$\{L_1, \ldots, L_n\}$ is *unifiable* iff there is a σ with $\sigma(L_1) = \ldots = \sigma(L_n)$. σ is *mgu* iff for every unifier σ' there is a substitution δ with $\sigma' = \delta \circ \sigma$.

Unification Algorithm

- 1. Let $\sigma = \varnothing$ be the "identical" substitution.
- 2. If $|\sigma(K)| = 1$, then stop and return σ .
- 3. Otherwise, check all $\sigma(L_i)$ in parallel from left to right, until there are different symbols in two literals.
- 4. If none of these symbols is a variable, then stop with *clash failure*.
- 5. Otherwise, let X be the variable and t be the subterm in the other literal. If X occurs in t, then stop with *occur failure*.
- 6. Otherwise, let $\sigma = \{X/t\} \circ \sigma$ und go back to step 2.

Resolution for Predicate Logic

R is a *resolvent* of K_1 and K_2 iff

- $\nu_1(K_1)$ and $\nu_2(K_2)$ are variable-disjoint
- $L_1, \ldots, L_m \in \nu_1(K_1), L'_1, \ldots, L'_n \in \nu_2(K_2)$ with $n, m \ge 1$ and $\{\overline{L_1}, \ldots, \overline{L_m}, L'_1, \ldots, L'_n\}$ has mgu σ
- $R = \sigma((\nu_1(K_1) \setminus \{L_1, \ldots, L_m\}) \cup (\nu_2(K_2) \setminus \{L'_1, \ldots, L'_n\}))$

Example

