
Logic Programming SS 2013

Exam 16.09.2013

aaProf. Dr. Jürgen Giesl Carsten Otto

Master Exam Version V3M

First Name:

Last Name:

Immatriculation Number:

Course of Studies (please mark exactly one):

� Informatik Bachelor � Informatik Master

� SSE Master � Other:

Maximal Points Achieved Points

Exercise 1 8

Exercise 2 16

Exercise 3 10

Exercise 4 10

Exercise 5 12

Exercise 6 4

Total 60

Grade -

Instructions:

� On every sheet please give your �rst name, last name, and immatriculation number.

� You must solve the exam without consulting any extra documents (e.g., course notes).

� Make sure your answers are readable. Do not use red or green pens or pencils.

� Please answer the exercises on the exercise sheets. If needed, also use the back sides of the

exercise sheets.

� Answers on extra sheets can only be accepted if they are clearly marked with your name, your

immatriculation number, and the exercise number.

� Cross out text that should not be considered in the evaluation.

� Students that try to cheat do not pass the exam.

� At the end of the exam, please return all sheets together with the exercise sheets.

1

Logic Programming SS 2013

Exam 16.09.2013

Name: Immatriculation Number:

Exercise 1 (Theoretical Foundations): (5 + 3 = 8 points)

Let ' = p(s2(0); 0)^8X (p(s2(X); X)! p(s4(X); s2(X)))^:p(s3(0); s(0)) and = 9Y p(s6(0); Y)

be formulas over the signature (�;�) with � = �0 [�1;�0 = f0g;�1 = fsg, and � = �2 = fpg.

Here, s2(0) stands for s(s(0)), etc.

a) Prove that f'g j= by means of SLD resolution.

Hint: First transform the formula ' ^ : into an equivalent clause set.

b) Explicitly give a Herbrand model of the formula ' (i.e., specify a carrier and a meaning for all

function and predicate symbols). You do not have to provide a proof for your answer.

2

Logic Programming SS 2013

Exam 16.09.2013

Name: Immatriculation Number:

Exercise 2 (Procedural Semantics, SLD tree): (7 + 7 + 2 = 16 points)

Consider the following Prolog program P which can be used to replace the letter sequence 'ba' by 'zz':

replace([], []).

replace([b,a|XS], [z,z|YS]) :- replace(XS, YS).

replace([X|XS], [X|YS]) :- replace(XS, YS).

For example, the query ?- replace([b,a,b,a], Z) would give the answer substitution Z = [z,z,z,z].

Due to backtracking it is also possible to leave (parts of) the word unchanged. Because of that the

answer substitutions Z = [b,a,z,z], Z = [z,z,b,a], and Z = [b,a,b,a] are also possible.

a) Consider the following query:

?- replace([a,b,b,a], Res).

For the logic program P please show a successful computation for the query above (i.e., a com-

putation of the form (G;?) `+
P
(�; �) where G = f:replace([a,b,b,a], Res)g). It su�ces

to give substitutions only for those variables which are used to de�ne the value of the variable Res

in the query.

3

Logic Programming SS 2013

Exam 16.09.2013

Name: Immatriculation Number:

b) Please give a graphical representation of the SLD tree for the query

?- replace([a,b,b,a], Res).

in the program P.

c) Modify the program P by inserting a single cut. No other modi�cation is allowed. Your modi�ed

program must replace all ocurrences of 'ba' by 'zz'.

For example, now the query ?- replace([b,a,b,a], Z) must have the only answer substitution

Z = [z,z,z,z].

4

Logic Programming SS 2013

Exam 16.09.2013

Name: Immatriculation Number:

Exercise 3 (Fixpoint Semantics): (4 + 3 + 3 = 10 points)

Consider the following logic program P over the signature (�;�) with � = fa; qg and � = fpg.

p(a, a, Z).

p(q(Y), q(X), Z) :- p(X, Y, Z).

a) For each n 2 N explicitly give transn
P
(?) in closed form, i.e., using a non-recursive de�nition.

b) Compute the set lfp(transP).

c) Give F JP; f:p(X, Y, Z)gK.

5

Logic Programming SS 2013

Exam 16.09.2013

Name: Immatriculation Number:

Exercise 4 (Universality): (10 points)

Consider a function f : Nn+1 ! N. The function g : Nn ! N is de�ned as:

g(k1; : : : ; kn) = k i� f (k1 + k; : : : ; kn + k; k) = 0 and

for all 0 � k 0 < k we have f (k1 + k
0; : : : ; kn + k

0; k 0) is de�ned and

f (k1 + k
0; : : : ; kn + k

0; k 0) > 0

As an example, consider the function f̂ : N2 ! N with f̂ (x; y) = maxfx � 4y ; 0g. The function

ĝ : N ! N, constructed as described above, computes ĝ(6) = 2. The reason is that for x = 6, 2 is

the smallest y such that f̂ (x + y ; y) = 0. Indeed, f̂ (6+0; 0) = f̂ (6; 0) = 6; f̂ (6+1; 1) = f̂ (7; 1) =

3; f̂ (6+2; 2) = f̂ (8; 2) = 0.

Consider a de�nite logic program P which computes the function f using a predicate symbol f 2 �n+2:

f (k1; : : : ; kn+1) = k 0 i� P j= f(k1; : : : ; kn+1; k
0):

Here, numbers are represented by terms built from 0 2 �0; s 2 �1 (i.e., 0 = 0; 1 = s(0); 2 =

s(s(0)); : : :).

Please extend the de�nite logic program P such that it also computes the function g using the predicate

symbol g 2 �n+1 (but without the cut or any other built-in predicate):

g(k1; : : : ; kn) = k i� P j= g(k1; : : : ; kn; k):

6

Logic Programming SS 2013

Exam 16.09.2013

Name: Immatriculation Number:

Exercise 5 (De�nite Logic Programming): (12 points)

Implement the predicate noDupl/2 in Prolog. This predicate can be used to identify numbers in a list

that appear exactly once, i.e., numbers which are no duplicates. The �rst argument of noDupl is the

list to analyze. The second argument is the list of numbers which are no duplicates, as described below.

As an example, for the list [2; 0; 3; 2; 1] the result [0; 3; 1] is computed (because 2 is a duplicate). In

Prolog the corresponding call noDupl([s(s(0)), 0, s(s(s(0))), s(s(0)), s(0)], Res) gives the

answer substitution Res = [0, s(s(s(0))), s(0)].

In your implementation you may (only) use the following two prede�ned predicates:

� contained(X, XS) is true if and only if the list XS contains X.

� notContained(X, XS) is true if and only if the list XS does not contain X.

Important: You may not use the cut or any other prede�ned predicates in your implementation!

However, you may implement auxiliary predicates.

7

Logic Programming SS 2013

Exam 16.09.2013

Name: Immatriculation Number:

Exercise 6 (Arithmetic): (4 points)

Tetration is the logical extension of multiplication and exponentiation:

multiplication a � n := a + a + � � �+ a︸ ︷︷ ︸
n

exponentation an := a � a � : : : � a︸ ︷︷ ︸
n

tetration a "" n := a

(
a

�

�

�

(aa)
)

︸ ︷︷ ︸
n

Examples:

� 4 "" 2 = 44 = 256

� 1 "" 3 = 1(1
1) = 11 = 1

� 2 "" 4 = 2

(
2(2

2)
)
= 2(2

4) = 216 = 65:536

Implement the predicate tetration/3 in Prolog. For numbers x > 0; y > 0 the call tetration(x; y , Z)

gives the answer substitution Z = m where m is x "" y .

As an example, tetration(2, 4, Z) gives the answer substitution Z = 65536.

Your predicate only needs to work on input values x > 0; y > 0, i.e., for other input values the result of

the computation is irrelevant.

Hint: To compute xy in Prolog you can use x**y.

8

