
POLO | A System for Termination Proofs using

Polynomial Orderings

�

J�urgen Giesl

FB Informatik, Technische Hochschule Darmstadt,

Alexanderstr. 10, 64283 Darmstadt, Germany

Email: giesl@inferenzsysteme.informatik.th-darmstadt.de

Abstract

POLO is a system for both semi-automatic and fully automated ter-

mination proofs of term rewriting systems using polynomial orderings.

In this paper we describe the system's user interface and illustrate its

performance with some examples.

1 Introduction

In [Gie95a] and [Gie95b] we presented a method for automated termination

proofs of term rewriting systems using polynomial orderings. This technique

has been implemented in the POLO system. It runs under Common Lisp and

is available by anonymous ftp from kirmes.inferenzsysteme.informatik.

th-darmstadt.de under pub/termination.

To run the system please start your Lisp, compile the �le polo.lisp, load

the compiled version and change the package to polo. More precisely, you have

to enter the following commands. User inputs are printed in bold face.

> (compile-�le \polo.lisp")

> (load \polo.sbin")

> (in-package 'polo)

The following section explains the user interface of the POLO system. In

section 3 we provide a table of experiments run with the system to illustrate

its performance and we end up with a conclusion in section 4. In the appendix

we present a digest of some term rewriting systems whose termination could be

proved with the POLO system.

�

Technical Report IBN 95/24, Technische Hochschule Darmstadt

1



2 The User Interface

To start the system you have to call the function start.

> (start)

Then the system prints out the following start message.

POLO

A system for termination proofs with POLynomial

Orderings.

Hit H for help.

>>

The >> prompt indicates that you are currently on the top level of the POLO

program. You can now enter commands by typing them in and hitting Return

afterwards.

By entering the command H (for Help) the current menu of possible com-

mands will be printed.

>> H

[L] Load trs

[M] Change method for generating polynomial orderings

[Q] Quit

[H] Help

To quit the program you must hit Q.

In the following we will explain how to load term rewriting systems from �les

(section 2.1), how to prove their termination (section 2.2) and how to inspect

and to change the termination proof method (section 2.3).

2.1 Loading Files

To prove the termination of a term rewriting system (trs) you �rst have to load

the trs from a �le. For that purpose you have to enter the command L.

>> L

Enter a filename:

Accompanying the system there is a directory examples of example �les.

One of the easiest example in these �les is Nested Function Symbols.

2



Enter a filename: Nested Function Symbols

>>

The term rewriting system in the example �le must begin with the rules

of the trs. The left hand side and the right hand side of a rule are separated

by \->", rules must be separated by commas and there has to be a semicolon

after the last rule. Following the semicolon there must be the word functions

followed by a \:" and a list of all function symbols in the trs. The function sym-

bols in the list are separated by commas and after the last function symbol there

must be a dot. Please note that every symbol in the trs which is not declared

as a function symbol will be regarded as a variable. The system will ignore

everything following the dot. For example the �le Nested Function Symbols

has the following contents.

f(f(x)) -> g(g(x)),

g(g(f(x))) -> f(g(g(x)));

functions: f, g.

=====================================================

Nested Function Symbols

(Steinbach 91, Example 8.1)

As x is not declared as a function symbol it will be regarded as a variable.

2.2 Proving Termination

By entering H again you will notice that the menu of possible command has

changed.

>> H

Termination proof with

[1] polynomials of degree 1

[S] simple-mixed polynomials

[V] provided values

[G] given polynomials

3



[L] Load new trs (current one is

Nested Function Symbols)

[M] Change method for generating polynomial orderings

[Q] Quit

[H] Help

>>

Apart from loading term rewriting systems (by entering the command L

again) you can now prove termination of the current trs by entering one of the

four commands 1, S, V or G.

2.2.1 Polynomials of Degree 1

If you enter the command 1 the system will try to prove termination of the

current trs using polynomials of degree 1. First it will print the approach ap-

plied, i.e. the used polynomial interpretation with variable coe�cients. Variable

coe�cients have the names V0, V1 etc. Here, mu stands for �.

Then the system tries to �nd an instantiation of these variable coe�cients

with numbers such that the current trs is compatible with the resulting polyno-

mial ordering. The run time spent for this search is printed out to the user.

If the system has found a solution it will print the resulting polynomial in-

terpretation.

>> 1

Approach:

mu is mapped to the polynomial V0

f(X1) is mapped to the polynomial V1 + V2 X1

g(X1) is mapped to the polynomial V3 + V4 X1

Begin of the Termination Proof

Run time: 0.03 seconds

Termination Proof succeeded!

Solution:

g(X1) is mapped to the polynomial 1 + 2 X1

f(X1) is mapped to the polynomial 2 + 2 X1

mu is mapped to the polynomial 2

>>

4



2.2.2 The Actual Polynomial Ordering

If you hit H again you will notice that the top level menu now contains two

additional commands A and I.

>> H

Termination proof with

[A] actual polynomial ordering

[1] polynomials of degree 1

[S] simple-mixed polynomials

[V] provided values

[G] given polynomials

[I] Inspect current polynomial ordering

[L] Load new trs (current one is

Nested Function Symbols)

[M] Change method for generating polynomial orderings

[Q] Quit

[H] Help

>>

The actual (or current) polynomial ordering is the polynomial ordering used

in the last approach for termination proofs (i.e. it can contain variable coe�-

cients). To have a look at this polynomial ordering please enter the command I.

>> I

Approach:

mu is mapped to the polynomial V0

f(X1) is mapped to the polynomial V1 + V2 X1

g(X1) is mapped to the polynomial V3 + V4 X1

>>

If you enter the command A another termination proof with the same ap-

proach will be tried, i.e. the same polynomial ordering (possibly with variable

coe�cients) will be used. This command is useful if you have changed the

method for generating polynomial orderings and want to re-attempt a proof us-

ing the same polynomial ordering, cf. section 2.3.

5



>> A

Begin of the Termination Proof

Run time: 0.02 seconds

Termination Proof succeeded!

Solution:

g(X1) is mapped to the polynomial 1 + 2 X1

f(X1) is mapped to the polynomial 2 + 2 X1

mu is mapped to the polynomial 2

>>

Note that repeated proof attempts for the same trs using the same polyno-

mial ordering (and the same method for the generation of the solution) may

have di�erent run times. As the system uses time limits and certain steps are

aborted if certain time limits are exceeded, it is possible that repeated proof

attempts lead to di�erent solutions. It is even possible that one proof attempt

fails while the next one succeeds.

2.2.3 Simple-Mixed Polynomials

If you enter the command S the system will try to prove termination of the

current trs using simple-mixed polynomials. An exception is made for unary

function symbols. Here, instead of simple-mixed polynomials the system uses

polynomials of degree 2 (X1^2 stands for x

2

1

). If you also want to use simple-

mixed polynomials for unary function symbols you have to use one of the options

that are described in the next two sections.

>> S

Approach:

mu is mapped to the polynomial V0

f(X1) is mapped to the polynomial V1 + V2 X1 + V3 X1^2

g(X1) is mapped to the polynomial V4 + V5 X1 + V6 X1^2

Begin of the Termination Proof

Run time: 0.87 seconds

Termination Proof succeeded!

6



Solution:

g(X1) is mapped to the polynomial 2 + X1^2

f(X1) is mapped to the polynomial 2 + 2 X1 + 2 X1^2

mu is mapped to the polynomial 2

>>

2.2.4 Polynomials with Provided Values

The command V is also used to prove termination with a simple-mixed poly-

nomial ordering, but in contrast to the command S you can now set variable

coe�cients to special (numeric) values. For each function symbol you are asked

if you want to replace some variable coe�cients by numbers. If you hit Y, then

you can enter equations of the form \V0 = -1" etc. After each equation you

must hit Return. If you do not want to enter any more equations for the current

function symbol hit one more Return. The numbers can also be negative and/or

rational (e.g. \V0 = 2/3").

For instance you can perform the following termination proof where the value

of � is �xed (� = �1) and where g(x) is only mapped to a polynomial of the

form 1 + vx.

>> V

mu is mapped to the polynomial V0

Replace some variable coefficients [y/n]? Y

V0 = -1

f(X1) is mapped to the polynomial V1 + V2 X1 + V3 X1^2

Replace some variable coefficients [y/n]? N

g(X1) is mapped to the polynomial V4 + V5 X1 + V6 X1^2

Replace some variable coefficients [y/n]? Y

V4 = 1

V6 = 0

Approach:

mu is mapped to the polynomial -1

f(X1) is mapped to the polynomial V1 + V2 X1 + V3 X1^2

g(X1) is mapped to the polynomial 1 + V5 X1

7



Begin of the Termination Proof

Run time: 0.06 seconds

Termination Proof succeeded!

Solution:

g(X1) is mapped to the polynomial 1 + 2 X1

f(X1) is mapped to the polynomial 2 + 2 X1

mu is mapped to the polynomial -1

>>

For a comment on the used termination criterion the reader is referred to

section 2.3.

The system immediately checks whether the polynomial is dependent on all

its formal parameters. If not, it will force the user to rede�ne the polynomial

for the current function symbol.

After the proof the actual polynomial ordering is the one mentioned as ap-

proach. You can hit I to inspect it and A to re-attempt a termination proof

with it.

2.2.5 Given Polynomials

With the commands described up to now only termination proofs using simple-

mixed polynomials are possible. If you want to use arbitrary polynomial or-

derings you should enter the command G. Then for each function symbol f the

system prints \f is mapped to the polynomial" after which you must enter

a polynomial for the function symbol f . These polynomial interpretations can

have arbitrary degree and can contain variable coe�cients as well as numerical

coe�cients. For a variable coe�cient you have to enter \V". Please note that

di�erent occurrences of \V" denote di�erent variable coe�cients.

>> G

Enter a polynomial for mu : 2

Enter a polynomial for f(X1) : V X1 + X1^3

Enter a polynomial for g(X1) : V + X1 + X1^3

Approach:

mu is mapped to the polynomial 2

f(X1) is mapped to the polynomial V0 X1 + X1^3

g(X1) is mapped to the polynomial V1 + X1 + X1^3

8



Begin of the Termination Proof

Run time: 1.45 seconds

Termination Proof succeeded!

Solution:

g(X1) is mapped to the polynomial 1 + X1 + X1^3

f(X1) is mapped to the polynomial 2 X1 + X1^3

mu is mapped to the polynomial 2

>>

2.2.6 Polynomials from Files

It is also possible to de�ne a polynomial ordering in the �le containing the

trs. In this case the list of the function symbols must not end with a dot, but

with a semicolon. It should be followed by the word polynomials and a \:".

Then a polynomial ordering can be de�ned by a list of equations of the form

\f(x

1

; : : : ; x

n

) = polynomial". Here f must be a function symbol, the names

x

1

; : : : ; x

n

of the formal parameters can be chosen arbitrarily and the polyno-

mial can contain both numerical and variable coe�cients. The equations must

be separated by commas and after the last equation there must be a dot. As

an example consider the �le Running Example.

f(x, y) -> x,

g(a) -> h(a, b, a),

i(x) -> f(x, x),

h(x, x, y) -> g(x);

functions: a, g, i, h, f, b;

polynomials:

mu = 1,

a = v,

g(x) = v x + v x^2,

i(x) = v + v x,

h(x, y, z) = v x + v y + v z + v x y + v x z + v y z + v x y z,

f(x, y) = x + y,

b = 1.

9



=====================================================

Running Example 6.1 in (Steinbach, 91)

(Middeldorp, 89)

The above approach for the polynomial ordering is the one

Steinbach uses in his system for the generation of polynomial

orderings.

After loading this �le (using the command L) a new command is included in

the menu:

>> H

Termination proof with

[F] ordering from file

...

If you hit F then the polynomial ordering de�ned in the �le will be used for

the termination proof.

2.3 Changing the Method for Generating Polynomial Or-

derings

In this section we explain how to change the method applied for termination

proofs. If you type the command M the system informs you which method is

currently used to �nd solutions for the variable coe�cients. In POLO there

are two possible methods for this purpose: TESTING and the modi�ed COLLINS

algorithm. In the following these methods will be discussed in more detail.

Following the command M the system enters a sub-menu for the inspection

and for changing the termination proof method. This is indicated by a new

prompt symbol =>.

>> M

Currently, solutions are generated by TESTING.

=>

By hitting H you can see the list of commands available in the sub-menu.

Moreover, the currently used method is printed again.

10



=> H

[T] Use Testing

[C] Use modified Collins algorithm

[H] Help

[B] Back

Currently, solutions are generated by TESTING.

=>

If you only wanted to know which of the two methods (TESTING or COLLINS)

was currently used, but do not want to change the method or its parameters,

then enter the command B to go back to the top-level menu.

In the following two sections we briey explain the two methods implemented

in the system and illustrate which parameters can be changed.

2.4 Testing

The method TESTING uses a \generate and test" approach to �nd solutions

for the variable coe�cients of the polynomial ordering. For this purpose all

instantiations of the variables with numbers from a given list are generated until

one of these instantiations leads to a polynomial ordering the trs is compatible

with.

If you are currently in the \change method" mode of the system (which is

indicated by the prompt =>) then you can enter the command T to select the

TESTING method. You will then be informed about the current values of the

parameters of this method and you have the possibility to change them.

The TESTING method has two parameters. The �rst parameter is the list

of numbers the variable coe�cients can be instantiated with. When examining

term rewriting systems occurring in the literature we noticed that most termi-

nation proofs only use polynomials whose coe�cients are 0, 1 or 2. Therefore

initially this list is (2 1 0). You can now either enter a new list or simply hit

Return to keep the old values.

The second parameter is the amount of approximately allowed execution

time. If this time limit is exceeded then the search for a solution will be aborted.

Again it is possible to change the value by entering a new time limit or to keep

the current time limit by simply hitting Return.

After setting (resp. inspecting) the parameters, the system goes back to the

top-level. In the next termination proof the TESTING method with the selected

parameters will be used.

11



=> T

You can change the values to be tested and the time limit.

Hit Return to keep the old values.

Values to be tested (current values are (2 1 0)): (3 1 0 -1)

Time limit (current value is 20 seconds):

>>

Note that the order of the numbers in the list of values to be tested is

not irrelevant. The system uses the heuristic that the �rst numbers in the list

are more likely to yield a successful polynomial interpretation than the last

numbers in the list. Therefore most of the allowed execution time is spent to

test instantiations with numbers at the beginning of the list.

The system uses the additional heuristic that if there is only few allowed

execution time left then at least the numbers 0 and 1 should be tested. Therefore

the found solution may contain the coe�cients 0 and 1 even if these numbers

are not included in the list of values to be tested.

Moreover, the order of the declared function symbols (functions: f1,

f2, ...) in the �le is also important, as the time spent searching for suited

polynomials is not equally shared among the function symbols. Function sym-

bols with a small arity get more time than those with higher arity and if f and

g have the same arity and f precedes g in the list of declared function symbols,

then f gets more time than g.

2.5 The modi�ed Collins algorithm

As described in [Gie95a], [Gie95b] the solutions can also be computed using an

incomplete modi�cation of Collins' decision algorithm [Col75], [ACM84]. To

choose this method you have to enter the command C in the \change method"

mode of the system.

Again there are several parameters you can inspect and change. If you want

to keep an old value simply hit Return.

� The �rst parameter is the approximate time limit after which the search

for a solution will be aborted.

� The next parameter is the percentage of the allowed execution time that

may be spent for the projection phase of Collins' algorithm.

� You can decide whether the algorithm should also examine solutions with

negative coe�cients.

� Moreover, you can decide whether the algorithm should also examine ra-

tional coe�cients.

12



=> C

You can change the time limit and the percentage of time spent

for projection.

Moreover, you can decide whether the algorithm should also

examine negative and rational numbers.

Hit Return to keep the old values.

Time limit (current value is 40 seconds): 60

Percentage of time spent for projection (current value is 1/3):

Examination of negative numbers [Y/N] (current value is N):

Examination of rational numbers [Y/N] (current value is Y): N

>>

Depending on the method and the selected parameters di�erent termination

criteria are used. If all numerical coe�cients of the actual polynomial interpre-

tation and all possible solutions for the variable coe�cients are integers, then

the system uses the termination criterion of theorem 2 in [Gie95b]. Otherwise

the termination criterion of theorem 3 in [Gie95b] (i.e. theorem 1 in [Gie95a])

is used.

3 Experimental Results

In this section we illustrate the performance of the POLO system with some

examples. Table 1 summarizes these results (run on a Sun SPARC-2). The �les

containing the examined term rewriting systems are included in the appendix

and can be found in the directory examples.

If the POLO system is used in a semi-automatic way then checking whether

a term rewriting system is compatible with a given polynomial ordering (i.e. an

ordering without variable coe�cients) can be done extremely quickly (usually

in signi�cantly less than a second).

But for many term rewriting systems it is possible to generate a suited

simple-mixed polynomial ordering completely automatically in 1 or 2 seconds.

(Here, unary function symbols are mapped to polynomials of the form a+ bx+

cx

2

.) Such examples are Nested Function Symbols, Endomorphism Associa-

tivity, Distributivity Associativity etc. For such systems one should use

the TESTING method with the values (2 1 0). The use of COLLINS' method is

not advisory here, as it is signi�cantly more time-consuming.

For larger systems (such as Running Example or Symbolic Differentia-

tion) POLO can also generate a suited polynomial ordering very quickly, if the

value of a few variable coe�cients is �xed before. For instance, for Running

Examplewe took the approach used by Steinbach in his system for the generation

of polynomial orderings [Ste91] and for Symbolic Differentiation we set the

values of constants to 2.

13



File Approach Method Time

Nested Function Symbols 1 TESTING 0.03 sec.

[Ste91, Example 8.1] (2 1 0), 20 sec.

Nested Function Symbols S TESTING 0.9 sec.

[Ste91, Example 8.1] (2 1 0), 20 sec.

Nested Function Symbols 1 COLLINS 19.8 sec.

[Ste91, Example 8.1] 40 sec., 1/3, :neg., rat.

Flatten 1 TESTING 0.04 sec.

(2 1 0), 20 sec.

Flatten S TESTING 0.8 sec.

(2 1 0), 20 sec.

Flatten V COLLINS 20.4 sec.

(� = 2, nil = 2) 40 sec., 1/3, :neg., rat.

Stack 1 TESTING 0.1 sec.

[DJ90, p. 253] (2 1 0), 20 sec.

Boolean Ring 1 S TESTING 0.3 sec.

[HD83], [Der87, p. 102] (2 1 0), 20 sec.

Boolean Ring 2 S TESTING 0.4 sec.

[Hsi82], [BL87, p. 152] (2 1 0), 20 sec.

Neutral Elements Distributivity S TESTING 0.4 sec.

[Pau84], [Ste91, Example 8.13] (2 1 0), 20 sec.

Plus S TESTING 0.6 sec.

(2 1 0), 20 sec.

Endomorphism Associativity V TESTING 0.1 sec.

[Bel84], [BL87] (� = 2, (2 1 0), 20 sec.

map(x) = v + vx)

Endomorphism Associativity S TESTING 0.8 sec.

[Bel84], [BL87] (2 1 0), 20 sec.

Endomorphism Associativity V COLLINS 35.5 sec.

[Bel84], [BL87] (� = 2) 40 sec., 1/3, :neg., rat.

Distributivity Associativity S TESTING 1.9 sec.

[Der87, p. 78] (2 1 0), 20 sec.

Distributivity Associativity V COLLINS 25.1 sec.

[Der87, p. 78] (� = 2, 40 sec., 1/3, :neg., :rat.

plus(x; y) = v + vx+ vy)

14



File Approach Method Time

Binomial Coefficients S TESTING 1.6 sec.

[Ste91, Example 8.8], [Ste92, Example 13] (2 1 0), 20 sec.

Running Example F TESTING 0.2 sec.

[Mid89], [Ste91, Example 6.1] (2 1 0), 20 sec.

Boolean Ring 3 F TESTING 2.6 sec.

[Ste91, Example 8.5] (2 1 0), 20 sec.

Reverse F TESTING 1.7 sec.

[Ste91, Example 8.6] (2 1 0), 20 sec.

Symbolic Differentiation F TESTING 3.4 sec.

[Knu73], [Der87, p. 79] (2 1 0), 20 sec.

Symbolic Differentiation F TESTING 0.6 sec.

[Knu73], [Der87, p. 79] (1 0), 20 sec.

Symbolic Differentiation long F TESTING 0.2 sec.

[Knu73], [Der87, p. 79] (2 1 0), 20 sec.

Groups F TESTING 0.9 sec.

[Hue80], [BL87, p. 151] (2 1 0), 20 sec.

Taussky Group F TESTING 5.5 sec.

[KB70], [BL87, p. 155], [Ste91, Example 8.4] (2 1 0), 20 sec.

Fibonacci Group V TESTING 4.8 sec.

[Ste91, Example 8.2] (� = 0, (4 2 1 0), 20 sec.

comb(x; y) = vx + vy)

Fibonacci Group F TESTING 0.3 sec.

[Ste91, Example 8.2] (4 2 1 0), 20 sec.

Fibonacci Group F TESTING 0.8 sec.

[Ste91, Example 8.2] (4 3 2 1 0), 20 sec.

Fibonacci Group F COLLINS 8.1 sec.

[Ste91, Example 8.2] 40 sec., 1/3, :neg., rat.

Negative Coefficient F TESTING 0.01 sec.

(2 1 0), 20 sec.

Negative Coefficient V TESTING 7.3 sec.

(plus(x; y) = x+ y) (2 1 0), 20 sec.

Table 1: Experiments run with POLO.

15



Note that a manual termination proof of these term rewriting systems is not

at all trivial. Proving termination of Symbolic Differentiation was one of

the problems on a qualifying exam given at Carnegie-Mellon University in 1967

[Der87].

The POLO system can also be used for term rewriting systems which require

non simple-mixed polynomial orderings (such as Taussky Group [KB70]) or for

systems where a polynomial ordering with coe�cients di�erent from 2, 1, 0 is

needed (e.g. Fibonacci Group [Ste91, Example 8.2]). For such examples the

use of the COLLINS method may be useful, especially if one already knows the

polynomials associated with certain function symbols and searches polynomi-

als for the remaining function symbols. Finally, POLO also allows the use of

negative coe�cients (e.g. in the example Negative Coefficient).

4 Conclusion

POLO is a system for termination proofs of term rewriting systems using polyno-

mial orderings. Virtually all other systems for this purpose are semi-automatic,

i.e. the polynomial ordering is given by the user and the system has to check

whether the trs is compatible with this polynomial ordering. If used in such

a semi-automatic way POLO is extremely powerful (more e�cient and slightly

more powerful than all preceding systems, cf. [Gie95a], [Gie95b]).

Moreover, POLO can also be used to determine the values of variable coef-

�cients. If the number of unknown coe�cients is not too high, then it is likely

that a solution will be found quickly. For most of the commonly used term

rewriting systems the TESTING method with the coe�cients (2 1 0) will suf-

�ce. E�cient application of this method is only possible, because the technique

in [Gie95a], [Gie95b] makes the test whether the trs is compatible with a certain

polynomial ordering trivial.

If there are only few variable coe�cients and a solution with commonly

used values cannot be found, then it is possible to use the modi�ed incomplete

COLLINSmethod to search for an instantiation. For instance, this may be useful

if a trs compatible with a polynomial ordering is extended by some new rules

introducing a new function symbol. Now the polynomial interpretation must

also be extended for this function symbol. For the soundness of the incomplete

COLLINS method the elimination of rule variables in the technique of [Gie95a],

[Gie95b] is necessary.

The POLO system is only a prototype which may be re�ned in future imple-

mentations. Nevertheless it demonstrates how the method in [Gie95a], [Gie95b]

leads to an e�cient, powerful and easy to implement algorithm which can be

used in both a semi-automatic and a fully automated way.

16



A Example Files

A.1 Nested Function Symbols

f(f(x)) -> g(g(x)),

g(g(f(x))) -> f(g(g(x)));

functions: f, g.

=================================================================

Nested Function Symbols

(Steinbach 91, Example 8.1)

A.2 Flatten

flatten(nil) -> nil,

flatten(cons(nil, y)) -> cons(nil, flatten(y)),

flatten(cons(cons(u, v), w)) -> flatten(cons(u, cons(v, w)));

functions: flatten, cons, nil.

=================================================================

Flatten

A.3 Stack

top(push(x, y)) -> x,

pop(push(x, y)) -> y,

alternate(empty, z) -> z,

alternate(push(x, y), z) -> push(x, alternate(z, y));

functions: top, push, pop, alternate, empty.

=================================================================

Stack

(Dershowitz & Jouannaud, 90, p. 253)

17



A.4 Boolean Ring 1

and(x, T) -> x,

and(x, F) -> F,

and(x, x) -> x,

xor(x, F) -> x,

xor(x, x) -> F,

and(xor(x, y), c) -> xor(and(x, c), and(y, c));

functions: and, xor, T, F.

=================================================================

Boolean Ring 1

(Hsiang & Dershowitz, 83), (Dershowitz 87, p. 102)

A.5 Boolean Ring 2

xor(x, F) -> x,

xor(x, neg(x)) -> F,

and(x, T) -> x,

and(x, x) -> x,

and(xor(x, y), z) -> xor(and(x, z), and(y, z)),

xor(x, x) -> F;

functions: and, xor, T, F, neg.

=================================================================

Boolean Ring 2

(Hsiang, 82), (Ben Cherifa & Lescanne, 87, p. 152)

A.6 Neutral Elements Distributivity

plus(x, zero) -> x,

times(x, one) -> x,

times(x, zero) -> zero,

times(x, plus(y, z)) -> plus(times(x, y), times(x, z));

functions: times, plus, one, zero.

=================================================================

18



Neutral Elements Distributivity

(Paul, 84), (Steinbach, 91, Example 8.13)

A.7 Plus

plus(x, zero) -> x,

plus(x, s(y)) -> s(plus(x, y)),

plus(plus(x, y), z) -> plus(x, plus(y, z));

functions: plus, s, zero.

=================================================================

Plus

A.8 Endomorphism Associativity

composition(composition(x, y), z) -> composition(x, composition(y, z)),

composition(map(x), map(y)) -> map(composition(x, y)),

composition(map(x), composition(map(y), z)) ->

composition(map(composition(x, y)), z);

functions: map, composition.

=================================================================

Endomorphism and Associativity

(Bellegarde 84, Ben Cherifa & Lescanne 87)

A.9 Distributivity Associativity

times(x, plus(y, z)) -> plus(times(x, y), times(x, z)),

times(plus(x, y), z) -> plus(times(x, z), times(y, z)),

plus(plus(x, y), z) -> plus(x, plus(y, z));

functions: plus, times.

=================================================================

19



Distributivity & Associativity

(Dershowitz 87, p.78)

A.10 Binomial Coefficients

bin(x, zero) -> s(zero),

bin(zero, s(y)) -> zero,

bin(s(x), s(y)) -> plus(bin(x, s(y)), bin(x, y));

functions: zero, s, plus, bin.

=================================================================

Binomial Coefficients

(Steinbach 91, Example 8.8,

Steinbach92, Example 13)

A.11 Running Example

f(x, y) -> x,

g(a) -> h(a, b, a),

i(x) -> f(x, x),

h(x, x, y) -> g(x);

functions: a, g, i, h, f, b;

polynomials:

mu = 1,

a = v,

g(x) = v x + v x^2,

i(x) = v + v x,

h(x, y, z) = v x + v y + v z + v x y + v x z + v y z + v x y z,

f(x, y) = x + y,

b = 1.

=================================================================

Running Example 6.1 in (Steinbach, 91)

(Middeldorp, 89)

The above approach for the polynomial ordering is the one

Steinbach uses in his system for the generation of polynomial

orderings.

20



A.12 Boolean Ring 3

impl(x, y) -> xor(and(x, y), xor(x, true)),

or(x, y) -> xor(and(x, y), xor(x, y)),

equiv(x, y) -> xor(x, xor(y, true)),

neg(x) -> xor(x, true);

functions: impl, true, or, equiv, and, xor, neg;

polynomials:

mu = 1,

true = 1,

impl(x, y) = v + v x + v y,

equiv(x, y) = v + v x + v y,

or(x, y) = v + v x + v y,

neg(x) = v + v x,

and(x, y) = v + v x + v y,

xor(x, y) = v + v x + v y.

=================================================================

Boolean Ring 3

(Steinbach 91, Example 8.5)

A.13 Reverse

append(nil, y) -> y,

append(add(x, y), z) -> add(x, append(y, z)),

append(append(x, y), z) -> append(x, append(y, z)),

reverse(nil) -> nil,

reverse(add(x, y)) -> append(reverse(y), add(x, nil)),

reviter(nil, y) -> y,

reviter(add(x, y), z) -> reviter(y, add(x, z)),

append(reverse(x), y) -> reviter(x, y),

reverse(x) -> reviter(x, nil);

functions: reverse, reviter, add, append, nil;

polynomials:

mu = 2,

nil = 2,

reverse(x) = v + v x^2,

add(x, y) = v + v x + v y + v x y,

reviter(x, y) = v x + v x y,

21



append(x, y) = v x + v x y.

=================================================================

Boolean Ring 3

(Steinbach 91, Example 8.6)

A.14 Symbolic Differentiation

Dx(x) -> one,

Dx(a) -> zero,

Dx(plus(alpha, beta)) -> plus(Dx(alpha), Dx(beta)),

Dx(times(alpha, beta)) ->

plus(times(beta, Dx(alpha)), times(alpha, Dx(beta))),

Dx(minus(alpha, beta)) -> minus(Dx(alpha), Dx(beta)),

Dx(neg(alpha)) -> neg(Dx(alpha));

functions: one, zero, x, a, Dx, plus, times, minus, neg;

polynomials:

mu = 2,

zero = 2,

one = 2,

a = 2,

x = 2,

Dx(alpha) = v + v alpha^2,

plus(alpha, beta) = v + v alpha + v beta,

times(alpha, beta) = v + v alpha + v beta,

minus(alpha, beta) = v + v alpha + v beta,

neg(alpha) = v + v alpha.

=================================================================

Symbolic Differentiation

(Knuth, 73), (Dershowitz 87, p. 79)

A.15 Symbolic Differentiation long

Dx(x) -> one,

Dx(a) -> zero,

Dx(plus(alpha, beta)) -> plus(Dx(alpha), Dx(beta)),

22



Dx(times(alpha, beta)) ->

plus(times(beta, Dx(alpha)), times(alpha, Dx(beta))),

Dx(minus(alpha, beta)) -> minus(Dx(alpha), Dx(beta)),

Dx(neg(alpha)) -> neg(Dx(alpha)),

Dx(div(alpha, beta)) ->

minus(div(Dx(alpha), beta), times(alpha, div(Dx(beta), exp(beta, two)))),

Dx(ln(alpha)) -> div(Dx(alpha), alpha),

Dx(exp(alpha, beta)) ->

plus(times(beta, times(exp(alpha, minus(beta, one)), Dx(alpha))),

times(exp(alpha, beta), times(ln(alpha), Dx(beta))));

functions: one, zero, x, a, Dx, plus, times, minus, neg, div, exp, two, ln;

polynomials:

mu = 4,

zero = 4,

one = 4,

two = 4,

a = 4,

x = 4,

Dx(alpha) = alpha^2,

plus(alpha, beta) = alpha + beta,

times(alpha, beta) = alpha + beta,

minus(alpha, beta) = alpha + beta,

div(alpha, beta) = alpha + beta,

exp(alpha, beta) = alpha + beta,

ln(alpha) = 1 + alpha,

neg(alpha) = 1 + alpha.

=================================================================

Symbolic Differentiation (long version)

(Knuth, 73), (Dershowitz, 87, p. 79)

A.16 Groups

times(e, x) -> x,

times(i(x), x) -> e,

times (times(x, y), z) -> times(x, times(y, z)),

div(x, y) -> times(x, i(y));

functions: times, e, i, div;

23



polynomials:

mu = v,

times(x, y) = v + v x + v y + v x y,

div(x, y) = v + v x + v y + v x y^2,

e = v,

i(x) = v + v x^2.

=================================================================

Groups.

(Huet, 80), (Ben Cherifa & Lescanne, 87, p. 151)

A.17 Taussky Group

times(x, times(y, z)) -> times(times(x, y), z),

times(one, one) -> one,

times(x, i(x)) -> one,

i(times(x, y)) -> times(i(y), i(x)),

g(times(x, y), y) -> f(times(x, y), x),

f(one, y) -> y;

functions: times, one, i, g, f;

polynomials:

mu = 2,

one = 2,

times(x, y) = v + v x + v y + v x y,

f(x, y) = x + y,

g(x, y) = v + v x + v y^2 + v x y^2,

i(x) = v + v x^2.

=================================================================

Taussky Group

(Knuth & Bendix, 70)

(Ben Cherifa & Lescanne, 87, p. 155),

(Steinbach 91, Example 8.4)

A.18 Fibonacci Group

comb(a, b) -> c,

comb(b, c) -> d,

24



a -> comb(d, e),

b -> comb(e, a),

e -> comb(c, d);

functions: a, b, c, d, e, comb;

polynomials:

mu = 0,

a = v,

b = v,

c = v,

d = v,

e = v,

comb(x, y) = x + y.

=================================================================

Fibonacci Group

(Steinbach 91, Example 8.2)

A.19 Negative Coefficient

square(succ(succ(x))) -> f(succ(succ(x))),

f(succ(x)) -> plus(x, square(x)),

square(succ(x)) -> plus(double(x), square(x)),

succ(double(x)) -> plus(x, x);

functions: square, succ, f, plus, double;

polynomials:

mu = 1,

square(x) = x^2,

succ(x) = x + 1,

f(x) = x^2 - x + 1,

plus(x, y) = x + y,

double(x) = 2 x.

25



References

[ACM84] D. S. Arnon, G. E. Collins & S. McCallum. Cylindrical Algebraic

Decomposition I. SIAM Journal of Computing, 13(4): 865-877,

1984.

[Bel84] F. Bellegarde. Rewriting Systems on FP Expressions that reduce

the Number of Sequences they yield. Symposium on LISP and Func-

tional Programming, ACM, Austin, TX, 1984.

[BL87] A. Ben Cherifa & P. Lescanne. Termination of Rewriting Systems

by Polynomial Interpretations and its Implementation. Science of

Computer Programming, 9(2):137-159, 1987.

[Col75] G. E. Collins. Quanti�er Elimination for Real Closed Fields by

Cylindrical Algebraic Decomposition. In Proc. 2nd GI Conf. on Au-

tomata Theory and Formal Languages, Kaiserslautern, Germany,

1975.

[Der87] N. Dershowitz. Termination of Rewriting. Journal of Symbolic Com-

putation, 3(1, 2):69-115, 1987.

[DJ90] N. Dershowitz & J.-P. Jouannaud. Rewrite Systems. Handbook of

Theoretical Comp. Science, J. van Leuwen, Ed., vol. B, ch. 6, pp.

243-320, Elsevier, 1990.

[Gie95a] J. Giesl. Generating Polynomial Orderings for Termination Proofs.

In Proc. 6th Int. Conf. Rewriting Techniques and Applications,

Kaiserslautern, Germany, 1995.

[Gie95b] J. Giesl. Generating Polynomial Orderings for Termination Proofs

(Extended Version). Technical Report IBN 95/23, Technische

Hochschule Darmstadt, Germany. Available by anonymous ftp from

kirmes.inferenzsysteme.informatik.th-darmstadt.de under

pub/termination.

[Hue80] G. Huet. Conuent Reductions: Abstract Properties and Applica-

tions to Term Rewriting Systems. Journal of the ACM 27(4):797-

821, 1980.

[Hsi82] J. Hsiang. Topics in Automated Theorem Proving and Program

Generation, PhD Thesis, University of Illinois, 1982.

[HD83] J. Hsiang & N. Dershowitz. Rewrite Methods for Clausal and Non-

Clausal Theorem Proving. In Proc. 10th EATCS Int. Colloquium on

Automata, Languages and Programming, Barcelona, Spain, 1983.

26



[KB70] D. E. Knuth & P. B. Bendix. Simple Word Problems in Universal

Algebras. Computational Problems in Abstract Algebra, J. Leech,

ed., Pergamon Press, pp. 263-297, 1970.

[Knu73] D. E. Knuth. Fundamental Algorithms. In The Art of Computer

Programming, vol. 1, 2nd edn. Reading, MA. Addison-Wesley. 1973.

[Mid89] A. Middeldorp. A Su�cient Condition for the Termination of the

Direct Sum of Term Rewriting Systems. In Proc. 4th Annual Sym-

posium on Logic in Computer Science, Paci�c Grove, CA, 1989.

[Pau84] E. Paul. Proof by Induction in Equational Theories with Relations

between Constructors. In Proc. 9th Colloquium on Trees in Algebra

and Programming, Bordeaux, France, 1984.

[Ste91] J. Steinbach. Termination Proofs of Rewriting Systems | Heuris-

tics for Generating Polynomial Orderings. SEKI-Report SR-91-14,

Univ. Kaiserslautern, Germany, 1991.

[Ste92] J. Steinbach. Proving Polynomials Positive. In Proc. 12th Conf. on

Foundations of Software Technology and Theoretical Computer Sci-

ence, New Delhi, India, 1992.

27


