrutors only have ative argument positions and (R; �) is an orthog-

onal onstrutor system

8

suh that in right-hand sides of dependeny pairs

of R

3

�

de�ned symbols of R our only at position 1 and where dependeny

pairs do not ontain the symbol ative, then the ative-rules are not \usable"

[1℄.

(E) Rewriting dependeny pairs [12℄ an be extended to overlapping systems as

follows: if s ! t is a dependeny pair and tj

�

is a reduible ground term

then s ! t an be replaed by the pairs s ! t[u

1

℄

�

, . . . , s ! t[u

n

℄

�

, where

u

1

; : : : ; u

n

are the terms reahable from tj

�

in one innermost rewrite step.

All these re�nements an also be used for modular innermost termination proofs

[13℄ where one regards subsets of dependeny pairs separately for every yle of

the innermost dependeny graph.

Note that re�nements (B), (C), (E), as well as the re�nements of narrowing,

rewriting, and instantiating dependeny pairs in [12℄ modify the original depen-

deny pairs to new pairs of terms. When formulating the re�nements above, we

also refer to these new pairs as \dependeny pairs". In other words, the re�ne-

ments may be applied repeatedly after eah other and �nally, the resulting set of

pairs is taken as \the" set of dependeny pairs. So for example, re�nement (D)

an also be applied if the set of pairs resulting from modifying the dependeny

pairs has the required form.

8

A onstrutor system has the property that no de�ned symbol ours below the root position

in some left-hand side.
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The above re�nements are generally appliable when proving innermost ter-

mination of systems resulting from transforming CSRSs. The onditions for their

appliation an be heked automatially.

We demonstrate the usefulness of our transformation with two examples. In

Setion A.1 we handle a variant of Example 6, i.e., a CSRS that is innermost

terminating but not terminating. Example 1 (Setion A.2) is a natural CSRS

that is terminating but where innermost termination is signi�antly easier to

prove than termination and where innermost termination is already suÆient for

termination. A thorough justi�ation of the re�nements (A){(E) an be found

in Setion A.3.

A.1 Variant of Example 6

We regard the following CSRS (R; �) with R onsisting of the three rules

f(g(b))! f(g(a)) f(a)! f(a) a! b

and �(f) = f1g and �(g) = ?. The TRS R is not innermost terminating. The

CSRS (R; �) is innermost terminating but not terminating. (This CSRS orre-

sponds to Example 6 extended by the additional rule f(g(b))! f(g(a)). This rule

is added to demonstrate that our method is also suessful for systems whih are

innermost terminating as a CSRS but not as a TRS. The innermost termination

proof of Example 6 proeeds in the same way.) Our transformation produes the

following TRS R

3

�

:

ative(f(g(b)))! mark(f(g(a))) mark(f(x))! ative(f(mark(x)))

ative(f(a))! mark(f(a)) mark(g(x))! ative(g(x))

ative(a)! mark(b) mark(a)! ative(a)

mark(b)! ative(b)

f(ative(x))! f(x) f(mark(x))! f(x)

g(ative(x))! g(x) g(mark(x))! g(x)

We show that innermost termination of this TRS an be proved easily with

dependeny pairs. We omit pairs of the form MARK(�) ! F(�) and MARK(�) !

G(�) as well as ACTIVE(�) ! F(�) and ACTIVE(�) ! G(�) sine these pairs are

obviously not on yles of the (estimated) innermost dependeny graph. In the

sequel we abbreviate MARK to M and ACTIVE to ative.

A(f(g(b)))! M(f(g(a))) (1) M(f(x))! A(f(mark(x))) (5)

A(f(a))! M(f(a)) (2) M(g(x))! A(g(x)) (6)

A(a)! M(b) (3) M(a)! A(a) (7)

M(f(x))! M(x) (4) M(b)! A(b) (8)

F(ative(x))! F(x) (9) F(mark(x))! F(x) (11)

G(ative(x))! G(x) (10) G(mark(x))! G(x) (12)

37



Dependeny pairs (3), (6), (7), and (8) are not on yles of the innermost de-

pendeny graph (this an easily be deteted using re�nement (B)). Aording

to re�nement (B), both (1) and (2) an be ombined with dependeny pairs (4)

and (5) and hene are replaed by

A(f(g(b)))! M(g(a)) (13) A(f(a))! M(a) (15)

A(f(g(b)))! A(f(mark(g(a)))) (14) A(f(a))! A(f(mark(a))) (16)

Pairs (13) and (15) are not on yles. Sine the right-hand sides of (14) and (16)

are ground, one an innermost rewrite them aording to re�nement (E). This

yields

A(f(g(b)))! A(f(g(a))) A(f(a))! A(f(b))

With re�nement (B) we immediately detet that these pairs are not on yles and

hene, they an be deleted. But then (5) is not on a yle either, beause there is

no longer any dependeny pair whose left-hand side has the root A. So the only

dependeny pairs on yles are (4) and (9){(12). Sine these pairs have no usable

rules, the resulting onstraints are already satis�ed by the embedding order.

Hene, R

3

�

is innermost terminating (and using our re�nements, this innermost

termination proof an easily be performed automatially).

A.2 Example 1

We regard the CSRS (R; �) with R onsisting of the rules

0 6 y ! true p(0)! 0

s(x) 6 0! false p(s(x))! x

s(x) 6 s(y)! x 6 y if(true; x; y)! x

x� y ! if(x 6 y; 0; s(p(x)� y)) if(false; x; y)! y

with �(if) = f1g and �(f) = f1; : : : ; arity(f)g for all other funtion symbols f .

This system is a natural formulation of the subtration algorithm using a

onditional if. In funtional languages like LISP whih have no pattern math-

ing, p and if would be built-in and one would have to formulate algorithms using

if and seletors like p. A orresponding algorithm was already treated in [1, Ex-

ample 41℄, but there the if-symbol had to be enoded in a ounterintuitive way

to prevent the evaluation of the third argument of if. In ontrast, the formula-

tion above is natural, but it is only possible in ontext-sensitive rewriting. Our

transformation produes the following TRS R

3

�

:

ative(p(0))! mark(0) mark(0)! ative(0)

ative(p(s(x)))! mark(x) mark(true)! ative(true)

ative(0 6 y)! mark(true) mark(false)! ative(false)
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ative(s(x) 6 0)! mark(false) mark(s(x))! ative(s(mark(x)))

ative(s(x) 6 s(y))! mark(x 6 y) mark(p(x))! ative(p(mark(x)))

ative(if(true; x; y))! mark(x) mark(x 6 y)! ative(mark(x) 6 mark(y))

ative(if(false; x; y))! mark(y) mark(x� y)! ative(mark(x)�mark(y))

ative(x� y)! mark(if(x 6 y; 0; s(p(x)� y)))

mark(if(x; y; z))! ative(if(mark(x); y; z))

s(f(x))! s(x) x 6 f(y)! x 6 y if(f(x); y; z)! if(x; y; z)

p(f(x))! p(x) f(x)� y ! x� y if(x; f(y); z)! if(x; y; z)

f(x) 6 y ! x 6 y x� f(y)! x� y if(x; y; f(z))! if(x; y; z)

for f 2 fmark; ativeg. We show how innermost termination of this TRS is proved

with dependeny pairs. Sine R

3

�

is a non-overlapping TRS, innermost termina-

tion of this TRS oinides with its termination. Nevertheless, proving innermost

termination is onsiderably easier than proving termination diretly. We again

omit dependeny pairs of the form M(�) ! F (�) and A(�) ! F (�) where f 2 F

sine these pairs are obviously not on yles of the (estimated) innermost depen-

deny graph.

A(p(0))! M(0) (17) M(0)! A(0) (24)

A(p(s(x)))! M(x) (18) M(true)! A(true) (25)

A(0 6 y)! M(true) (19) M(false)! A(false) (26)

A(s(x) 6 0)! M(false) (20) M(s(x))! A(s(mark(x))) (27)

A(s(x) 6 s(y))! M(x 6 y) (21) M(p(x))! A(p(mark(x))) (28)

A(if(true; x; y))! M(x) (22) M(x 6 y)! A(mark(x) 6 mark(y)) (29)

A(if(false; x; y))! M(y) (23) M(x� y)! A(mark(x)�mark(y)) (30)

A(x� y)! M(if(x 6 y; 0; s(p(x)� y))) (31)

M(if(x; y; z))! A(if(mark(x); y; z)) (32)

M(s(x))! M(x) (33) M(x� y)! M(x) (37)

M(p(x))! M(x) (34) M(x� y)! M(y) (38)

M(x 6 y)! M(x) (35) M(if(x; y; z))! M(x) (39)

M(x 6 y)! M(y) (36)

plus dependeny pairs like S(f(x)) ! S(x), et. These latter dependeny pairs

are only on yles with themselves and they have no usable rules. Hene the on-

straints for these yles of dependeny pairs are easily solved by the embedding

order.

Dependeny pairs (17), (19), (20), (24), (25), (26), and (27) are not on any

yle (this an easily be seen using re�nement (B)) and hene we will not onsider
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them further. By ombining (31) with (32) and (39) aording to re�nement (B),

we an replae (31) by

A(x� y)! A(if(mark(x 6 y); 0; s(p(x)� y))) (40)

A(x� y)! M(x 6 y) (41)

Narrowing (40) one step (where we do not have to narrow on p(x), p(x)� y, or

x 6 y aording to re�nement (A)) yields

A(x� y)! A(if(x 6 y; 0; s(p(x)� y))) (42)

A(x� y)! A(if(ative(mark(x) 6 mark(y)); 0; s(p(x)� y))) (43)

Moreover, due to re�nement (C), in (43) we an replae mark(x) and mark(y) by

x and y, respetively:

A(x� y)! A(if(ative(x 6 y); 0; s(p(x)� y))) (44)

Now we perform narrowing on (44) (observing re�nement (A)) and replae it by

the pairs (42) and

A(0� y)! A(if(true; 0; s(p(0)� y))) (45)

A(s(x)� 0)! A(if(false; 0; s(p(s(x))� 0))) (46)

A(s(x)� s(y))! A(if(mark(x 6 y); 0; s(p(s(x))� s(y)))) (47)

Dependeny pairs (42) and (45) are not on a yle. This is deteted by re�nement

(B), sine (42) annot be ombined with any pair and (45) an be ombined with

(22), but the resulting pair annot be ombined any further. Pair (46) is ombined

with (23) whih yields

A(s(x)� 0)! M(s(p(s(x))� 0)) (48)

Pair (47) an be ombined with (22) and (23). In order to perform the uni�ation

required for the ombination, we �rst have to replae the subterm mark(x 6 y)

by a new variable. This yields

A(s(x)� s(y))! M(0) (49)

A(s(x)� s(y))! M(s(p(s(x))� s(y))) (50)

Dependeny pair (49) is not on a yle. Both pairs (48) and (50) an be ombined

with (33) whih yields

A(s(x)� 0)! M(p(s(x))� 0) A(s(x)� s(y))! M(p(s(x))� s(y))

Combining these pairs with (30), (37), and (38) yields

A(s(x)� 0)! A(mark(p(s(x)))�mark(0)) (51)

A(s(x)� s(y))! A(mark(p(s(x)))�mark(s(y))) (52)
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A(s(x)� 0)! M(p(s(x))) (53) A(s(x)� s(y))! M(p(s(x))) (55)

A(s(x)� 0)! M(0) (54) A(s(x)� s(y))! M(s(y)) (56)

Dependeny pair (54) is not on a yle. For dependeny pair (51) we perform

narrowing repeatedly until no further narrowing steps are possible. However, in

this proess we do not regard narrowing steps whih would instantiate variables

with terms ontaining ative ormark (due to re�nement (A)). Moreover, whenever

we enounter a subterm of the form mark(x), we replae it by x (due to re�nement

(C)) before ontinuing the narrowing proess. We proeed in an analogous way

for dependeny pair (52). Thus, these two pairs are transformed into

A(s(x)� 0)! A(x� 0) (57) A(s(x)� s(y))! A(x� s(y)) (59)

A(s(x)� 0)! A(p(s(x))� 0) (58) A(s(x)� s(y))! A(p(s(x))� s(y)) (60)

Combining (58) and (60) with (41) yields

A(s(x)� 0)! M(p(s(x)) 6 0) (61) A(s(x)� s(y))! M(p(s(x)) 6 s(y)) (62)

Pairs (61) and (62) are now ombined with (29), (35), and (36), whih yields

A(s(x)� 0)! A(mark(p(s(x))) 6 mark(0)) (63)

A(s(x)� 0)! M(p(s(x))) (53)

A(s(x)� 0)! M(0) (54)

A(s(x)� s(y))! A(mark(p(s(x))) 6 mark(s(y))) (64)

A(s(x)� s(y))! M(p(s(x))) (55)

A(s(x)� s(y))! M(s(y)) (56)

Again, pair (54) is not on a yle. For (63) and (64) we perform narrowing re-

peatedly until no further narrowing steps are possible. However, in this proess

we do not regard narrowing steps whih would instantiate variables with terms

ontaining ative or mark (due to re�nement (A)). Moreover, whenever we en-

ounter a subterm of the form mark(x), we replae it by x (due to re�nement

(C)) before ontinuing the narrowing proess. This transforms these two pairs

into

A(s(x)� 0)! A(p(s(x)) 6 0) (65) A(s(x)� s(y))! A(p(s(x)) 6 s(y)) (67)

A(s(x)� 0)! A(x 6 0) (66) A(s(x)� s(y))! A(x 6 s(y)) (68)

Now (65), (66), and (67) are not on a yle. To summarize, we are left with the

following pairs:

A(p(s(x)))! M(x) (18) A(s(x)� 0)! A(x� 0) (57)

A(s(x) 6 s(y))! M(x 6 y) (21) A(s(x)� s(y))! A(x� s(y)) (59)

A(if(true; x; y))! M(x) (22) A(s(x)� 0)! M(p(s(x))) (53)

A(if(false; x; y))! M(y) (23) A(x� y)! M(x 6 y) (41)

A(s(x)� s(y))! M(x 6 s(y)) (68) M(x� y)! M(x) (37)

A(s(x)� s(y))! M(p(s(x))) (55) M(x� y)! M(y) (38)

A(s(x)� s(y))! M(s(y)) (56) M(if(x; y; z))! M(x) (39)
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M(p(x))! A(p(mark(x))) (28) M(s(x))! M(x) (33)

M(x 6 y)! A(mark(x) 6 mark(y)) (29) M(p(x))! M(x) (34)

M(x� y)! A(mark(x)�mark(y)) (30) M(x 6 y)! M(x) (35)

M(if(x; y; z))! A(if(mark(x); y; z)) (32) M(x 6 y)! M(y) (36)

To solve the resulting onstraints we use an argument �ltering whih replaes

mark and ative by their arguments and RPO with a preedene where \�" is

greater than both p and \6" and where A and M are equal in the preedene.

Then the dependeny pairs (28){(32) are weakly dereasing and all other pairs

are stritly dereasing.

Note thatR is an orthogonal onstrutor system where all argument positions

of onstrutors are ative. Moreover, in the above dependeny pairs ofR

3

�

, de�ned

symbols of R our only at position 1 in right-hand sides. Hene, re�nement (D)

is appliable whih implies that the ative-rules are not usable. As a onsequene,

by the above argument �ltering, the left and right-hand sides of all usable rules

are made equal. In other words, the onstraints resulting from the usable rules

are ful�lled. Hene, the transformed system is innermost terminating and thus,

the original CSRS is also innermost terminating. Sine the CSRS is orthogonal,

this also implies its termination.

This example demonstrates that our results are also helpful for termination

proofs of suh CSRSs, beause they imply that it is suÆient to prove innermost

termination of the transformed system. In general, proving innermost termina-

tion is signi�antly easier than proving termination [1℄. Indeed, in our proof we

made use of several re�nements of the dependeny pair approah whih an only

be used for innermost termination proofs:

{ Re�nements (A){(E) only work for innermost termination.

{ The tehnique of narrowing dependeny pairs (for non-right-linear systems

like R

3

�

) an only be used for innermost termination.

{ The tehnique of usable rules only works for innermost termination (this is

also important when handling the S(f(x)) ! S(x) dependeny pairs whih

have no usable rules).

A.3 Re�nements to the Dependeny Pair Approah

In this setion we omment on the orretness of the re�nements (A){(E) that

were used in the preeding examples.

A.3.1 Re�nement (A)

In innermost hains one only regards instantiations of dependeny pairs where

the left-hand side is a normal form. Sine there is a symbol f 2 F above every

variable in the left-hand side of every A or M-dependeny pair, it follows that the

variables in these pairs annot be be instantiated by terms ontaining ative or
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mark. Hene, in A or M-dependeny pairs, no narrowing is needed whih would

instantiate variables with terms ontaining ative or mark.

A.3.2 Re�nement (B)

Re�nement (B) is a speial ase of the following re�nement, whih an be used

for dependeny pairs in general.

Theorem 35 (ombining dependeny pairs). Let R be a TRS, let P be a

set of pairs of terms suh that Var(v) � Var(u) for all u ! v 2 P, and let

s ! t 2 P. Let t = t

0

� with Dom(�) = Var(t

0

) n Var(t) suh that for all � with

s� a normal form and Dom(�) \ Dom(�) = ?, any normal form of t� has the

form t

0

(� [ �

0

) for some �

0

with Dom(�

0

) � Dom(�). Let

P

0

= P n fs! tg [ fs�! v� j u! v 2 P and � = mgu(t

0

; u)g

If there exists no in�nite innermost R-hain of pairs from P

0

, then there exists

no in�nite innermost R-hain of pairs from P.

Proof. If

� � � ; s! t; u! v; � � �

is an innermost hain of pairs from P , then there exists a substitution � suh

that s� and u� are normal forms and suh that t�

i

!

�

R

u�. Sine �

0

only operates

on the new variables in t

0

we have u� = t

0

(� [ �

0

) = u(� [ �

0

). Hene, � [ �

0

is a uni�er of t

0

and u. Let � be the mgu of these two terms. So there exists a

substitution � suh that �[ �

0

= ��. Hene, the two dependeny pairs s! t and

u ! v in the innermost hain an be replaed by the new pair s� ! v� where

instead of the instantiation � one now has to use the instantiation �. ut

Reall that the variables in the A and M-dependeny pairs annot be instan-

tiated by terms ontaining ative or mark. Thus, the symbols from F ourring in

right-hand sides of dependeny pairs an be treated like onstrutors when using

the tehnique of ombining dependeny pairs. In other words, all dependeny

pairs s ! t with root(s) 2 fA;Mg and no ative and mark-symbols ourring in

t have the property required in Theorem 35, i.e., for all � where s� is a normal

form, t� is a normal form, too.

Due to the form of R

3

�

, for arbitrary terms t the following holds. Let t =

C[t

1

; : : : ; t

k

℄ where the ontext C does not ontain mark and ative-symbols, and

where the root symbol of the terms t

i

is mark or ative. For substitutions �

whih do not introdue mark or ative-symbols, t� has the form C�[t

1

�; : : : ; t

k

�℄

and again, C� does not ontain mark and ative-symbols. Note that t� an only

rewrite in R

3

�

to terms of the form C�[u

1

; : : : ; u

k

℄. Hene, if we replae all mark

and ative-subterms in t by pairwise di�erent fresh variables then the resulting

term ap

0

(t) satis�es the requirements on the term t

0

in Theorem 35.
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A.3.3 Re�nement (C)

First note that if R

3

�

is not innermost terminating, then there also exists an

in�nite innermost R

3

�

-redution with terms from T where T is de�ned as in

De�nition 19. (To see this, note that if R

3

�

is not innermost terminating then

(R; �) is not innermost terminating as a onsequene of the ompleteness of

�

3

. From the proof of Theorem 18 we then infer the existene of an in�nite

innermost redution starting from a term of the form mark(s)#

M

. Obviously,

mark(s)#

M

2 T .) Further note that aording to the proof of Lemma 20, the set

T is losed under innermost R

3

�

-redution.

Now we show that without loss of generality we an assume that in the left-

hand side A(C[x℄) of every A-dependeny pair with x on an ative position of

C[x℄, x an only be instantiated with terms s 2 T (F ;V) suh that for all ative

positions � in s, sj

�

is not an R-redex. Every in�nite innermost R

3

�

-redution

orresponds to an in�nite innermost hain of dependeny pairs. As explained

above, we an restrit ourselves to redutions between terms of T . Then an

instantiation of a dependeny pair A(C[x℄)! : : : with a substitution � an only

our in this innermost hain if there is a term t = t[ative(C�[x�℄)℄

�

0

2 T in the

in�nite innermost R

3

�

-redution. Aording to the de�nition of T , the position

�

0

of the displayed ourrene of ative in t is ative. Beause the position of x is

ative in C[x℄, it is also ative in t. Let s = x�. Due to the form of the dependeny

pairs, C[x℄ ontains at least one symbol of F above x. Moreover, in innermost

hains, the variables of A or M-dependeny pairs annot be instantiated by terms

ontaining ative or mark, f. the argumentation for re�nements (A) and (B).

From these two observations we infer that the ative positions � of s are not

ativated. Hene, by the de�nition of T , sj

�

is not an R-redex. Thus, we an

indeed assume that in dependeny pairs A(C[x℄) ! : : : with x on an ative

position of C[x℄, x is only instantiated with terms s 2 T (F ;V) withoutR-redexes

on ative positions.

Note that for suh terms s, the normal form of mark(s) (reahable by inner-

most R

3

�

-redution) is mark(s) or ative(s). To see this, we onsider two ases.

If s 2 V then mark(s) is a normal form. Otherwise, by Lemma 17 the normal

form of mark(s) is ative(s) sine any innermost R

3

�

-redution would �rst redue

mark(s) to mark(s)#

M

. Hene, any instantiation of a dependeny pair

A(C[x℄)! C

0

[f(: : : ;mark(x); : : :)℄

will only lead to a right-hand side that is redued to C

0

[f(: : : ; ative(s); : : : )℄ or

C

0

[f(: : : ;mark(s); : : : )℄ and then to C

0

[f(: : : ; s; : : : )℄. Hene, one an immediately

replae the right-hand side by C

0

[f(: : : ; x; : : : )℄.

A.3.4 Re�nement (D)

We have the following theorem.
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Theorem 36. Let (R; �) be an orthogonal CSRS whih is a onstrutor system

with �() = f1; : : : ; arity()g for all onstrutors . If (R; �) is not innermost

terminating then there exists a term without de�ned symbols below the root whih

starts an in�nite innermost redution.

Proof. For an innermost terminating term u we denote by #(u) the result of

replaing in the unique �-normal form of u all subterms with de�ned root symbol

by a (distinguished) variable. We all a term that is obtained from a term s by

replaing some ourrenes of some innermost terminating subterms u by #(u)

a normal form variant of s.

Let s

i

!

�

t and let s

0

be a normal form variant of s. We laim that there

exists a normal form variant t

0

of t suh that s

0

i

!

=

�

t

0

. To prove the laim we

distinguish two ases.

1. We �rst regard the ase where in the step from s to t a rule l ! r is applied

to a redex not inside one of the replaed subterms. Thus we have s = C[l�℄

�

and t = C[r�℄

�

suh that no subterm on or above position � is replaed

in s

0

. Sine onstrutors have only ative argument positions, replaing a

term u by #(u) is the same as replaing all subterms u

0

of u with de�ned

root symbol by #(u

0

). Hene, without loss of generality we an assume that

below � one only replaes subterms with de�ned root symbol. Sine R is a

onstrutor system, all subterms with de�ned root symbol are introdued by

the substitution �. SineR is orthogonal, the replaement of suh subterms u

0

by #(u

0

) orresponds to the use of a modi�ed substitution �

0

. So s

0

= C

0

[l�

0

℄

�

for a suitable substitution �

0

. The resulting term t

0

= C

0

[r�

0

℄

�

is easily seen

to be a normal form variant of t and the step from s

0

to t

0

is innermost.

2. If the step from s to t takes plae inside a replaed subterm u of s then we

have s = C[u℄ and t = C[v℄ with u

i

!

�

v. In the normal form variant s

0

, the

term u has been replaed by #(u). We have #(u) = #(v) sine u and v have

the same �-normal form. Hene, s

0

= C

0

[#(u)℄ = C

0

[#(v)℄ is a normal form

variant of t.

Let s be a minimal term with an in�nite innermost redution, i.e., all proper

subterms are innermost terminating. From the preeding disussion we infer that

the normal form variant s

0

of s obtained by replaing all proper subterms u of s by

#(u) again has an in�nite innermost redution; note that the seond alternative

above happens only �nitely many times as the replaed subterms are innermost

terminating. Sine s

0

has no de�ned symbols below the root, this proves the

theorem. ut

One should remark that the above theorem does not hold if onstrutors have

inative argument positions. As a ounterexample onsider the CSRS onsisting

of the two rules

f((x))! f(x) b! (b)
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with �(f) = f1g and �() = ?. The term f((b)) starts an in�nite innermost

ontext-sensitive redution, but all terms without de�ned symbols below the

root are innermost terminating.

Furthermore, the orthogonality requirement annot be weakened to non-

overlappingness, as an be seen from the CSRS

f(x)! g(x; i(h())) g(x; x)! f(h(b)) h(b)! i(h())

with the argument positions of all funtion symbols ative. The term f(h(b))

starts an in�nite innermost redution, but all terms without de�ned symbols

below the root are innermost terminating.

Aording to Theorem 36, if (R; �) is not innermost terminating, then there

exists a term f(t

1

; : : : ; t

n

) with an in�nite innermost �-redution suh that the

terms t

1

; : : : ; t

n

ontain no R-de�ned funtion symbols. Then mark(f(t

1

; : : : ; t

n

))

has an in�nite innermostR

3

�

-redution. The reason is that sine t

1

; : : : ; t

n

ontain

no R-redexes, any innermost R

3

�

-redution would �rst redue mark(f(t

1

; : : : ; t

n

))

to mark(f(t

1

; : : : ; t

n

))#

M

. Then the laim follows from the proof of Theorem 18.

The term mark(f(t

1

; : : : ; t

n

)) is obviously a minimal term with an in�nite

innermost R

3

�

-redution, i.e., all its subterms are innermost terminating with

respet to R

3

�

. From the soundness proof of the dependeny pairs tehnique [1,

Theorems 31 and 6℄ one an see that every minimal non-innermost terminating

term f

1

(u

1

) gives rise to an in�nite innermost hain of dependeny pairs

F

1

(v

1

)! F

2

(u

2

); F

2

(v

2

)! F

3

(u

3

); � � �

suh that every f

i

(v

i

) ! r

i

is a rewrite rule, f

i+1

(u

i+1

) is a subterm of r

i

,

there are substitutions �

i

suh that F

i+1

(u

i+1

)�

i

i

!

�

3

F

i+1

(v

i+1

)�

i+1

, and every

F

i+1

(v

i+1

)�

i+1

is a normal form. Moreover, we have F

1

(u

1

)

i

!

�

3

F

1

(v

1

)�

1

. Hene,

in our setting there is an in�nite innermost hain starting with a dependeny

pair whose left-hand side is M(f(: : :)) and �

1

instantiates the variables of this

dependeny pair by terms without R-de�ned symbols.

By assumption no right-hand side F

i

(u

i

) of a dependeny pair ontains an

R-de�ned symbol stritly below position 1. Hene, if R-de�ned symbols only

our at position 1 in an instantiated left-hand side F

i

(v

i

)�

i

of a dependeny

pair, then this also holds for the instantiated right-hand side F

i

(u

i+1

)�

i

of the

pair. Hene, in the instantiated dependeny pairs, mark is only applied to terms

whih ontain no R-de�ned funtion symbols. The terms resulting from these

redutions again ontain no R-de�ned symbols. It follows that the only usable

rules are rules of the form mark(f(: : :)) ! ative(f(: : :)) for onstrutors f and

rules f(: : : ; g(x); : : :)! f(: : : ; x; : : :) for f 2 F and g 2 fmark; ativeg.

A.3.5 Re�nement (E)

The following theorem holds for arbitrary TRSs.
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Theorem 37. Let R be a TRS and let P be a set of pairs of terms. Let s! t 2

P, let tj

�

be a reduible ground term, and let u

1

; : : : ; u

n

be the terms reahable

from tj

�

in one innermost rewrite step. Let P

0

result from P by replaing s! t

with s ! t[u

1

℄

�

, . . . , s ! t[u

n

℄

�

. If there exists no in�nite innermost hain of

pairs from P

0

, then there exists no in�nite innermost hain from P either.

Proof. Let

� � � ; s! t; u! v; � � �

be an innermost hain of pairs from P . Then there must be a substitution �

with t�

i

!

�

R

u� where u� is a normal form. Sine t�j

�

= tj

�

is reduible, there is

at least one rewrite step in this redution. Sine the redution is innermost, tj

�

must be normalized before redution steps are applied to positions above � in t�.

Obviously, it does not matter in whih order redution steps are performed on

pairwise disjoint positions. Hene, we an assume that in the redution t�

i

!

�

R

u�

one �rst normalizes tj

�

. So there exists a term u

i

suh that t�

i

!

R

t[u

i

℄

�

�

i

!

�

R

u�.

Hene, we an replae the dependeny pair s ! t by s ! t[u

i

℄

�

in the above

innermost hain. ut
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