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Abstract. The termination and complexity competition (termCOMP)
focuses on automated termination and complexity analysis for various
kinds of programming paradigms, including categories for term rewriting,
integer transition systems, imperative programming, logic programming,
and functional programming. In all categories, the competition also wel-
comes the participation of tools providing certifiable output. The goal of
the competition is to demonstrate the power and advances of the state-
of-the-art tools in each of these areas.

1 Introduction

Termination and complexity analysis have attracted a lot of research since the
early days of computer science. In particular, termination for the rewriting model
of computation is essential for methods in equational reasoning: the word prob-
lem [18] asks for convertibility with respect to a rewrite system, and some in-
stances can be solved by a completion procedure where termination needs to
be checked in each step [34]. Term rewriting is the basis of functional program-
ming [42], which, in turn, is the basis of automated theorem proving [13]. As
early examples for the importance of termination in other domains and models
of computation we mention that completion is used in symbolic computation for
the construction of Gröbner Bases for polynomial ideals [15], and that bound-
edness of Petri Nets can be modeled by termination of vector addition systems,
which is decidable [33].

Both termination and complexity (or resource consumption) are very relevant
properties for many computation systems and keep being the focus of interest
in newly emerging technologies. For instance, complexity analyzers are applied
to analyze large Java programs in order to detect vulnerabilities [45].
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Another particularly interesting example are smart contracts in blockchains,
which are becoming very popular. Providing tools for analyzing their termi-
nation and bounding their resource consumption is critical [2]. For example,
transactions that run out-of-gas in the Ethereum blockchain platform throw an
exception, their effect is reverted, and the gas consumed up to that point is lost.

Deciding the (uniform) termination problem is to determine whether a given
program has only finite executions for all possible inputs. Termination is a well-
known undecidable property for programs written in any Turing complete lan-
guage, and any complexity analyzer must include termination analysis as well.
Despite this challenging undecidable scenario, powerful automatic tools for many
different formalisms are available nowadays.

History of termCOMP. After a tool demonstration at the Termination Work-
shop 2003 (Valencia) organized by Albert Rubio, the community decided to
hold an annual termination competition and to collect benchmarks in order to
spur the development of tools and new termination techniques. Since 2004 the
competition, known as termCOMP, has been organized annually, with usually
between 10 and 20 tools participating in the different categories on termination,
complexity, and/or certification. The actual organizers of the competition have
been Claude Marché (from 2004 to 2007), René Thiemann (from 2008 to 2013),
Johannes Waldmann (from 2014 to 2017), and Akihisa Yamada (since 2018).
Recent competitions have been executed live during the main conferences of the
field (at FLoC 2018, FSCD 2017, WST 2016, CADE 2015, VSL 2014, RDP 2013,
IJCAR 2012, RTA 2011, and FLoC 2010). Information on all termination and
complexity competitions is available from http://termination-portal.org/.

Computational resources for the execution of the competition have been pro-
vided by LRI, Université Paris-Sud (from 2004 to 2007) and by the University
of Innsbruck (from 2008 to 2013). Since 2014, the competition runs on StarExec,
a cross-community service at the University of Iowa for the evaluation of auto-
mated tools based on formal reasoning. It provides a single piece of storage and
computing infrastructure to the communities in computational logic developing
such tools [48].

From 2014 to 2017, competition results were presented using a separate web
application star-exec-presenter developed at HTWK Leipzig [40], giving both an
aggregated view of results, as well as detailed results per category. Additionally,
it provides options for sorting and selecting subsets of benchmarks and solvers
according to various criteria, as well as for comparing results of various compe-
titions and/or test runs. This helps to estimate progress and to detect inconsis-
tencies. Since 2018, starexec-master [50] (the successor of star-exec-presenter) is
in use (see Figure 1 in Section 2).

Competition Benchmarks. The benchmarks used to run the competition on are
collected in the Termination Problem Data Base (TPDB for short), which was
originally created by Claude Marché, Albert Rubio, and Hans Zantema, and
later on maintained, extended, and reorganized by René Thiemann, Johannes
Waldmann, and Akihisa Yamada. Many researchers have contributed with new

2

http://termination-portal.org/


benchmarks over the years. The current version of TPDB (10.6) contains a total
of 43,112 benchmarks and extends over 674 MByte (uncompressed).

The termination competitions started with categories on termination of string
rewrite systems (SRSs) and term rewrite systems (TRSs). Apart from stan-
dard rewriting, there were also categories based on adding strategies and ex-
tensions like equational, innermost, or context-sensitive rewriting. Further cate-
gories were introduced afterwards, including, for instance, higher-order rewriting
(since 2010) and cycle rewriting (since 2015). Categories on complexity analysis
of rewrite systems were added in 2008.

Regarding analysis tools for programming languages, a category on termina-
tion of logic programs was already part of the competition in 2004. Categories for
other programming paradigms were introduced later: since 2007 there is a cate-
gory for functional (Haskell) programs, since 2009 termination of Java programs
is also considered, and since 2014 C programs are handled as well. Moreover,
back-end languages like integer transition systems (ITSs) or integer term rewrit-
ing are part of termCOMP since 2014. Last but not least, complexity analysis
categories for some of these languages have also been included recently.

Finally, the first certification categories on rewriting were included in 2007
and have been extended to some other languages and formalisms over the years.

Overview. In the remainder of this paper we will

• describe the organization of termCOMP in its 2019 edition (Section 2),
• give a detailed account of the categories in the used benchmark collection

(Section 3),
• and give an overview on the tools and techniques at the previous term-
COMP 2018 (Section 4).

2 Organization of the Competition

In 2019 we plan to run the competition on StarExec again. Each tool will be run
on all benchmarks of the categories it is registered for, with a wall-clock timeout
of 300 seconds per example. Tools are expected to give an answer in the first
line of their standard output, followed by a justification for their answer.

In termination categories, the expected answers are YES (indicating termina-
tion), NO (indicating nontermination), and MAYBE (indicating that the tool had
to give up). Each YES or NO answer will score one point, unless it turns out to
be incorrect. Each incorrect answer scores −10 points.

In complexity categories, an answer specifies either or both upper- and lower-
bound (worst-case) complexity. The score of an answer is the sum of the scores
for the upper-bound and lower-bound, each of which depends on the number of
other participants. Details of the answer format and scoring scheme are available
at http://cbr.uibk.ac.at/competition/rules.php.

In contrast to previous years, we will not run the competition live but before
the TACAS conference takes place. We reserve about two weeks for resolving
technical issues, analyzing conflicting answers, and debugging. If participants
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fail to agree on the treatment of conflicts, the steering committee will finally
decide which answer will be penalized.

The competition results will be presented using the starexec-master web front
end [50], see Figure 1.

Fig. 1. The starexec-master web front end summarizing the 2018 competition

3 Categories

Benchmarks are grouped in the TPDB according to the underlying computa-
tional model (rewriting or programming) and to the aim of the analysis (ter-
mination or complexity). This organization results in the following three meta
categories since termCOMP 2014: termination of rewriting , termination of pro-
grams, and complexity analysis. (A further split of complexity analysis into two
meta categories “complexity of rewriting” and “complexity of programs” might
be considered in the future if there are categories concerning the complexity of
several different programming languages.)

Roughly speaking, the two termination meta categories cover, on the one
hand, termination of different flavors of rewriting according to various strategies
(termination of rewriting), and on the other hand, termination of actual pro-
gramming languages as well as related formalisms (termination of programs).
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Which categories of a given meta category are actually run during a com-
petition depends on the registered participants. Any category with at least two
participants is run as part of its associated meta category. Of course, it is de-
sirable to have as many participants as possible and therefore all developers of
termination and complexity analysis tools are strongly encouraged to participate
in the competition. In addition, as a special case, all those categories having only
a single participant are collected into the auxiliary demonstration meta category.
(While demonstration categories are not considered for computing scores and are
thus not part of a competition in terms of awards or medals, this at least allows
us to make unique tools visible to the outside world.)

Independent of their respective meta categories, there are several categories
that come also in a special certified variant (marked by � below). Before 2007,
the standard approach of participating tools was to give some textual justifica-
tion for their answers. However, there was no consensus on the format or the
amount of detail for such justifications. Automated termination and complexity
tools are rather complex programs. They are typically tuned for efficiency using
sophisticated data structures and often have short release cycles facilitating the
quick integration of new techniques. So, why should we trust such tools? Certifi-
cation is the answer to this question. Tools that participate in certified categories
are required to produce their justifications in a common format, the certification
problem format, or CPF [46] for short. Justifications in this format are usually
called certificates. To make sure that certificates are correct, certified categories
employ a certifier—an automated tool that is able to rigorously validate a given
certificate. For recent editions of termCOMP this certifier is CeTA [6,49], short
for “certified tool assertions”. Its reliability is due to the fact that its correctness
has been established using the proof assistant Isabelle/HOL [43]. In the past,
other certifiers like CoLoR/Rainbow [11] and CiME/Coccinelle [17], formalized in
Coq [8], were used as well.

3.1 Termination of Rewriting

There are many different flavors of term rewriting and strategies for applying
rewrite rules. Many of those have their own categories.

For standard term rewrite systems, there are categories for plain rewrit-
ing (TRS Standard �), relative rewriting (TRS Relative �), rewriting modulo
equational theories (TRS Equational �), conditional term rewriting (TRS Condi-
tional), context-sensitive rewriting (TRS Context Sensitive), innermost rewriting
(TRS Innermost �), and outermost rewriting (TRS Outermost �). There is also
a category for higher-order rewriting systems (HRS (union beta)).

Concerning string rewrite systems, there are categories for plain rewriting
(SRS Standard�), relative rewriting (SRS Relative�), and cycle rewriting (Cycle
Rewriting).
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3.2 Termination of Programs

Regarding programming languages and related formalisms, there are categories
for C programs (C), C programs restricted to integers (C Integer), Java Bytecode
(Java Bytecode), Prolog programs (Prolog), Haskell programs (Haskell), integer
transition systems (Integer Transition Systems), and innermost rewriting with
integer term rewrite systems (Integer TRS Innermost). Concerning termination
of C programs, there is an “overlap” with the SV-COMP competition,6 where
however the focus of the two competitions is different, since SV-COMP consid-
ers all kinds of verification tasks for C programs, whereas termCOMP considers
termination of all kinds of programming languages. Usually, SV-COMP runs in
winter and termCOMP runs in summer, such that in each of the competitions
the new current state-of-the-art of C termination analysis is represented.

3.3 Complexity Analysis

With respect to complexity analysis, there are categories for integer transition
systems (Complexity: ITS), C programs restricted to integers (Complexity: C In-
teger), runtime complexity of term rewrite systems (Runtime Complexity: TRS
�), runtime complexity of innermost rewriting (Runtime Complexity: TRS In-
nermost �), and derivational complexity of term rewrite systems (Derivational
Complexity: TRS �).

4 Tools and Techniques

In this section, we give an overview on the tools that participated in the last
edition, termCOMP 2018, of the competition and highlight the main techniques
used by these tools.

4.1 Termination of Rewriting

In 2018, eight tools participated in categories devoted to term rewriting. On
the one hand, some tools are specifically designed for certain variants of rewrit-
ing (e.g., MultumNonMulta only handles string rewrite systems, whereas Wanda,
SOL, and SizeChangeTool are mainly designed for higher-order rewriting). On the
other hand, the tools AProVE, TTT2, NaTT, and MU-TERM participated in cate-
gories for many different variants of term rewrite systems. To prove termination
of TRSs, the tools use both classical reduction orderings as well as more recent
powerful improvements like dependency pairs [3], matrix interpretations [20],
match-bounds [26], etc. To generate the required orderings automatically, the
tools typically apply existing SAT and SMT solvers.

More precisely, AProVE [27] and TTT2 [39] implement the dependency pair
framework [28,30] which performs termination proofs in a modular way and
allows the tool to apply different termination techniques for each sub-proof.

6 See https://sv-comp.sosy-lab.org
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NaTT [51] combines the dependency pair framework with the weighted path or-
der [52]. MU-TERM [1] is particularly suitable for TRSs with modified reduction
relations (like innermost, context-sensitive, equational, or conditional rewrit-
ing). The goal of the tool MultumNonMulta [31] is to demonstrate the power of
a few selected methods based on matrix interpretations for termination analy-
sis of string rewrite systems. WANDA [35] implements higher-order termination
techniques based on dependency pairs [38] and higher-order orderings [32], and
applies an external first-order termination tool (AProVE) as a back-end [25]. The
tool SOL [29] uses an extended notion of reducibility [9] for termination proofs of
rules derived from second-order algebraic theories. Finally, SizeChangeTool [10]
extends the size-change termination principle [41] to higher-order rewriting.

4.2 Termination of Programs

In 2018, two tools (AProVE and UltimateAutomizer) participated in the cate-
gory for termination of full C programs (which may include low-level memory
operations). For C programs that only operate on integers, in addition to the
two tools above, the tool VeryMax participated as well. The categories for ter-
mination of other programming languages (Java, Haskell, and Prolog) were only
run as a demonstration, since in that year, only the tool AProVE analyzed their
termination.

For all of these programming languages, AProVE uses an approach to trans-
form the original program into a simple back-end language (an integer transition
system or a combination of ITSs and TRSs) and to prove termination of the re-
sulting back-end system instead [47]. In contrast, the tool UltimateAutomizer [16]
uses a generalization of program paths to Büchi Automata in order to remove
terminating paths. VeryMax [12] is based on a framework which allows to com-
bine conditional termination proofs obtained using Max-SMT solvers in order to
generate an (unconditional) termination proof of the program.

Termination of ITSs was analyzed by the tools VeryMax, iRankFinder, and
Ctrl. Moreover, Ctrl and AProVE also analyzed termination of systems that com-
bine ITSs and TRSs. Here, iRankFinder [19] generates lexicographic combinations
of ranking functions and ranks transitions incrementally [7]. Ctrl [37] and AProVE
prove termination of TRSs extended by built-in integers by suitable adaptions
of termination techniques for ordinary TRSs [24,36].

4.3 Complexity Analysis

Complexity of ITSs and of C programs on integers was analyzed by CoFloCo
and AProVE, where AProVE applies two integrated sub-tools KoAT and LoAT
to infer upper and lower runtime bounds for integer programs, respectively. The
tool CoFloCo [21] uses a modeling with cost relations to infer amortized cost
bounds, whereas KoAT [14] infers both upper runtime and size bounds for parts
of the program in an alternating way. Lower bounds on the worst-case runtime
are inferred by LoAT [23] by simplifying programs using an adaption of ranking
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functions for lower bounds, and by a subsequent inference of asymptotic lower
bounds for the resulting simplified programs.

Runtime complexity of TRSs was analyzed by AProVE and TCT. While run-
time complexity only considers evaluations that start with basic terms (where
“algorithms” are applied to “data objects”), TCTalso analyzed derivational com-
plexity of arbitrary evaluations in corresponding demonstration categories. For
complexity analysis, both AProVE and TCT [5] use techniques which originate
from termination analysis of TRSs and which are adapted in order to infer up-
per bounds on the number of evaluation steps [4,44]. Moreover, the tools also
infer lower bounds on the (worst-case) runtime using an extension of the con-
cept of loops in order to detect rules that are guaranteed to result in certain
asymptotic lower bounds [22].

5 Conclusion

In this short paper, we gave a brief summary of the termination and complexity
competition (termCOMP), described its organization and its different categories,
and presented an overview on recent tools that participated in the competition.
The competition is always open to introduce new categories in order to reflect
the continuing development in the area. It also welcomes the submission of new
termination and complexity problems, especially problems that come from appli-
cations. Thus, it strives to remain the main competition in the field of automated
termination and complexity analysis.
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8. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Springer (2004), https://doi.
org/10.1007/978-3-662-07964-5

9. Blanqui, F.: Termination of rewrite relations on λ-terms based on Girard’s notion
of reducibility. Theoretical Computer Science 611, 50–86 (2016), https://doi.

org/10.1016/j.tcs.2015.07.045
10. Blanqui, F., Genestier, G.: Termination of λΠ modulo rewriting using the size-

change principle. In: Proc. WST ’18. pp. 10–14 (2018), http://wst2018.webs.

upv.es/wst2018proceedings.pdf
11. Blanqui, F., Koprowski, A.: CoLoR: a Coq library on well-founded rewrite re-

lations and its application to the automated verification of termination cer-
tificates. Mathematical Structures in Computer Science 21(4), 827–859 (2011),
https://doi.org/10.1017/S0960129511000120

12. Borralleras, C., Brockschmidt, M., Larraz, D., Oliveras, A., Rodŕıguez-Carbonell,
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