
Logic Programmierung SS13
Exercise Sheet 9 (due 03.07.2013)

aaProf. Dr. Jürgen Giesl Carsten Otto

Notes:

• To solve the programming exercises you can use the Prolog interpreter SWI-Prolog, available for free
at http://www.swi-prolog.org. For Debian and Ubuntu it su�ces to install the swi-prolog package.
You can use the command �swipl� to start it and use �[exercise9].� to load the clauses from �le
exercise9.pl in the current directory.

• Solve these exercises in groups of three! For other group sizes less points are given!

• The solutions must be handed in directly before (very latest: at the beginning of) the exercise
course on Wednesday, 03.07.2013, in lecture hall AH 2. Alternatively you can drop your solutions into
a box which is located right next to Prof. Giesl's o�ce (this box is emptied a few minutes before the
exercise course starts).

• Please write the names and immatriculation numbers of all (three) students on your solution. Also
please staple the individual sheets!

Exercise 1 (Cut): (4+6=10 points)

Consider the following Prolog program:

isPrime(2).

isPrime(X) :- X > 2, numbersFromTo(2, X, R), 0 is X mod R, !, fail.

isPrime(X) :- X > 2.

numbersFromTo(2, _, 2).

numbersFromTo(LOW, UP, RES) :- LOW+1 < UP, RES is LOW + 1.

numbersFromTo(LOW, UP, RES) :- LOW+1 < UP, TEMP is LOW + 1, numbersFromTo(TEMP, UP, RES).

In the next exercise parts you need to give graphical representations of SLD trees. For every part of a tree
that is cut o� by evaluating !, please indicate the cut (as shown in the graphics). For the cut-o� parts only
indicate the �rst cut-o� goal, but do not evaluate further (i.e., do not continue below b or d).

p

q, !, r

!, r

a

...

b

//

d

//
c

... ...

a) Please give a graphical representation of the SLD tree for the query ?- isPrime(3).

b) Please give a graphical representation of the SLD tree for the query ?- isPrime(9).

Exercise 2 (Meta-Variables): (2 points)

Important: In addition to handing in the solution on paper, please also mail your the solutions for this
exercise to lp13-hiwis@i2.informatik.rwth-aachen.de. Indicate your immatriculation numbers in the
subject of the mail and inside the Prolog �le.

1



Logic Programmierung SS13
Exercise Sheet 9 (due 03.07.2013)

In the lecture the binary predicate or (;) was presented which makes use of meta-variables. In this exercise
we want to extend this idea to the n-ary predicates or, nor, and, nand.

• The function or(a1, ..., an) is true i� ai is true for at least one 1 ≤ i ≤ n. For n = 0, or is false.

• The function nor(a1, ..., an) is true i� no ai (1 ≤ i ≤ n) is true. For n = 0, nor is true.

• The function and(a1, ..., an) is true i� all ai (1 ≤ i ≤ n) are true. For n = 0, and is true.

• The function nand(a1, ..., an) is true i� at least one ai (1 ≤ i ≤ n) is false. For n = 0, nand is false.

Please implement these four predicates in Prolog where the (only) argument should be a list (using the pre-
de�ned data structure for lists in Prolog). You may not use ; in your solutions! However, you may use cuts
(!) and negation (\+).

Exercise 3 (Operators): (2+2=4 points)

Important: In addition to handing in the solution on paper, please also mail your the solutions for this
exercise to lp13-hiwis@i2.informatik.rwth-aachen.de. Indicate your immatriculation numbers in the
subject of the mail and inside the Prolog �le.

a) For the past exercises you often had to �nd out if a number X is a divisor of a number Y . Now we want
to use a new operator # so that X # Y can be written in Prolog programs.

De�ne # to be an in�x operator and also give clauses so that # has the desired semantics. De�ne the
precedence of # so that 1 + 3 # 2 * 6 is true.

b) Over natural numbers, the monus function is de�ned as standard subtraction, but gives 0 instead of
negative results:

monus(x, y) =

{
x− y if x ≥ y

0 otherwise

Please implement the monus function in Prolog by de�ning -- (two dashes) as an in�x operator and by
adding clauses so that -- has the desired semantics. For --, use the same precedence and the same type
as for - (standard subtraction). On negative numbers your implementation of -- may have arbitrary
results.

For example, the query �X is 5 -- 12� gives the answer substitution X = 0, while �X is 5 -- 3� gives
X = 2.

Hint: In order to make -- behave like an arithmetic function (so that it can be used on the right-hand
side of is), you need to write :- arithmetic_function('--'/2). at the top of your program after the
op-directive.

2


