$\{L_1,\ldots,L_n\}$ unifizierbar gdw. es ex. σ mit $\sigma(L_1)=\ldots=\sigma(L_n)$ σ ist mgu gdw. für jeden Unifikator σ' ex. Substitution δ mit $\sigma'=\delta\circ\sigma$

Unifikationsalgorithmus

- 1. Sei $\sigma = \emptyset$ die "identische" Substitution.
- 2. Falls $|\sigma(K)| = 1$, brich ab und gib σ aus.
- 3. Sonst durchsuche alle $\sigma(L_i)$ parallel von links nach rechts, bis in zwei Literalen die gelesenen Zeichen verschieden sind.
- 4. Falls keines der Zeichen Variable ist, brich mit Clash Failure ab.
- 5. Sonst sei X die Variable und t der Teilterm im anderen Literal. Falls X in t vorkommt, brich mit Occur Failure ab.
- 6. Sonst setze $\sigma = \{X/t\} \circ \sigma$ und gehe zurück zu Schritt 2.

Prädikatenlogische Resolution

R ist *Resolvent* von K_1 und K_2 gdw.

- ullet $u_1(K_1)$ und $u_2(K_2)$ haben keine gemeinsamen Variablen
- $L_1,\ldots,L_m\in\nu_1(K_1)$, $L'_1,\ldots,L'_n\in\nu_2(K_2)$ mit $n,m\geq 1$ und $\{\overline{L_1},\ldots,\overline{L_m},L'_1,\ldots,L'_n\}$ hat mgu σ
- $R = \sigma((\nu_1(K_1) \setminus \{L_1, \dots, L_m\}) \cup (\nu_2(K_2) \setminus \{L'_1, \dots, L'_n\}))$

Beispiel

$$\{\underline{\mathsf{p}(\mathsf{f}(X))},\, \neg \mathsf{q}(Z),\, \underline{\mathsf{p}(Z)}\} \qquad \qquad \{\underline{\neg \mathsf{p}(X)},\, \mathsf{r}(\mathsf{g}(X))\}$$

$$\qquad \qquad \nu_1 = \varnothing$$

$$\{\neg \mathsf{q}(\mathsf{f}(X)),\, \mathsf{r}(\mathsf{g}(\mathsf{f}(X)))\} \qquad \qquad \nu_2 = \{X/U\}$$

$$\sigma = \{Z/\mathsf{f}(X),\, U/\mathsf{f}(X)\}$$