
Logic Programming WS 2010/2011
Exam 23.02.2011

aaProf. Dr. Jürgen Giesl Carsten Fuhs, Carsten Otto, Thomas Ströder

Master Exam Version V4

First Name:

Last Name:

Immatriculation Number:

Course of Studies (please mark exactly one):

◦ SSE Master ◦ Other:

Maximal Points Achieved Points
Exercise 1 10
Exercise 2 9
Exercise 3 6
Exercise 4 10
Exercise 5 5
Exercise 6 10
Exercise 7 10
Total 60
Grade -

Instructions:

• On every sheet please give your first name, last name, and immatriculation number.

• You must solve the exam without consulting any extra documents (e.g., course notes).

• Make sure your answers are readable. Do not use red or green pens or pencils.

• Please answer the exercises on the exercise sheets. If needed, also use the back sides of the
exercise sheets.

• Answers on extra sheets can only be accepted if they are clearly marked with your name, your
immatriculation number, and the exercise number.

• Cross out text that should not be considered in the evaluation.

• Students that try to cheat do not pass the exam.

• At the end of the exam, please return all sheets together with the exercise sheets.

1



Logic Programming WS 2010/2011
Exam 23.02.2011

Name: Immatriculation Number:

Exercise 1 (Theoretical Foundations): (3 + 3 + 4 = 10 points)

Let ϕ = q(0, s(0))∧∀X, Y (q(X, Y )→ q(s(X), s(Y ))) and ψ = ∃Z q(s(Z), s(s(Z))) be formulas over
the signature (Σ,∆) with Σ = Σ0 ∪Σ1,Σ0 = {0},Σ1 = {s}, and ∆ = ∆2 = {q}.

a) Prove that ϕ |= ψ by means of resolution.

Hint: First transform the formula ϕ ∧ ¬ψ into an equivalent clause set.

b) Explicitly give a Herbrand model of the formula ϕ (i.e., specify a carrier and a meaning for all
function and predicate symbols). You do not have to provide a proof for your answer.

c) Prove or disprove that input resolution is complete for arbitrary clause sets.

2



Logic Programming WS 2010/2011
Exam 23.02.2011

Name: Immatriculation Number:

Exercise 2 (SLD tree): (9 points)

Consider the following Prolog program P which can be used to sort a list of numbers using the bubblesort
algorithm:

bubble(L, R) :- swap(L, N), !, bubble(N, R).
bubble(L, L).
swap([A,B|L]), [B,A|L]) :- B < A.
swap([A|L], [A|N]) :- swap(L, N).

Please give a graphical representation of the SLD tree for the query ?- bubble([2, 1], X). in the
program P.
Hint: As usual, you should treat < as if it were defined by the infinitely many facts

0 < 1.
1 < 2.
0 < 2.
...

3



Logic Programming WS 2010/2011
Exam 23.02.2011

Name: Immatriculation Number:

Exercise 3 (Fixpoint Semantics): (3 + 3 = 6 points)

Consider the following logic program P over the signature (Σ,∆) with Σ = {0, s} and ∆ = {gt}.

gt(s(X), 0).
gt(s(X), s(Y)) :- gt(X, Y).

a) For each n ∈ N explicitly give transnP(∅) in closed form, i.e., using a non-recursive definition.

b) Compute the set lfp(transP).

4



Logic Programming WS 2010/2011
Exam 23.02.2011

Name: Immatriculation Number:

Exercise 4 (Definite Logic Programming): (10 points)

Implement the predicate solve/1 in Prolog. This predicate can be used as a primitive SAT-solver for
clause sets represented as lists of lists of literals. More precisely, a clause set is a list t of the form
[[l11 , l

1
2 , . . . , l

1
k1

], [l21 , l
2
2 , . . . , l

2
k2

], . . . , [ln1 , l
n
2 , . . . , l

n
kn

]]

where all l ji are of the form pos(X) or neg(X) for some Prolog variables X. The list t represents a set
of clauses where pos(X) stands for the propositional variable X while neg(X) stands for its negation.
A call solve(t) succeeds with a substitution satisfying the represented clause set t (by setting the
variables to 1 or 0) if this set is satisfiable or fails if this set is unsatisfiable. If t does not represent a
clause set as described above, then solve(t) may behave arbitrarily. You must not use any built-in
predicates in this exercise. The following example calls to solve/1 illustrate its definition:

• ?- solve([[pos(A),pos(B)],[neg(A),neg(B)]]). has the two answer substitutions
A = 1, B = 0 and A = 0, B = 1 (the order of the solutions is up to your implementation)

• ?- solve([[pos(A)],[neg(A)]]). fails

Hint: In this representation, a clause is satisfied if it contains at least one literal of the form pos(1) or
neg(0). Moreover, a clause set is satisfied if all its clauses are satisfied. It might be useful to implement
this predicate in a way that the following example calls work as described below, although this is not
mandatory.

• ?- solve([[pos(1),pos(B)],[neg(1),neg(B)]]). succeeds with the answer substitution
B = 0

• ?- solve([[pos(1),pos(0)],[neg(1),neg(0)]]). succeeds with the empty answer substi-
tution

5



Logic Programming WS 2010/2011
Exam 23.02.2011

Name: Immatriculation Number:

Exercise 5 (Arithmetic): (5 points)

Implement the predicate binomial/3 in Prolog. A call of binomial(t1,t2,t3) works as follows. If t1
and t2 are integers with t1 < t2 or at least one of t1 or t2 is negative, then it fails. If t1 and t2 are

non-negative integers with t1 ≥ t2, then t3 is unified with the integer resulting from
(
t1
t2

)
. If t1 or t2 is

no integer, binomial/3 may behave arbitrarily.

Remember that the binomial coefficient
(
n

k

)
for non-negative integers n and k with n ≥ k is defined

as
(
n

k

)
=

n!

k!(n − k)!
with 0! = 1.

The following example calls to binomial/3 illustrate its definition:

• ?- binomial(-3,2,X). fails

• ?- binomial(2,3,X). fails

• ?- binomial(3,2,X). succeeds with the answer substitution X = 3

• ?- binomial(3,2,1). fails

6



Logic Programming WS 2010/2011
Exam 23.02.2011

Name: Immatriculation Number:

Exercise 6 (Meta-Programming): (10 points)

Implement the predicate map/2 in Prolog. A call of map(t1,t2) works as follows. If t1 is a constant
f ∈ Σ0 and t2 has the form [a1, . . . , an], then the calls f (a1), . . . , f (an) are executed. That means
we assume that there is also a predicate symbol f ∈ ∆1 (with the same name as f ∈ Σ0). Thus,
map(f ,[a1, . . . , an]) succeeds iff the query f (a1), . . . , f (an) succeeds. If t1 or t2 are not of the form
described above, map/2 may behave arbitrarily.
For example, the query ?- map(foo,[a,b,c]). is evaluated by executing the three calls foo(a),
foo(b) and foo(c), while the query ?- map(foo,[]). succeeds immediately.

Hint: You may use the built-in predicate =../2.

7



Logic Programming WS 2010/2011
Exam 23.02.2011

Name: Immatriculation Number:

Exercise 7 (Constraint Logic Programming): (10 points)

A magic square is a matrix of dimension n×n containing all numbers from 1 to n2 such that the sum of
each row and of each column is n(n

2+1)
2 . For instance, consider the following magic square of dimension

3× 3:  1 8 6

9 4 2

5 3 7


We represent such a square as a list of concatenated rows. For example, the above square would be
represented as follows:

[1, 8, 6, 9, 4, 2, 5, 3, 7]

Implement a Prolog predicate magic/1 such that the query ?- magic(L). has exactly those lists L as
answers that represent a magic square of dimension 3 × 3. Thus, for a correct implementation we get
the following answers to the query (the order of the solutions depends on your implementation):

?- magic(L).
L = [1, 5, 9, 6, 7, 2, 8, 3, 4] ;
L = [1, 5, 9, 8, 3, 4, 6, 7, 2] ;
L = [1, 6, 8, 5, 7, 3, 9, 2, 4] ;

...

Hint: The query ?- magic(L). has more than 70 solutions.
Hint: You may use constraint logic programming for your implementation, but you are not required to
do so. Recall that the CLP library clpfd contains predicates like all_different/1, label/1, the infix
predicate ins/2, . . .

The following line is already given:

:- use_module(library(clpfd)).

8


