

Prof. Dr. Jürgen Giesl

Carsten Fuhs, Carsten Otto, Thomas Ströder

Master Exam Version V4

First Name:

Last Name:

Immatriculation Number:_____

Course of Studies (please mark exactly one):

• SSE Master

• Other: ____

	Maximal Points	Achieved Points
Exercise 1	10	
Exercise 2	9	
Exercise 3	6	
Exercise 4	10	
Exercise 5	5	
Exercise 6	10	
Exercise 7	10	
Total	60	
Grade	-	

Instructions:

- On every sheet please give your first name, last name, and immatriculation number.
- You must solve the exam without consulting any extra documents (e.g., course notes).
- Make sure your answers are readable. Do not use red or green pens or pencils.
- Please answer the exercises on the **exercise sheets**. If needed, also use the back sides of the exercise sheets.
- Answers on extra sheets can only be accepted if they are clearly marked with your name, your immatriculation number, and the **exercise number**.
- **Cross out** text that should not be considered in the evaluation.
- Students that try to cheat **do not pass** the exam.
- At the end of the exam, please return all sheets together with the exercise sheets.

Exercise 1 (Theoretical Foundations):

(3 + 3 + 4 = 10 points)

Let $\varphi = q(0, s(0)) \land \forall X, Y(q(X, Y) \rightarrow q(s(X), s(Y)))$ and $\psi = \exists Z q(s(Z), s(s(Z)))$ be formulas over the signature (Σ, Δ) with $\Sigma = \Sigma_0 \cup \Sigma_1, \Sigma_0 = \{0\}, \Sigma_1 = \{s\}$, and $\Delta = \Delta_2 = \{q\}$.

a) Prove that $\varphi \models \psi$ by means of resolution.

Hint: First transform the formula $\varphi \land \neg \psi$ *into an equivalent clause set.*

- **b)** Explicitly give a Herbrand model of the formula φ (i.e., specify a carrier and a meaning for all function and predicate symbols). You do not have to provide a proof for your answer.
- c) Prove or disprove that input resolution is complete for arbitrary clause sets.

Exercise 2 (SLD tree):

(9 points)

Consider the following Prolog program \mathcal{P} which can be used to sort a list of numbers using the *bubblesort* algorithm:

bubble(L, R) :- swap(L, N), !, bubble(N, R). bubble(L, L). swap([A,B|L]), [B,A|L]) :- B < A. swap([A|L], [A|N]) :- swap(L, N).

Please give a graphical representation of the SLD tree for the query ?- bubble([2, 1], X). in the program \mathcal{P} .

Hint: As usual, you should treat < as if it were defined by the infinitely many facts

0 < 1. 1 < 2. 0 < 2.

Exercise 3 (Fixpoint Semantics):

(3 + 3 = 6 points)

Consider the following logic program \mathcal{P} over the signature (Σ, Δ) with $\Sigma = \{0, s\}$ and $\Delta = \{gt\}$.

gt(s(X), 0). gt(s(X), s(Y)) :- gt(X, Y).

- **a)** For each $n \in \mathbb{N}$ explicitly give $\underline{\operatorname{trans}}_{\mathcal{P}}^{n}(\emptyset)$ in closed form, i.e., using a non-recursive definition.
- **b)** Compute the set $lfp(trans_{\mathcal{P}})$.

Exercise 4 (Definite Logic Programming):

(10 points)

Implement the predicate solve/1 in Prolog. This predicate can be used as a primitive SAT-solver for clause sets represented as lists of lists of literals. More precisely, a clause set is a list *t* of the form $[[l_1^1, l_2^1, \dots, l_{k_1}^1], [l_1^2, l_2^2, \dots, l_{k_2}^2], \dots, [l_1^n, l_2^n, \dots, l_{k_n}^n]]$

where all I_i^j are of the form pos(X) or neg(X) for some Prolog variables X. The list t represents a set of clauses where pos(X) stands for the propositional variable X while neg(X) stands for its negation. A call solve(t) succeeds with a substitution satisfying the represented clause set t (by setting the variables to 1 or 0) if this set is satisfiable or fails if this set is unsatisfiable. If t does not represent a clause set as described above, then solve(t) may behave arbitrarily. You **must not use** any built-in predicates in this exercise. The following example calls to solve/1 illustrate its definition:

- ?- solve([[pos(A),pos(B)],[neg(A),neg(B)]]). has the two answer substitutions A = 1, B = 0 and A = 0, B = 1 (the order of the solutions is up to your implementation)
- ?- solve([[pos(A)],[neg(A)]]). fails

Hint: In this representation, a clause is satisfied if it contains at least one literal of the form pos(1) or neg(0). Moreover, a clause set is satisfied if all its clauses are satisfied. It might be useful to implement this predicate in a way that the following example calls work as described below, although this is not mandatory.

- ?- solve([[pos(1),pos(B)],[neg(1),neg(B)]]). succeeds with the answer substitution B = 0
- ?- solve([[pos(1),pos(0)],[neg(1),neg(0)]]). succeeds with the empty answer substitution

Exercise 5 (Arithmetic):

(5 points)

Implement the predicate binomial/3 in Prolog. A call of binomial (t_1, t_2, t_3) works as follows. If t_1 and t_2 are integers with $t_1 < t_2$ or at least one of t_1 or t_2 is negative, then it fails. If t_1 and t_2 are non-negative integers with $t_1 \ge t_2$, then t_3 is unified with the integer resulting from $\binom{t_1}{t_2}$. If t_1 or t_2 is no integer, binomial/3 may behave arbitrarily. Remember that the binomial coefficient $\binom{n}{k}$ for non-negative integers n and k with $n \ge k$ is defined as $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ with 0! = 1.

The following example calls to binomial/3 illustrate its definition:

- ?- binomial(-3,2,X). fails
- ?- binomial(2,3,X). fails
- ?- binomial(3,2,X). succeeds with the answer substitution X = 3
- ?- binomial(3,2,1). fails

Exercise 6 (Meta-Programming):

(10 points)

Implement the predicate map/2 in Prolog. A call of map (t_1, t_2) works as follows. If t_1 is a constant $f \in \Sigma_0$ and t_2 has the form $[a_1, \ldots, a_n]$, then the calls $f(a_1), \ldots, f(a_n)$ are executed. That means we assume that there is also a predicate symbol $f \in \Delta_1$ (with the same name as $f \in \Sigma_0$). Thus, map $(f, [a_1, \ldots, a_n])$ succeeds iff the query $f(a_1), \ldots, f(a_n)$ succeeds. If t_1 or t_2 are not of the form described above, map/2 may behave arbitrarily.

For example, the query ?- map(foo,[a,b,c]). is evaluated by executing the three calls foo(a), foo(b) and foo(c), while the query ?- map(foo,[]). succeeds immediately.

Hint: You may use the built-in predicate = .../2.

Exercise 7 (Constraint Logic Programming):

A magic square is a matrix of dimension $n \times n$ containing all numbers from 1 to n^2 such that the sum of each row and of each column is $\frac{n(n^2+1)}{2}$. For instance, consider the following magic square of dimension 3×3 :

We represent such a square as a list of concatenated rows. For example, the above square would be represented as follows:

[1, 8, 6, 9, 4, 2, 5, 3, 7]

Implement a Prolog predicate magic/1 such that the query ?- magic(L). has exactly those lists L as answers that represent a magic square of dimension 3×3 . Thus, for a correct implementation we get the following answers to the query (the order of the solutions depends on your implementation):

?- magic(L).
L = [1, 5, 9, 6, 7, 2, 8, 3, 4];
L = [1, 5, 9, 8, 3, 4, 6, 7, 2];
L = [1, 6, 8, 5, 7, 3, 9, 2, 4];

÷

Hint: The query ?- magic(L). has more than 70 solutions.

Hint: You may use constraint logic programming for your implementation, but you are not required to do so. Recall that the CLP library clpfd contains predicates like all_different/1, label/1, the infix predicate ins/2, ...

The following line is already given:

```
:- use_module(library(clpfd)).
```

8

(10 points)