Logic Programming WS 2010/2011
Solution - Exam 23.02.2011

LuFG

Informatik Il

Prof. Dr. Jirgen Giesl Carsten Fuhs, Carsten Otto, Thomas Stroder

Master Exam Version V3M

First Name:

Last Name:

Immatriculation Number:

Course of Studies (please mark exactly one):

o Informatik Bachelor o Informatik Master
o SSE Master o Other:
Maximal Points | Achieved Points
Exercise 1 10
Exercise 2 16
Exercise 3 9
Exercise 4 10
Exercise 5 10
Exercise 6 5
| Total \ 60 \ |
| Grade \ - \ |

Instructions:
e On every sheet please give your first name, last name, and immatriculation number.
e You must solve the exam without consulting any extra documents (e.g., course notes).
e Make sure your answers are readable. Do not use red or green pens or pencils.

e Please answer the exercises on the exercise sheets. If needed, also use the back sides of the
exercise sheets.

e Answers on extra sheets can only be accepted if they are clearly marked with your name, your
immatriculation number, and the exercise number.

e Cross out text that should not be considered in the evaluation.
e Students that try to cheat do not pass the exam.

e At the end of the exam, please return all sheets together with the exercise sheets.

Logic Programming WS 2010/2011
Solution - Exam 23.02.2011

LuFG

Informatik Il

Exercise 1 (Theoretical Foundations): (3 + 3 + 4 =10 points)

Let ¢ = q(0,s(0)) AVX,Y (q(X,Y) = q(s(X),s(Y))) and ¥ = 3Z q(s(Z), s(s(Z))) be formulas over
the signature (X, A) with ¥ =X UX 1, X9 = {0}, X1 = {s}, and A = A» = {q}.

a) Prove that ¢ = 1 by means of resolution.
Hint: First transform the formula @ N = into an equivalent clause set.

b) Explicitly give a Herbrand model of the formula ¢ (i.e., specify a carrier and a meaning for all
function and predicate symbols). You do not have to provide a proof for your answer.

c) Prove or disprove that input resolution is complete for arbitrary clause sets.

Solution:

A=Y = q(0,5(0)) AVX, Y (q(X,Y) = q(s(X),s(Y))) A ~3Zq(s(Z), s(s(2)))
= q(0,8(0)) AVX, Y (=q(X,Y) V q(s(X), s(Y))) A =32 q(s(2), s(s(2)))
= q(0,s(0)) AVX, Y (=q(X,Y) V q(s(X),s(Y))) AVZ ~q(s(2), s(s(2)))
= VXY, Z(q(0,5(0)) A (=q(X,Y) V q(s(X), s(Y))) A ~a(s(2). s(s(2))))

Thus, the equivalent clause set for o A =9 is
{{a(0,5(0))}, {=a(X,Y), a(s(X), s(Y))}, {—a(s(Z)., s(s(2)))}}.

We perform resolution on this clause set to show ¢ = 1.

{a(0,s(0))} {=a(X.Y), a(s(X), s(Y))} {ma(s(2).s(s(2)))}

//z.v/sa)

{=a(Z,s(2))}
Z/0

g

Hence, we have proven ¢ = 1.
U

b) We have S = ¢ for the Herbrand structure S = (7(X), &) with a9 = 0, a5(t) = s(t), and
aq = {(s(0),s"(0)) | i > 0}.

c) Consider the clause set {{p.q}. {p. —q}. {-p.q}, {-p, —q}}. Using input resolution, we obtain the
following resolution proof.

Logic Programming WS 2010/2011
Solution - Exam 23.02.2011

LuFG

Informatik Il

{p.q} {p. ~q} {-p. q} {-p, ~q}

e Ny oy SN\

{r} {a} {p. —p} {q, —q} {—a} {-p}

All further input resolution steps lead to already existing clauses and the empty clause cannot be
derived. However, using full resolution, we obtain the following derivation of the empty clause.

{p.a} {p. qa} {-p.q} {-p, ~q}
{r} {-p}

\/

Hence, input resolution is incomplete.

Logic Programming WS 2010/2011
Solution - Exam 23.02.2011

LuFG

Informatik Il

Exercise 2 (Procedural Semantics, SLD tree): (7 + 9 = 16 points)

Consider the following Prolog program P which can be used to sort a list of numbers using the bubblesort
algorithm:

bubble(L, R) :- swap(L, N), !, bubble(N, R).
bubble(L, L).

swap([A,BIL]), [B,AIL]) :- B < A.
swap([AIL], [AIN]) :- swap(L, N).

Hint: As usual, you should treat < as if it were defined by the infinitely many facts

0 < 1.
1 < 2.
< 2.

a) The program P’ results from P by removing the cut. Consider the following query:
?7- bubble([2,1,0], [1,2,X]).
For the logic program P’, i.e. without the cut, please show a successful computation for the query
above (i.e., a computation of the form (G, @) 4%, (0, o) where G = {-bubble([2, 1,0],[1,2, X])}).

It suffices to give substitutions only for those variables which are used to define the value of the
variable X in the query.

Logic Programming WS 2010/2011
Solution - Exam 23.02.2011

LuFG

Informatik Il

b) Please give a graphical representation of the SLD tree for the query ?- bubble([2, 1], X). in
the program P (i.e., with the cut).

Solution:
a)
({—bubble([2,1,0],[1,2, X])} @)

Fp ({—swap([2,1,0], N), =bubble(N, [1,2, X])}, @)
Fp ({—(1 < 2), =bubble([1,2,0],[1,2, X])}, 2)
Fpr ({—bubble([1,2,0],[1,2, X])} @)
Fp (0, {X/0})

b)

Logic Programming WS 2010/2011
Solution - Exam 23.02.2011

LuFG

Informatik Il

In this representation, the nodes and edges deleted by the cut are shown with a gray background
and dashed edges, respectively.

bubble([2,1], X).

swap([2,1], N1), !, bubble(N1, X).

T T--L_ N1/[2]N2]

1 <2, !, bubble([1,2], X). swap([1], N2), !, bubble([2|N2], X).

' N2/[1IN3]

!, bubble([1,2], X).
swap([], N3), !, bubble([2,1|N3], X).

bubble([1,2], X).

X/[1,2]

swap([1,2], N5), !, bubble(N5, X).]

N5/[2,1]

2 <1, !, bubble([2,1], X). N5/ [1(|N6]

swap([2], N6), !, bubble([1|N6], X).

N6/ [2|N7]

swap([], N7), !, bubble([1,2|N7], X).

Logic Programming WS 2010/2011

1 Solution - Exam 23.02.2011

Informatik Il

Exercise 3 (Fixpoint Semantics): (3 + 3 + 3 =9 points)

Consider the following logic program P over the signature (¥, A) with ¥ = {0,s} and A = {gt}.

gt(s(X), 0).
gt(s(X), s(Y)) :- gtX, V).

a) For each n € N explicitly give transf,(@) in closed form, i.e., using a non-recursive definition.

b) Compute the set Ifp(transp).

c) Give F[P, {—gt(s(s(X)), V}].

Solution:

Let G be the set of all ground terms, i.e., G = {s'(0) | i € N}.

a) trans)(9) = @
transp (@) = {gt(s(t),0) | t € G}
transy (@) = {gt(s(t),0), gt(s(t),s(0)) | t € G}

transp () = {gt(s'(t),§/(0)) | t € G,0 < j < i < n}

b) Ifp(transp) = {gt(s'(0),&/(0)) | i,j € N, i > j}
c) FIP. {-gt(s(s(X)), V}] = {gt(s'(0),(0)) [i.jEN,i>ji>2}

Logic Programming WS 2010/2011
Solution - Exam 23.02.2011

LuFG

Informatik Il

Exercise 4 (Universality): (10 points)

Consider a function f : N"*1 — N. The function g : N” — N is defined by fixpointing of f:

g(ki, ... k) = K iff F(Ky, ... kn, k) = k and
for all 0 < k" < k we have f(kg,..., kn, k') is defined and f(kq, ..., kn, k') # K

As an example, consider the function f : N2 — N with f(x,y) = y? — 3y +x. The function § : N = N,
constructed using fixpointing of f as described above, computes g(4) = 2. The reason is that for x = 4,
2 is the smallest y so that f(x,y) = y. Indeed, f(4,0) = 4,f(4,1) =2, f(4,2) = 2.

Consider a definite logic program P which computes the function f using a predicate symbol £ € A™2;
fky,..., kny1) = K iff P = £(k, ..., kni1, k).

Here, numbers are represented by terms built from 0 € ¥g,s € ¥ (i.e., 0 = 0,1 = 5(0),2 =

s(s(0)), ...). -

Please extend the definite logic program P such that it also computes the function g using the predicate
symbol g € A" (but without any built-in predicates):

Solution:

g(X1, ..., X Z) = £ (Xq,..., Xn, 0, 2).

F(Xe, X YY) = £(Xa L X YY),

(X1, ..., XY, Z) —£(X1, ..., Xn, Y, A),ne(Y, A), £ (X1, ..., Xn s(Y), Z).
ne(0, s(Y)).

ne(s(X),0).

ne(s(X),s(Y)) : — ne(X,Y).

Logic Programming WS 2010/2011
Solution - Exam 23.02.2011

LuFG

Informatik Il

Exercise 5 (Definite Logic Programming): (10 points)

Implement the predicate solve/1 in Prolog. This predicate can be used as a primitive SAT-solver for
clause sets represented as lists of lists of literals. More precisely, a clause set is a list t of the form
[, RV IR B R T g

where all /4 are of the form pos(X) or neg(X) for some Prolog variables X. The list t represents a set
of clauses where pos(X) stands for the propositional variable X while neg(X) stands for its negation.
A call solve(t) succeeds with a substitution satisfying the represented clause set t (by setting the
variables to 1 or 0) if this set is satisfiable or fails if this set is unsatisfiable. If t does not represent a
clause set as described above, then solve(t) may behave arbitrarily. You must not use any built-in
predicates in this exercise. The following example calls to solve/1 illustrate its definition:

e 7- solve([[pos(A),pos(B)], [neg(A),neg(B)1]1). has the two answer substitutions
A =1, B=0andA = 0, B = 1 (the order of the solutions is up to your implementation)

e 7- solve([[pos(A)], [neg(A)]]). fails

Hint: In this representation, a clause is satisfied if it contains at least one literal of the form pos(1) or
neg(0). Moreover, a clause set is satisfied if all its clauses are satisfied. It might be useful to implement
this predicate in a way that the following example calls work as described below, although this is not
mandatory.

e 7- solve([[pos(1),pos(B)], [neg(1),neg(B)]]). succeeds with the answer substitution
B=20

e 7- solve([[pos(1),pos(0)], [neg(1),neg(0)]]). succeeds with the empty answer substi-
tution

Solution:

solve([]).
solve([C|CS]) :- solveClause(C), solve(CS).

solveClause([pos(1)[_1).
solveClause([neg(0)1_]1).
solveClause([_|XS]) :- solveClause(XS).

Logic Programming WS 2010/2011
Solution - Exam 23.02.2011

LuFG

Informatik Il

Exercise 6 (Arithmetic): (5 points)

Implement the predicate binomial/3 in Prolog. A call of binomial (t1, t», t3) works as follows. If t;
and ty are integers with t; < ty or at least one of t; or t» is negative, then it fails. If t; and t, are

L . . .) . . t .
non-negative integers with t; > t», then t3 is unified with the integer resulting from <t1>' If t; or to is
2
no integer, binomial/3 may behave arbitrarily.

Remember that the binomial coefficient (Z) for non-negative integers n and k with n > k is defined

n n!)
= —-—-------—- | =
as <k> Ki(n— k)] with 0! = 1.

The following example calls to binomial/3 illustrate its definition:
e 7- binomial(-3,2,X). fails
e 7- binomial(2,3,X). fails
e 7- binomial(3,2,X). succeeds with the answer substitution X = 3

e 7- binomial(3,2,1). fails

Solution:

binomial(X,Y,Z) :- Y >= 0,
X>Y,
factorial (X,XF),
factorial(Y,YF),
Dis X - Y,
factorial(D,DF),
Z is (XF // (DF * YF)).

factorial(0,1) :- 1!.

factorial(N,F) :- N1 is N - 1,
factorial (N1,F1),
F is F1 * N.

10

