Exercise 1 (Resolution): (2 points)

Consider again the following logic program from Exercise Sheet 2.

\[
\begin{align*}
\text{smaller}(0, s(X)). \\
\text{smaller}(s(X), s(Y)) & : - \text{smaller}(X, Y).
\end{align*}
\]

and the query

\[
? - \text{smaller}(s(0), s(s(s(0)))).
\]

Show that the formulas \(\varphi_1 \) and \(\varphi_2 \) corresponding to the logic program entail the formula \(\varphi \) corresponding to the query (i.e., \(\{ \varphi_1, \varphi_2 \} \models \varphi \)) using the resolution algorithm in predicate logic.

Solution:

Following the solution from Exercise Sheet 2 we know that the corresponding formula in Skolem normal form is

\[
\forall X, Y, Z \; \psi
\]

with

\[
\psi = \text{smaller}(0, s(X)) \land (\neg \text{smaller}(Y, Z) \lor \text{smaller}(s(Y), s(Z))) \land \neg \text{smaller}(s(0), s(s(s(0))))
\]

Now we transform this formula into CNF and obtain the clauses:

\[
\begin{align*}
K_1 &= \{ \text{smaller}(0, s(X)) \} \\
K_2 &= \{ \neg \text{smaller}(Y, Z), \text{smaller}(s(Y), s(Z)) \} \\
K_3 &= \{ \neg \text{smaller}(s(0), s(s(s(0)))) \}
\end{align*}
\]

By deriving the empty clause as shown below we prove that \(\{ \varphi_1, \varphi_2 \} \models \varphi \) holds.

\[
\begin{align*}
&\{ \text{smaller}(0, s(X)) \} \\
&\{ \neg \text{smaller}(Y, Z), \text{smaller}(s(Y), s(Z)) \} \\
&\{ \neg \text{smaller}(s(0), s(s(s(0)))) \}
\end{align*}
\]

\[
\begin{align*}
&\{ X/s(0) \} \\
&\{ \neg \text{smaller}(0, s(s(0))) \}
\end{align*}
\]

Exercise 2 (Lifting Lemma): (3 points)

Consider the clauses \(\{ \text{smaller}(0, s(X)) \}, \{ \neg \text{smaller}(Y, Z), \text{smaller}(s(Y), s(Z)) \} \) (based on Exercise 1). These clauses can be resolved to \(R := \{ \text{smaller}(s(0), s(s(X))) \} \) as follows:

For this resolution step, find all ground instances \(A', B', \) and \(R' \) of \(A, B, \) and \(R \) (using substitution with ground terms built from the function symbols \(s \) and \(0 \)), such that we have

\[
\begin{align*}
&\text{smaller}(s(0), s(s(X))) \\
&\text{smaller}(0, s(X)) \\
&\text{smaller}(s(X), s(Y))
\end{align*}
\]
and by the lifting lemma (Lemma 3.4.8) we get:

If there is an infinite number of such ground instances for A, B, and R, give a suitable finite description of these ground instances.

Solution:

There is an infinite number of such ground instances A', B', and R'. For each $n \in \mathbb{N}_0$ by applying the substitutions

\[
\sigma_A := \{X/s^n(0)\}
\]
\[
\sigma_B := \{Y/0, Z/s^n(0)\}
\]
\[
\sigma_R := \{X/s^n(0)\}
\]

as follows

\[
A' = \sigma_A(A) = \{\text{smaller}(0, s^n(0))\}
\]
\[
B' = \sigma_B(B) = \{\neg\text{smaller}(0, s^n(0)), \text{smaller}(0, s(s^n(0)))\}
\]
\[
R' = \sigma_R(R) = \{\text{smaller}(s(0), s(s^n(0)))\}
\]

we have

Using the lifting lemma we then get

Exercise 3 (Restrictions of Resolution): \((2 + 3 + 3 + 2 + 2 + 2 = 14\text{ points})\)

Consider the sets of clauses

\[
\mathcal{K}_1 = \{p(a, f(f(X))), \{p(Y, Z), \neg p(Y, f(f(Z))))\}, \{-p(X, b), q(X)\}, \{-p(X, b), \neg q(X)\}
\]

and

\[
\mathcal{K}_2 = \{p(a, f(f(X))), \{p(X, Y), \neg p(Y, X), \neg p(Y, f(f(Y))))\}, \{-p(f(Z), a)\}
\]

with $a, b \in \Sigma_0$, $f \in \Sigma_1$, $q \in \Delta_1$, and $p \in \Delta_2$.
a) Derive the empty clause from \mathcal{K}_1 using full but not linear resolution (i.e., there must be at least one non-linear resolution step). For each step denote the substitutions used.

b) Derive the empty clause from \mathcal{K}_1 using linear but not input resolution. For each step denote the substitutions used.

c) Derive the empty clause from \mathcal{K}_1 using input resolution. For each step denote the substitutions used.

d) Derive the empty clause from \mathcal{K}_2 using SLD resolution but not binary SLD resolution. For each step denote the substitutions used. In addition, also give the answer substitution.

e) Derive the empty clause from \mathcal{K}_2 using binary SLD resolution. For each step denote the substitutions used. In addition, also give the answer substitution.

f) Express \mathcal{K}_1 and \mathcal{K}_2 as queries, facts, and rules of a logic program.

Solution:

a)

\[
\begin{align*}
\sigma_1 &= \{p(a,f(f(X)))\} \\
\sigma_2 &= \{p(Y,Z), \neg p(Y,f(f(Z)))\} \\
\sigma_3 &= \{\neg p(X,b), q(X)\} \\
\sigma_4 &= \{\neg p(X,b), \neg q(X)\} \\
\nu_1 &= \{X/X_1\} \\
\nu_2 &= \{X/X_2\}
\end{align*}
\]

$\sigma_1 = \{Y/a, Z/X\}$

$\sigma_2 = \{X_2/X_1\}$

$\sigma_3 = \{X/b, X_1/a\}$

b)

\[
\begin{align*}
\sigma_1 &= \{p(a,f(f(X)))\} \\
\sigma_2 &= \{p(Y,Z), \neg p(Y,f(f(Z)))\} \\
\nu_1 &= \{X/X_1\} \\
\nu_2 &= \{X/X_2\}
\end{align*}
\]

$\sigma_3 = \{q(X)\}$

$\sigma_4 = \{\neg p(a,b)\}$

$\sigma_1 = \{Y/a, Z/X\}$

$\nu_1 = \{X/X_1\}$

$\sigma_2 = \{X_1/b, X_2/a\}$

$\sigma_3 = \{X/a\}$

$\sigma_4 = \{X/b\}$
c) \[
\{p(a,f(f(X))))\} \quad \{p(Y,Z),\neg p(Y,f(f(Z))))\} \quad \{\neg p(X,b),q(X)\} \quad \{\neg p(X,b),\neg q(X)\}
\]
\[
\sigma_1 = \{X/X_1\} \quad \nu_1 = \{X/X_1\} \quad \sigma_2 \quad \nu_2 = \{X/X_2\} \quad \sigma_3 \quad \{\neg p(X_1,f(f(b))))\}
\]
\[
\sigma_1 = \{X_2/X_1\} \quad \sigma_2 = \{Y/X_1, Z/b\} \quad \sigma_3 = \{X_1/a, X/b\}
\]

d) \[
\{p(a,f(f(X))))\} \quad \{p(X,Y),\neg p(Y,X),\neg p(Y,f(f(Y))))\} \quad \{\neg p(f(Z),a)\}
\]
\[
\sigma_1 \quad \sigma_1 \quad \sigma_2 \quad \sigma_2 \quad \sigma_3 \quad \{\neg p(a,f(f(Z))),\neg p(a,f(f(a))))\}
\]
\[
\sigma_1 = \{X/f(Z), Y/a\} \quad \sigma_2 = \{X/a, Z/f(a)\} \quad \text{Answer substitution: } \{Z/f(a)\}
\]

e) \[
\{p(a,f(f(X))))\} \quad \{p(X,Y),\neg p(Y,X),\neg p(Y,f(f(Y))))\} \quad \{\neg p(f(Z),a)\}
\]
\[
\sigma_1 \quad \sigma_1 \quad \sigma_2 \quad \sigma_2 \quad \sigma_3 \quad \{\neg p(a,f(f(Z)))\}
\]
\[
\sigma_1 = \{X/f(Z), Y/a\} \quad \sigma_2 = \{X/a\} \quad \sigma_3 = \{Z/f(X)\} \quad \text{Answer substitution: } \{Z/f(X)\}
\]
\[
\text{Alternatively: }
\]
Exercise 4 (Multi-Resolution): (2 + 2 = 4 points)

In this exercise we consider an extension of resolution in propositional logic, which we call multi-resolution. Let K_1 and K_2 be clauses without variables. Then a clause R is a multi-resolvent of K_1 and K_2 iff for some $n > 0$ there are literals L_1, \ldots, L_n such that $K_1 = K'_1 \uplus \{L_1, \ldots, L_n\}$, $K_2 = K'_2 \uplus \{\overline{L_1}, \ldots, \overline{L_n}\}$, and $R = K'_1 \cup K'_2$. Here, \uplus denotes disjoint union. Thus, $K \uplus K'$ stands for the set $K \cup K'$ and it states that $K \cap K' = \emptyset$. The following diagram illustrates a multi-resolution step:

Please prove or disprove the following statements:

a) Multi-resolution is sound, i.e., there is no satisfiable clause set K without variables from which one can derive \Box by multi-resolution.

b) Multi-resolution is complete, i.e., from any unsatisfiable clause set K without variables one can derive \Box by multi-resolution.

Solution:

Answer substitution: $\{Z/f(a)\}$

Exercise 4 (Multi-Resolution):

In this exercise we consider an extension of resolution in propositional logic, which we call multi-resolution. Let K_1 and K_2 be clauses without variables. Then a clause R is a multi-resolvent of K_1 and K_2 iff for some $n > 0$ there are literals L_1, \ldots, L_n such that $K_1 = K'_1 \uplus \{L_1, \ldots, L_n\}$, $K_2 = K'_2 \uplus \{\overline{L_1}, \ldots, \overline{L_n}\}$, and $R = K'_1 \cup K'_2$. Here, \uplus denotes disjoint union. Thus, $K \uplus K'$ stands for the set $K \cup K'$ and it states that $K \cap K' = \emptyset$. The following diagram illustrates a multi-resolution step:

Please prove or disprove the following statements:

a) Multi-resolution is sound, i.e., there is no satisfiable clause set K without variables from which one can derive \Box by multi-resolution.

b) Multi-resolution is complete, i.e., from any unsatisfiable clause set K without variables one can derive \Box by multi-resolution.

Solution:

Answer substitution: $\{Z/f(a)\}$
a) Soundness of multi-resolution is refuted by the following counter-example: Let $K_1 = \{p, q\}$ and $K_2 = \{\neg p, \neg q\}$. Then we can resolve \Box in a single multi-resolution step by choosing $L_1 = p$ and $L_2 = q$. However, the clause set $\{K_1, K_2\}$ is satisfiable, as witnessed e.g. by a structure S with $S \models p$ and $S \not\models q$.

b) Completeness of multi-resolution follows from the fact that any propositional resolution step according to Def. 3.3.4 corresponds to a step in multi-resolution with $n = 1$ and from completeness of propositional resolution (Thm. 3.3.7).