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Abstract. To prove termination of term rewriting systems (TRSs), sev-

eral methods have been developed to synthesize suitable well-founded or-

derings automatically. However, virtually all orderings that are amenable

to automation are so-called simpli�cation orderings. Unfortunately, there

exist numerous interesting and relevant TRSs that cannot be oriented by

orderings of this restricted class and therefore their termination cannot

be proved automatically with the existing techniques.

In this paper we present a new approach which allows to apply the stan-

dard techniques for automated termination proofs to those TRSs where

these techniques failed up to now. For that purpose we have developed

a procedure which, given a TRS, generates a set of inequalities (con-

straints) automatically. If there exists a well-founded ordering satisfying

these constraints, then the TRS is terminating. It turns out that for many

TRSs where a direct application of standard techniques fails, these stan-

dard techniques can nevertheless synthesize a well-founded ordering sat-

isfying the generated constraints. In this way, termination of numerous

(also non-simply terminating) TRSs can be proved fully automatically.

1 Introduction

Termination is one of the most fundamental properties of a term rewriting

system, cf. e.g. [DJ90]. While in general this problem is undecidable [HL78],

several methods for proving termination have been developed (e.g. path order-

ings [DH95, Ste95b], forward closures [LM78, DH95], semantic interpretations

[Lan79, BL87, Ste94, Zan94, Gie95], transformation orderings [BL90, Ste95a],

semantic labelling [Zan95] etc. | for surveys see e.g. [Der87, Ste95b]).

In this paper we present a new approach for the automation of termination

proofs. The formal de�nitions needed are introduced in Sect. 2 and in Sect. 3 we

present a new termination criterion and prove its soundness and completeness.

The main advantage of our termination criterion is that it is especially well

suited for automation. Therefore, in Sect. 4 we show how this criterion can be

checked automatically. To increase the power of our method we introduce a

re�ned approach for its automation in Sect. 5. In this way we obtain a very

powerful technique which enables automated termination proofs for many TRSs
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where termination could not be proved automatically before. For a collection

of examples see [AG96b]. In Sect. 6 we give some comments on related work

followed by a short conclusion in Sect. 7.

2 Dependency Pairs

For constructor systems it is common to split the signature into two disjoint sets,

the de�ned symbols and the constructors. The following de�nition extends these

notions to arbitrary term rewriting systems R(F ; R) (with the rules R over a

signature F). Here, the root of a term f(: : :) is the leading function symbol f .

De�nition 1 (De�ned Symbols and Constructors, cf. [Kri95]). The set

D

R

of de�ned symbols of a TRS R(F ; R) is de�ned as froot(l) j l ! r 2 Rg

and the set C

R

of constructor symbols of R(F ; R) is de�ned as F nD

R

.

To refer to the de�ned symbols and constructors explicitly, a rewrite system

is written as R(D;C;R). As an example consider the following TRS with the

de�ned symbols app and sum and the constructors nil, `.', and +. Here, x.l

represents the insertion of a number x into a list l (where x.y.l abbreviates

(x.(y.l)) ), app computes the concatenation of lists, and sum(l) is used to compute

the sum of all numbers in l (e.g. sum applied to the list [1; 2; 3] returns [1+2+3]).

app(nil; k)! k sum(x.nil)! x.nil

app(l; nil)! l sum(x.y.l)! sum((x+ y).l)

app(x.l; k)! x.app(l; k) sum(app(l; x.y.k))! sum(app(l; sum(x.y.k)))

Unfortunately, most methods for automated termination proofs are restricted

to simpli�cation orderings [Der87, Ste95b]. These methods cannot prove termi-

nation of systems like the TRS above, because the left-hand side of the last

sum-rule is homeomorphically embedded in its right-hand side.

Previous methods for proving termination usually tried to �nd a well-founded

ordering such that left-hand sides of rules were greater than right-hand sides.

However, the central idea of our approach is to compare left-hand sides of rules

only with those subterms of the right-hand sides that may possibly start a new

reduction. Hence, we only concentrate on those subterms of the right-hand sides

whose root is a de�ned symbol.

More precisely, if a term f(s

1

; : : : ; s

n

) rewrites to C[g(t

1

; : : : ; t

m

)] (where f

and g are de�ned symbols and C denotes some context), then to prove termina-

tion we compare the argument tuples s

1

; : : : ; s

n

and t

1

; : : : ; t

m

. In order to avoid

the handling of tuples, for a formal de�nition we introduce a special symbol F ,

not occurring in the signature of the TRS, for every de�ned symbol f in D and

compare the terms F (s

1

; : : : ; s

n

) and G(t

1

; : : : ; t

m

) instead. To ease readability

we assume that the signature F consists of lower case function symbols only and

denote the special symbols by the corresponding upper case symbols.

De�nition 2 (Dependency Pairs). If f(s

1

; : : : ; s

n

) ! C[g(t

1

; : : : ; t

m

)] is a

rewrite rule of the TRS R(D;C;R), then hF (s

1

; : : : ; s

n

); G(t

1

; : : : ; t

m

)i is a de-

pendency pair of R.

In our example we obtain the following dependency pairs:
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hAPP(x.l; k);APP(l; k)i (1)

hSUM(x.y.l); SUM((x + y).l)i (2)

hSUM(app(l; x.y.k)); SUM(x.y.k)i (3)

hSUM(app(l; x.y.k));APP(l; sum(x.y.k))i (4)

hSUM(app(l; x.y.k)); SUM(app(l; sum(x.y.k)))i (5)

3 A Termination Criterion Using Dependency Pairs

Using the notion of dependency pairs we now introduce a criterion for termina-

tion of TRSs. Recall that a left-hand side of a rewrite rule only matches subterms

with de�ned root symbols. Thus, there occurs a de�ned symbol in any term in

an in�nite reduction. In a reduction, new de�ned symbols are introduced by the

right-hand sides of the applied rewrite rules. Therefore, the dependency pairs

focus on those subterms of the right-hand sides that have a de�ned root symbol.

By regarding sequences of dependency pairs, the introduction of new de�ned

symbols can be traced. This observation leads to the following de�nition.

De�nition 3 (R-chains). LetR(D;C;R) be a TRS. A sequence of dependency

pairs is called an R-chain if there exists a substitution

1

�, such that t

i

� !

�

R

s

i+1

� holds for all consecutive pairs hs

i

; t

i

i and hs

i+1

; t

i+1

i in the sequence.

We always assume that two (occurrences of) dependency pairs have disjoint

variables. Then for example, hAPP(x.l; k);APP(l; k)i hAPP(x

0

.l

0

; k

0

);APP(l

0

; k

0

)i is

an R-chain, because APP(l; k)� !

�

R

APP(x

0

.l

0

; k

0

)� holds for the substitution

� that replaces l by x

0

.l

0

and k by k

0

. If R is clear from the context, then we

often write `chain' instead of `R-chain'. The following theorem proves that the

absence of in�nite chains is a su�cient and necessary criterion for termination.

Theorem4 (Termination Criterion). A TRS R is terminating if and only

if no in�nite R-chain exists.

Proof. Su�cient Criterion

We prove that any in�nite reduction results in an in�nite R-chain.

Let t be a term that starts an in�nite reduction. Any such term t contains

a subterm

2

f

1

(u

1

) that starts an in�nite reduction, but none of the terms u

1

starts an in�nite reduction, i.e. u

1

are strongly normalising.

Let us consider an in�nite reduction starting with f

1

(u

1

). First, the argu-

ments u

1

are reduced in zero or more steps to arguments v

1

and then a rewrite

rule f

1

(w

1

) ! r

1

is applied to f

1

(v

1

), i.e. a substitution �

1

exists such that

f

1

(v

1

) = f

1

(w

1

)�

1

!

R

r

1

�

1

. Now the in�nite reduction continues with r

1

�

1

,

i.e. the term r

1

�

1

starts an in�nite reduction, too.

By assumption there exists no in�nite reduction beginning with one of the

terms v

1

= w

1

�

1

. Hence, for all variables x occurring in f

1

(w

1

) the term �

1

(x) is

1

Throughout the paper we regard substitutions whose domain may be in�nite.

2

We denote tuples of terms t

1

; : : : ; t

n

by t.
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strongly normalising. Thus, since r

1

�

1

starts an in�nite reduction, there occurs a

subterm f

2

(u

2

) in r

1

, i.e. r

1

= C[f

2

(u

2

)] for some context C, such that f

2

(u

2

)�

1

starts an in�nite reduction and u

2

�

1

are strongly normalising terms.

The �rst dependency pair of the in�nite R-chain that we construct is hF

1

(w

1

);

F

2

(u

2

)i corresponding to the rewrite rule f

1

(w

1

) ! C[f

2

(u

2

)]. The other de-

pendency pairs of the in�nite R-chain are determined in the same way: Let

hF

i�1

(w

i�1

); F

i

(u

i

)i be a dependency pair such that f

i

(u

i

)�

i�1

starts an in�-

nite reduction and the terms u

i

�

i�1

are strongly normalising. Again, in zero or

more steps f

i

(u

i

)�

i�1

reduces to f

i

(v

i

) to which a rewrite rule f

i

(w

i

)! r

i

can

be applied such that r

i

�

i

starts an in�nite reduction for some substitution �

i

with v

i

= w

i

�

i

.

Similar to the observations above, since r

i

�

i

starts an in�nite reduction,

there must be a subterm f

i+1

(u

i+1

) in r

i

such that f

i+1

(u

i+1

)�

i

starts an in-

�nite reduction and u

i+1

�

i

are strongly normalising terms. This results in the

i-th dependency pair of the R-chain, viz. hF

i

(w

i

); F

i+1

(u

i+1

)i. In this way, one

obtains the in�nite sequence

hF

1

(w

1

); F

2

(u

2

)i hF

2

(w

2

); F

3

(u

3

)i hF

3

(w

3

); F

4

(u

4

)i : : :

It remains to prove that this sequence is really an R-chain.

Note that F

i

(u

i

�

i�1

) !

�

R

F

i

(v

i

) and v

i

= w

i

�

i

. Since we assume, without

loss of generality, that the variables of consecutive dependency pairs are disjoint,

we obtain one substitution � = �

1

� �

2

� : : : such that F

i

(u

i

)� !

�

R

F

i

(w

i

)� for

all i. Thus, we have in fact constructed an in�nite R-chain.

Necessary Criterion

We prove that any in�nite R-chain corresponds to an in�nite reduction. Assume

there exists an in�nite R-chain hF

1

(s

1

); F

2

(t

2

)i hF

2

(s

2

); F

3

(t

3

)i hF

3

(s

3

); F

4

(t

4

)i : : :

Hence, there must be a substitution � such that

F

2

(t

2

)� !

�

R

F

2

(s

2

)�; F

3

(t

3

)� !

�

R

F

3

(s

3

)�; : : : ;

resp. f

i

(t

i

)� !

�

R

f

i

(s

i

)�, as the upper case symbols F

i

are not de�ned.

Every dependency pair hF (s); G(t)i corresponds to a rewrite rule f(s) !

C[g(t)] for some context C. Therefore we obtain the following in�nite reduction.

f

1

(s

1

)� !

R

C

1

[f

2

(t

2

)]� !

�

R

C

1

[f

2

(s

2

)]� !

R

C

1

[C

2

[f

3

(t

3

)]]� !

�

R

: : :

ut

This criterion can now be used to prove termination of TRSs. For instance,

in our example there cannot be an in�nite chain of the form

hAPP(x.l; k);APP(l; k)i hAPP(x

0

.l

0

; k

0

);APP(l

0

; k

0

)i : : : ;

because for every substitution �, the term APP(x.l; k) contains one more occur-

rence of the symbol `.' than APP(l; k).

4 Checking the Termination Criterion Automatically

In this section we present an approach to perform automated termination proofs

using the criterion of Thm. 4, i.e. we develop a method to prove the absence of

4



in�nite chains automatically. For that purpose, we introduce a procedure which,

given a TRS, generates a set of inequalities such that the existence of a well-

founded ordering satisfying these inequalities is su�cient for termination of the

TRS. A well-founded ordering satisfying the generated inequalities can often be

synthesized by standard techniques, even if a direct termination proof is not

possible with these techniques (i.e. even if a well-founded ordering orienting the

rules of the TRS cannot be synthesized).

Note that if all chains correspond to a decreasing sequence w.r.t. some well-

founded ordering, then all chains must be �nite. Hence, to prove the absence

of in�nite chains, we will synthesize a well-founded ordering � such that all

dependency pairs are decreasing w.r.t. this ordering. More precisely, if for any

sequence of dependency pairs hs

1

; t

1

ihs

2

; t

2

ihs

3

; t

3

i : : : and for any substitution �

with t

i

� !

�

R

s

i+1

� we have s

1

� � t

1

�, s

2

� � t

2

�, s

3

� � t

3

�, : : : and t

1

� � s

2

�,

t

2

� � s

3

�, : : :, then no in�nite chain exists.

However, for most TRSs, the above inequalities are not satis�ed by any well-

founded ordering �, because the terms t

i

� and s

i+1

� of consecutive dependency

pairs in chains are often identical and therefore t

i

� � s

i+1

� does not hold.

But obviously not all of the inequalities s

i

� � t

i

� and t

i

� � s

i+1

� have to

be strict. For instance, to guarantee the absence of in�nite chains it is su�cient

if there exists a well-founded quasi-ordering % such that the strict inequality

s

i

� � t

i

� and the non-strict inequality t

i

�%s

i+1

� hold for each sequence of

dependency pairs as above. (A quasi-ordering % is a reexive and transitive

relation and % is called well-founded if its strict part � is well founded.)

Note that we cannot determine automatically for which substitutions � we

have t

i

� !

�

R

s

i+1

� and moreover, it is practically impossible to examine in�nite

sequences of dependency pairs. Therefore, in the following we restrict ourselves

to weakly monotonic quasi-orderings % where both % and its strict part � are

closed under substitution. (A quasi-ordering % is weakly monotonic if s% t implies

f(: : : s : : :)%f(: : : t : : :).) Then, to guarantee t

i

�%s

i+1

� whenever t

i

� !

�

R

s

i+1

�

holds, it is su�cient to demand l%r for all rewrite rules l ! r of the TRS. To

ensure s

i

� � t

i

� for those dependency pairs occurring in possibly in�nite chains,

we demand s � t for all dependency pairs hs; ti.

Theorem5 (Checking the Termination Criterion).Let % be a well-found-

ed, weakly monotonic quasi-ordering, where both % and � are closed under sub-

stitution. A TRS R(D;C;R) is terminating, if

� l%r for all rules l ! r in R and

� s � t for all dependency pairs hs; ti.

Proof. As l%r holds for all rules l ! r and as % is weakly monotonic and closed

under substitution, we have!

�

R

� % , i.e. t!

�

R

s implies t% s (cf. e.g. [Der87]).

Suppose there is an in�nite R-chain hs

1

; t

1

ihs

2

; t

2

i : : : , then there exists a

substitution � such that t

i

� !

�

R

s

i+1

� holds for all i. As !

�

R

� % , this implies

t

i

�%s

i+1

�. Hence, we obtain the in�nite sequence s

1

� � t

1

�% s

2

� � t

2

�% : : :

which is a contradiction to the well-foundedness of % and therefore no in�nite

chain exists. Thus, by Thm. 4 R is terminating. ut
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The technique of Thm. 5 is very useful to apply standard methods like the

recursive path ordering or polynomial interpretations to TRSs for which they

are not directly applicable. For instance, in our example we have to �nd a quasi-

ordering satisfying the following inequalities.

app(nil; k) % k

app(l; nil) % l

app(x.l; k) % x.app(l; k)

sum(x.nil) % x.nil

sum(x.y.l) % sum((x+ y).l)

sum(app(l; x.y.k)) % sum(app(l; sum(x.y.k)))

APP(x.l; k) � APP(l; k)

SUM(x.y.l) � SUM((x+ y).l)

SUM(app(l; x.y.k)) � SUM(x.y.k)

SUM(app(l; x.y.k)) � APP(l; sum(x.y.k))

SUM(app(l; x.y.k)) � SUM(app(l; sum(x.y.k)))

For example, these inequalities are satis�ed by a polynomial ordering [Lan79]

where nil is mapped to the constant 0, x.l is mapped to l+1, (x+ y) is mapped

to x+y, app(l; k) is mapped to l+k+1, sum(l) is mapped to the constant 1, and

APP(l; k) and SUM(l) are both mapped to l. Methods for the automated genera-

tion of polynomial orderings have for instance been developed in [Ste94, Gie95].

In this way, termination of this TRS can be proved fully automatically, although

a direct termination proof with simpli�cation orderings was not possible.

Note that when using polynomial orderings for direct termination proofs of

TRSs, then the polynomials have to be (strongly) monotonic in all their argu-

ments, i.e. s � t implies f(: : : s : : :) � f(: : : t : : :). However, for the approach of

this paper, we only need a weakly monotonic quasi-ordering satisfying the in-

equalities. Thus, s � t only implies f(: : : s : : :)%f(: : : t : : :). Hence, when using

our method it su�ces to �nd a polynomial interpretation with weakly mono-

tonic polynomials, which do not necessarily depend on all their arguments. For

example, we map sum(l) to the constant 1 and we map x.l to l + 1.

Instead of polynomial orderings one can also use path orderings, which can

easily be generated automatically. However, these path orderings are always

strongly monotonic, whereas in our method we only need a weakly monotonic

ordering. For that reason, before synthesizing a suitable path ordering some of

the arguments of function symbols may be eliminated. For instance, one may

eliminate the �rst arguments of the function symbols `.' and sum. Then every

term t.s in the inequalities is replaced by .(s) and every term sum(t) is replaced

by the constant sum. By comparing the terms resulting from this replacement

(instead of the original terms) we can take advantage of the fact that `.' and sum

do not have to be strongly monotonic in their �rst arguments. Now the resulting

inequalities are satis�ed by the recursive path ordering. Note that there exist

only �nitely many (and only few) possibilities to eliminate arguments of function

symbols. Therefore all these possibilities can be checked automatically.

5 Dependency Graphs

To prove termination of a TRS according to Thm. 5 we have to �nd an ordering

such that s � t holds for all dependency pairs hs; ti. However, for certain rewrite

systems this requirement can be weakened, i.e. it is su�cient to demand s � t

6



for some dependency pairs only. For example, let us extend the TRS of Sect. 2

by the following rules for +.

0+ y ! y

s(x) + y ! s(x+ y)

Now + is no longer a constructor, but a de�ned symbol. This results in two new

dependency pairs

hSUM(x.y.l);PLUS(x; y)i (6)

hPLUS(s(x); y);PLUS(x; y)i (7)

and to prove termination according to Thm. 5 in addition to the inequalities in

Sect. 4 we now obtain the following inequalities.

0+ y % y SUM(x.y.l) � PLUS(x; y)

s(x) + y % s(x+ y) PLUS(s(x); y) � PLUS(x; y)

Unfortunately, no polynomial ordering (and no path ordering which is amenable

to automation) satis�es all resulting inequalities

3

. However, the constraint

SUM(x.y.l) � PLUS(x; y) is unnecessary to ensure the absence of in�nite chains.

The reason is that in any chain the dependency pair (6) can occur at most

once. Recall that a dependency pair hu; vi may only follow a pair hs; ti in a

chain, if there exists a substitution � such that t� !

�

R

u�. As the upper case

symbol PLUS is not a de�ned symbol, PLUS(x; y)� can only be reduced to terms

with the same root symbol PLUS. Hence, the only dependency pair following

hSUM(: : :);PLUS(: : :)i can be hPLUS(s(x); y);PLUS(x; y)i, i.e. (6) can never oc-

cur twice in a chain.

To determine those dependency pairs which may occur in�nitely often in a

chain we de�ne a graph of dependency pairs where those dependency pairs that

possibly occur consecutive in a chain are connected. In this way, any in�nite

chain corresponds to a cycle in the graph.

De�nition 6 (Dependency Graph). The dependency graph of a TRS R is a

directed graph whose nodes are labelled with the dependency pairs and there is

an arc from hs; ti to hu; vi if there exists a substitution � such that t� !

�

R

u�.

(4)

(1)

(7)
(6) (3)

(5) (2)

Fig. 1. The dependency graph of the example

3

The reason is that to satisfy SUM(x.y.l) � PLUS(x; y), the polynomial for `.' has to

depend on its �rst argument. But then to satisfy sum(x.nil)%x.nil, sum can no longer

be mapped to a constant. Hence, for large enough arguments, the subterm x.y.k of

the left-hand side of sum(app(l; x.y.k)) ! sum(app(l; sum(x.y.k))) will be mapped

to a smaller number than the subterm sum(x.y.k) of its right-hand side.
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Therefore, to prove termination of a TRS it is su�cient if s � t holds for at

least one dependency pair on each cycle of the dependency graph and if s% t holds

for all other dependency pairs on cycles. Dependency pairs that do not occur on

a cycle can be ignored. So we only have to demand that the dependency pairs

(1), (2), and (7) are strictly decreasing. Now a polynomial ordering satisfying the

resulting inequalities is obtained by extending the polynomial ordering we used

in Sect. 4 as follows: The symbol 0 is mapped to the number 0, s(x) is mapped

to x + 1, and PLUS(x; y) is mapped to x. In general, we obtain the following

re�ned theorem to check our termination criterion automatically.

Theorem7 (Termination Proofs with Dependency Graphs). Let % be

a well-founded, weakly monotonic quasi-ordering, where both % and � are closed

under substitution. A TRS R(D;C;R) is terminating, if

� l%r for all rules l ! r in R,

� s% t for all dependency pairs hs; ti on a cycle of the dependency graph, and

� s � t for at least one dependency pair hs; ti on every cycle of the dependency

graph.

Proof. Suppose there is an in�nite R-chain, then this in�nite chain corresponds

to an in�nite path in the dependency graph. This in�nite path traverses at least

one cycle in�nitely many times, since there are only �nitely many dependency

pairs. Every cycle has at least one dependency pair hs; ti with s � t and there-

fore one such dependency pair occurs (up to renaming of the variables) in�nitely

many times in an in�nite R-chain. Thus the in�nite chain must have the form

: : : hs; ti : : : hs�

1

; t�

1

i : : : hs�

2

; t�

2

i : : : where �

1

; �

2

; : : : are renamings. There ex-

ists a substitution � such that for all consecutive dependency pairs hs

i

; t

i

i and

hs

i+1

; t

i+1

i we have t

i

� !

�

R

s

i+1

�. This implies t

i

�% s

i+1

�, because !

�

R

� %

(as in Thm. 5). Without loss of generality we may assume that the dependency

pairs following hs; ti in the chain all occur on cycles of the graph. Hence, we

obtain s� � t� %s�

1

� � t�

1

�%s�

2

� � t�

2

�% : : : This is a contradiction to the

well-foundedness of �. Hence, no in�nite R-chain exists and by Thm. 4 R is

terminating. ut

However, to perform termination proofs according to Thm. 7, we would have

to construct the dependency graph automatically. Unfortunately, in general this

is not possible, since for given terms t; u it is undecidable whether there exists a

substitution � such that t� !

�

R

u�.

Therefore, we introduce a technique to approximate the dependency graph,

i.e. the technique computes a superset of those pairs t; u where t� !

�

R

u� holds

for some substitution �. We call terms t; u suggested by our technique connectable

terms. In this way, (at least) all cycles that occur in the dependency graph and

hence all possibly in�nite chains can be determined. So by computing a graph

containing the dependency graph we can indeed apply the method of Thm. 7

for automated termination proofs.

For the computation of connectable terms we use syntactic uni�cation. This

uni�cation is not performed on the terms of the dependency pairs directly, but

we unify a modi�cation of these terms instead. If t is a term with a constructor

8



root symbol c, then t� can only be reduced to terms which have the same root

symbol c. If the root symbol of t is de�ned, then this does not give us any

direct information about those terms t� can be reduced to. For that reason, to

determine whether the term t is connectable to u, we replace all subterms in

t that have a de�ned root symbol by a new variable and check whether this

modi�cation of t uni�es with u.

For example, SUM(: : :) is not connectable to PLUS(x; y). On the other hand,

SUM(sum(: : :)) would be connectable to SUM(x.y.l) (because before uni�cation,

sum(: : :) would be replaced by a new variable).

In order to ensure that t is connectable to u whenever there exists a substitu-

tion � such that t� !

�

R

u�, before uni�cation we also have to rename multiple

occurrences of the same variable. As an example consider the following TRS

from [Toy87].

f(0; 1; x)! f(x; x; x)

g(x; y)! x

g(x; y)! y

The only dependency pair, viz. hF(0; 1; x);F(x; x; x)i, is on a cycle of the depen-

dency graph, because F(x; x; x)� reduces to F(0; 1; x

0

)�, if � replaces x and x

0

by g(0; 1). Note however that F(x; x; x) does not unify with F(0; 1; x

0

), i.e. if we

would not rename F(x; x; x) to F(x

1

; x

2

; x

3

) before the uni�cation, then we could

not determine this cycle of the dependency graph and we would falsely conclude

termination of this (non-terminating) TRS.

De�nition 8 (Connectable Terms). For any term t, let cap(t) result from

replacing all subterms of t that have a de�ned root symbol by di�erent new

variables and let ren(t) result from replacing all variables in t by di�erent fresh

variables. In particular, di�erent occurrences of the same variable are also re-

placed by di�erent new variables. The term t is connectable to the term u i�

ren(cap(t)) and u are uni�able.

For example, we have cap(SUM((x + y).l.l)) = SUM(z.l.l) and by also re-

placing the variables by fresh ones, we have ren(cap(SUM((x + y).l.l))) =

SUM(z.l

1

.l

2

). As ren(t) is always a linear term, to check whether two terms

are connectable we can even use a uni�cation algorithm without occur check.

To approximate the dependency graph, we draw an arc from a dependency

pair hs; ti to hu; vi whenever t is connectable to u. In this way, for our example

a graph containing the dependency graph of Fig. 1 is constructed automatically

(where there are additional arcs from (5) to (3), (4), and itself). In this way, ter-

mination of the TRS can be proved automatically (because (5) is also decreasing

w.r.t. the mentioned polynomial ordering).

The following theorem proves the soundness of this approach: by computing

connectable terms we in fact obtain a supergraph of the dependency graph. Using

this supergraph, we can now prove termination according to Thm. 7.

Theorem9 (Computing Dependency Graphs). Let R be a TRS and t; u

terms. If a substitution � exists such that t� !

�

R

u�, then t is connectable to u.

9



Proof. By induction on the structure of t we prove that if t� !

�

R

v for some

term v, then ren(cap(t)) matches v. Thus, in particular, if t� !

�

R

u�, then

ren(cap(t)) matches u�. As ren(cap(t)) only contains new variables, this im-

plies that ren(cap(t)) and u are uni�able.

Assume that t� !

�

R

v for some term v. If t is a variable or if t = f(t

1

; : : : ; t

k

)

for some de�ned symbol f , then ren(cap(t)) is a variable, hence it matches v.

If t = c(t

1

; : : : ; t

k

) for some constructor c, then ren(cap(t)) = c(ren(cap(t

1

));

: : : ;ren(cap(t

k

))): In this case, v has to be of the form c(v

1

; : : : ; v

k

) and t

i

� !

�

R

v

i

holds for all i. By the induction hypothesis we obtain that ren(cap(t

i

))

matches v

i

. Since the variables in ren(cap(t

i

)) are disjoint from the variables

in ren(cap(t

j

)) for all i 6= j, ren(cap(t)) also matches v. ut

6 Related Work

The concept of dependency pairs was introduced in [Art96] and a �rst method

for its automation was proposed in [AG96a]. However, these approaches were re-

stricted to non-overlapping constructor systems without nested recursion, where-

as in the present paper we extended the technique to arbitrary TRSs.

There is a relation between dependency pairs and semantic labelling [Zan95],

because the dependency pairs correspond to the labels of a TRS labelled by the

process of self -labelling. But in contrast to the approaches of [Art96, AG96a],

our new termination criterion is no longer directly based on semantic labelling.

Therefore this new criterion is better suited for automation (as one does not have

to construct a suitable semantic interpretation any more) and its soundness can

be proved in a much easier and shorter way. Moreover, by the introduction

of dependency graphs we obtained a considerably more powerful automated

technique than the method proposed in [AG96a].

Recently, we also developed a method for proving innermost normalisation

using dependency pairs [AG97], which can be applied for termination proofs,

too. However, this can only be done for non-overlapping TRSs (where innermost

normalisation is su�cient for termination), whereas the technique described in

the present paper can be used for arbitrary rewrite systems.

Most other methods for automated termination proofs are restricted to sim-

pli�cation orderings. Instead of using these methods to prove termination di-

rectly, it is always advantageous to combine them with the technique presented

in this paper. The reason is that for all those TRSs where termination could be

proved with a simpli�cation ordering directly, this simpli�cation ordering also

satis�es the inequalities resulting from our technique.

We have presented a sound and complete termination criterion. In contrast

to most other complete approaches (semantic path ordering [KL80], general path

ordering [DH95], semantic labelling [Zan95] etc.) our method is particularly well

suited for automation as has been demonstrated in this paper. The only other

complete criterion that has been used for automatic termination proofs (by J.

Steinbach [Ste95a]) is the approach of transformation orderings [BL90]. It turns

out that the termination of several examples where the automation of Steinbach

failed can be proved by our technique automatically, cf. [AG96b].

10



At �rst sight there seem to be some similarities between our method and

forward closures [LM78, DH95]. The idea of forward closures is to restrict the

application of rules to that part of a term created by previous rewrites. Similar

to our notion of chains, this notion also results in a sequence of terms, but

the semantics of these sequences are completely di�erent. For example, forward

closures are reductions whereas in general the terms in a chain do not form

a reduction. The reason is that in the dependency pair approach we do not

restrict the application of rules, but we restrict the examination of terms to

those subterms that can possibly be reduced further. Compared to the forward

closure approach, the dependency pair technique has the advantage that it can be

used for arbitrary TRSs, whereas the absence of in�nite forwards closures only

implies termination for right-linear [Der81] or non-overlapping [Geu89] TRSs.

Moreover, in contrast to the dependency pair method, we do not know of any

attempt to automate the forward closure approach.

7 Conclusion

We have developed a method for automated termination proofs of term rewriting

systems. Based on the concept of dependency pairs we developed a termination

criterion and we showed how the checking of this criterion can be automated:

First, the dependency pairs are determined automatically. Second, the depen-

dency graph is approximated by computing the `connectable terms'. Third, well-

known graph algorithms are used to determine those dependency pairs that are

on a cycle of the dependency graph. Fourth, a set of inequalities is generated

from the dependency pairs that occur on a cycle. Fifth, standard techniques, like

polynomial interpretations or path orderings, are used to synthesize an ordering

that satis�es the inequalities.

Our technique transforms a TRS into a set of inequalities that only has to

be satis�ed by a well-founded weakly monotonic quasi-ordering closed under

substitution. Compared to proving termination directly, our approach has the

advantage that these inequalities are often satis�ed by standard (simpli�cation)

orderings, even if termination of the original TRS cannot be proved with these

orderings. Moreover, if termination of the TRS could be proved by synthesizing

a simpli�cation ordering directly, then the inequalities obtained by our technique

are also satis�ed by this ordering.

We implemented our procedure and in this way termination could be proved

automatically for many challenge problems from literature as well as for nu-

merous practically relevant TRSs from di�erent areas of computer science. A

collection of 42 such examples, including arithmetical operations (e.g. mod, gcd,

logarithm, average), sorting algorithms (such as selection sort, minimum sort, and

quicksort), algorithms on graphs and trees, and several other well-known non-

simply terminating TRSs (e.g. from [Der87, Ste95a, DH95]), can be found in

[AG96b]. In 80 % of these examples, methods for the synthesis of path orderings

could be applied to generate an ordering satisfying the inequalities resulting from

our technique (whereas for the other examples we used polynomial orderings).
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