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Abstract. Most systems for the automation of termination proofs using

polynomial orderings are only semi-automatic, i.e. the \right" polynomial

ordering has to be given by the user. We show that a variation of Lank-

ford's partial derivative technique leads to an easier and slightly more

powerful method than most other semi-automatic approaches. Based on

this technique we develop a method for the automated synthesis of a

suited polynomial ordering.

1 Introduction

A term rewriting system (trs) R is terminating for a set of terms T if there

exists no in�nite derivation of terms in T . While in general this problem is un-

decidable [HL78], several methods for proving termination have been developed,

cf. [Der87]. We present a method for automated termination proofs using poly-

nomial orderings, which is based on a variant of Lankford's partial derivative

technique (section 2). Our method can be used both in a semi-automatic and a

fully automated way (section 3).

2 A Termination Criterion with Variable Coe�cients

The use of polynomial orderings for termination proofs has been suggested by

D. S. Lankford [Lan79] and has been extended to real polynomials by N. Dersho-

witz [Der82]. A polynomial interpretation � associates a real multivariate polyno-

mial f

�

(x

1

; : : : ; x

n

) with each n-ary function symbol f . The ordering implicitly

de�ned by a polynomial interpretation � is called the corresponding polynomial

ordering �

�

(i.e. t �

�

s i� � (t) > � (s)). To use �

�

for termination proofs,

�

�

must be the strict part of a quasi-simpli�cation ordering (i.e. �

�

must be

monotonic and must satisfy the subterm property).

In order to compare non-ground terms, � is extended to interpret variables

as variables over the reals. To prove the termination of a trs R (with �nitely

many rules), R has to be compatible with a polynomial ordering; i.e. for each

rule l ! r in R, � (l) > � (r) must hold for all instantiations of the variables with

numbers n that are greater or equal than the minimal value of a ground term

(i.e. numbers n with n � minf� (t) j t ground termg) [DJ90]
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We always assume that there exist ground terms in T .



Consider the trs R for associativity and endomorphism from [Bel84] and

[BL87]. Here T consists of all terms constructed from the constant a, the unary

function symbol map and the binary function symbol �.

(x � y) � z ! x � (y � z); (1)

map(x) �map(y) ! map(x � y); (2)

map(x) � (map(y) � z)! map(x � y) � z: (3)

To generate a polynomial interpretation we �rst have to decide on the maxi-

mum degree of the polynomials. We follow a heuristic from [Ste91] and associate

a simple-mixed

2

polynomial with each function symbol. So in our example the

constant a is associated with a polynomial a

0

, the unary function symbol map

is associated with a polynomial map

�

(x) = m

0

+ m

1

x (or m

0

+ m

2

x

2

) and �

is associated with �

�

(x; y) = c

0

+ c

1

x + c

2

y + c

3

xy. Here we use a polynomial

interpretation � which maps function symbols to polynomials with variable co-

e�cients a

0

;m

0

;m

1

; c

0

; c

1

; c

2

; c

3

.

Now we have to �nd an instantiation of the variable coe�cients a

0

; : : : ; c

3

such that � (l) � � (r) > 0 holds for each rule l ! r in R. For the �rst rule (1)

we obtain the following inequality.

c

0

c

1

� c

0

c

2

+ (c

2

1

� c

1

� c

0

c

3

)x + (c

2

� c

2

2

+ c

0

c

3

) z + (c

1

c

3

� c

2

c

3

)xz > 0: (4)

The problem is that we cannot directly check whether an instantiation of the

variable coe�cients c

0

; : : : ; c

3

makes this inequality valid for all x; z � minf� (t)j

t ground termg. Note that in general this question is undecidable [Lan79]. There-

fore we will transform (4) into new inequalities which do not contain the rule

variables x and z any more. Then for each instantiation of the variable coef-

�cients it is trivial to check whether they satisfy these new inequalities. The

invariant of this transformation is that every instantiation of c

0

; : : : ; c

3

satis-

fying the new inequalities also satis�es the original inequality for all x; z �

minf� (t) j t ground termg.

Let � be a new variable and let us assume for the moment that � is instan-

tiated with a value less or equal than minf� (t) j t ground termg. Then instead

of demanding that inequality (4) should hold for all x; z � �, it is su�cient if

this inequality holds for x = � and if the polynomial on the right hand side of

inequality (4) is not decreasing when x is increasing. In other words, the partial

derivative of this polynomial with respect to x should be non-negative. Therefore

we can replace (4) by the inequalities

c

0

c

1

� c

0

c

2

+ (: : :)�+ (: : :)z + (: : :)�z > 0 (resulting from x = �) and (5)

c

2

1

� c

1

� c

0

c

3

+ (c

1

c

3

� c

2

c

3

)z � 0 (resulting from partial derivation): (6)

By further application of this technique (i.e. demanding that (5) and (6) hold for

z = � and that their partial derivatives with respect to z are non-negative) we
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A non-unary polynomial p is simple-mixed i� all its exponents are not greater than

1. A unary polynomial p is simple-mixed if it has the form �

0

+ �

1

x or �

0

+ �

2

x

2

.
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obtain inequalities without the variables x and z. We proceed analogously for the

other rules (2), (3) of R and obtain inequalities which only contain the variable

coe�cients a

0

; : : : ; c

3

and �, but not the rule variables x; y; z. If an instantiation

satis�es these inequalities, then the trs R is compatible with the corresponding

polynomial ordering.

For the elimination of the rule variables x; y; z we have repeatedly used the

following two di�erentiation rules.

p(: : :x : : :) > 0

p(: : :� : : :) > 0;

@p(:::x:::)

@x

� 0

(Di�1)

p(: : :x : : :) � 0

p(: : :� : : :) � 0;

@p(:::x:::)

@x

� 0

(Di�2)

The di�erentiation rules (Di�1) and (Di�2) are based on the partial derivative

method of Lankford [Lan76]. But Lankford's method can only prove that a

polynomial is eventually positive (i.e. p(x

1

; : : : ; x

n

) > 0 holds for large enough

x

i

). Note that it is not su�cient for the termination of R if there exists a poly-

nomial interpretation � such that � (l)� � (r) is eventually positive for each rule

l! r in R. For instance, the trs with the rule x! a is not terminating although

� (x)� � (a) is eventually positive for every polynomial interpretation � .

For R's termination proof we furthermore have to ensure the subterm prop-

erty and monotonicity of the corresponding quasi-ordering. To guarantee the

subterm property we demand that map

�

(x) � x � 0 (and the corresponding

inequalities for �

�

) hold and eliminate the variables x; y by application of the

di�erentiation rule (Di�2).

For the monotonicity, we have to ensure that if x is increasing, �

�

(x; y) is not

decreasing. So we demand that the partial derivative of �

�

(x; y) with respect to

x is non-negative. In our example we have

@ �

�

(x;y)

@ x

= c

1

+ c

3

y and therefore we

demand c

1

+ c

3

y � 0. Now we can use (Di�2) again to eliminate the remaining

rule variable y. We proceed analogously for map

�

and for the the monotonicity

of �

�

(x; y) in its second argument.

Still we have to ensure that the variable � is really instantiated with a value

less or equal than the minimal value of a ground term. Because of the subterm

property, the requirement � � minf� (t) j t ground termg is equivalent to the

condition � � c

�

for all constants c of the signature. Therefore in our example

the instantiation of the variables also has to satisfy the inequality a

0

� � � 0.

The following theorem summarizes our termination criterion using polynomial

interpretations with (possibly variable) coe�cients.

Theorem1 (Termination Criterion with Real Variable Coe�cients).

Let R be a trs, let � be a polynomial interpretation with (possibly variable) coef-

�cients. Repeated application of (Di�1) and (Di�2) to

� (l) � � (r) > 0 for all rules l ! r in R,

f

�

(: : : x : : :)� x � 0 for all function symbols f ,

@ f

�

(:::x:::)

@ x

� 0 for all function symbols f ,

c

�

� � � 0 for all constants c
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yields a unique set of inequalities containing no rule variables any more. If there

exists an instantiation of the variable coe�cients and the variable � with real

numbers which satis�es the resulting inequalities, then R is terminating.

In our example the resulting inequalities are satis�ed by the instantiation

� = 2, a

0

= 2, m

0

= 0, m

1

= 2, c

0

= 0, c

1

= 1, c

2

= 0, c

3

= 1. (This

corresponds to the polynomial interpretation given by a

�

= 2, map

�

(x) = 2x

and �

�

(x; y) = xy + x.) Therefore by theorem 1 the termination of R is proved.

Most systems for \automated" termination proofs using polynomial order-

ings are semi-automatic, i.e. the user has to provide a polynomial interpretation

and the system checks whether the trs is compatible with the corresponding

polynomial ordering. Of course the termination criterion of theorem 1 can also

be applied in a semi-automatic way. Then we use associations to polynomials

whose coe�cients are numbers (instead of variables) and we replace the variable

� by a number �. A comparison with the semi-automatic methods of Ben Cherifa

and Lescanne [BL87] and Steinbach [Ste92] leads to the following results

3

.

{ If [Ste92] and [BL87] can prove a polynomial p positive, then our method

can do so as well.

{ If our method can prove p positive for all x

1

; : : : ; x

n

� �, then there exists

a �

0

� � such that the methods of [Ste92] and [BL87] can prove p positive

for all x

1

; : : : ; x

n

� �

0

. Choosing �

0

= � is not always possible.

{ While the worst case complexity of the systems in [Ste92] and [BL87] is

exponential in the number of monomials in p, our method is exponential in

the number of its variables.

3 A Fully Automated Termination Proof Procedure

In theorem 1 we introduced a method to automatically generate a set of in-

equalities only containing variable coe�cients and the variable �. To prove the

termination of a trs R mechanically we now have to synthesize an instantiation

of these variables satisfying the inequalities.

When examining term rewriting systems occurring in the literature we no-

ticed that most termination proofs with polynomial interpretations only use

polynomials whose coe�cients are 0, 1 or 2. Checking whether a certain instan-

tiation of variables with numbers satis�es the inequalities resulting from theorem

1 can be done very e�ciently. Therefore we suggest to apply a \generate and

test" approach �rst which generates all instantiations of the variables with num-

bers from f0; 1; 2g until one of these instantiations satis�es the inequalities. This

results in a fully automated termination proof procedure which succeeds for

most of those term rewriting systems which are compatible with a polynomial

ordering.

3

In this comparison we do not consider the additional use of the arithmetic-mean-

geometric-mean inequality in [Ste92] and extend the method of [BL87] by backtrack-

ing and arbitrary minimal value �.
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Nevertheless there do exist term rewriting systems which require a polyno-

mial ordering with coe�cients other than 0, 1 or 2. It is decidable whether there

exists an instantiation with real numbers satisfying a set of inequalities [Tar51].

But even the most e�cient known decision method (the cylindrical algebraic de-

composition algorithm by G. E. Collins [Col75]) is very time-consuming. For that

reason these methods have been rarely used for automated termination proofs.

Therefore we suggest an incomplete, more e�cient modi�cation of Collins'

algorithm. As we know of no trs whose termination proof requires a polyno-

mial interpretation with non-rational real coe�cients, we have restricted the

algorithm to rational instead of real numbers which eases the implementation

considerably. Moreover, we have introduced execution time limits for each step

of Collins' algorithm. If the time limit for the actual step is exceeded, then the

algorithm can only use the results of the actual step computed so far and has

to carry on with the next step. Now Collins' algorithm is no longer used as a

decision method, but only as a heuristic.

To sum up, we propose the following termination proof procedure:

1. Construct a set of inequalities as described in theorem 1 (using a polynomial

interpretation with possibly variable coe�cients).

2. Check whether these inequalities are satis�ed by an instantiation with num-

bers from f0; 1; 2g.

3. If not, try to prove their satis�ability by a modi�ed version of Collins' algo-

rithm.

Instead of the di�erentiation rules we could also use a technique from [Ste92]

for the elimination of the rule variables x; y; z. But while Steinbach's technique

introduces several new variables, the advantage of (Di�1) and (Di�2) is that

these rules introduce only one new variable �. For the generation of a polynomial

ordering compatible with R we therefore only have to �nd an instantiation of

the variable coe�cients and �.

An alternative approach for the automated generation of the \right" poly-

nomial interpretation has been presented in [Ste91] which can be useful if the

number of variable coe�cients is small. In these cases Steinbach's method may

also be used to search for an instantiation that satis�es the inequalities resulting

from theorem 1.

We have presented an e�cient, powerful and easy to implement algorithm for

termination proofs using polynomial orderings which can be used both in a semi-

automatic and in a fully automated way. Our termination proof procedure has

been implemented

4

in Common Lisp on a Sun SPARC-2. Table 1 illustrates its

performance with some examples. The second row contains the execution time

our algorithm needs to generate a polynomial interpretation which is compatible

with the trs in the �rst row.

4

The implementation and an extended version of this paper are available by

anonymous ftp from kirmes.inferenzsysteme.informatik.th-darmstadt.de un-

der pub/termination.
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Example Time

Nested Function Symbols ([Ste91, Example 8.1]) 0.1 sec.

Endomorphism & Associativity ([Bel84], [BL87]) 0.1 sec.

Running Example 6.1 in [Ste91] (by A. Middeldorp) 0.2 sec.

Binomial Coe�cients ([Ste91, Example 8.8], [Ste92, Example 13]) 1.6 sec.

Distributivity & Associativity ([Der87, p. 78]) 1.9 sec.

Table 1. Performance of our method.
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