
Logic Programming WS 2010/2011
Solution - Exam 23.02.2011

aaProf. Dr. Jürgen Giesl Carsten Fuhs, Carsten Otto, Thomas Ströder

Master Exam Version V3M

First Name:

Last Name:

Immatriculation Number:

Course of Studies (please mark exactly one):

◦ Informatik Bachelor ◦ Informatik Master
◦ SSE Master ◦ Other:

Maximal Points Achieved Points
Exercise 1 10
Exercise 2 16
Exercise 3 9
Exercise 4 10
Exercise 5 10
Exercise 6 5
Total 60
Grade -

Instructions:

• On every sheet please give your first name, last name, and immatriculation number.

• You must solve the exam without consulting any extra documents (e.g., course notes).

• Make sure your answers are readable. Do not use red or green pens or pencils.

• Please answer the exercises on the exercise sheets. If needed, also use the back sides of the
exercise sheets.

• Answers on extra sheets can only be accepted if they are clearly marked with your name, your
immatriculation number, and the exercise number.

• Cross out text that should not be considered in the evaluation.

• Students that try to cheat do not pass the exam.

• At the end of the exam, please return all sheets together with the exercise sheets.

1

Logic Programming WS 2010/2011
Solution - Exam 23.02.2011

Exercise 1 (Theoretical Foundations): (3 + 3 + 4 = 10 points)

Let ϕ = q(0, s(0))∧∀X, Y (q(X, Y)→ q(s(X), s(Y))) and ψ = ∃Z q(s(Z), s(s(Z))) be formulas over
the signature (Σ,∆) with Σ = Σ0 ∪Σ1,Σ0 = {0},Σ1 = {s}, and ∆ = ∆2 = {q}.

a) Prove that ϕ |= ψ by means of resolution.

Hint: First transform the formula ϕ ∧ ¬ψ into an equivalent clause set.

b) Explicitly give a Herbrand model of the formula ϕ (i.e., specify a carrier and a meaning for all
function and predicate symbols). You do not have to provide a proof for your answer.

c) Prove or disprove that input resolution is complete for arbitrary clause sets.

Solution:

a)

ϕ ∧ ¬ψ = q(0, s(0)) ∧ ∀X, Y (q(X, Y)→ q(s(X), s(Y))) ∧ ¬∃Z q(s(Z), s(s(Z)))

= q(0, s(0)) ∧ ∀X, Y (¬q(X, Y) ∨ q(s(X), s(Y))) ∧ ¬∃Z q(s(Z), s(s(Z)))

= q(0, s(0)) ∧ ∀X, Y (¬q(X, Y) ∨ q(s(X), s(Y))) ∧ ∀Z ¬q(s(Z), s(s(Z)))

= ∀X, Y, Z (q(0, s(0)) ∧ (¬q(X, Y) ∨ q(s(X), s(Y))) ∧ ¬q(s(Z), s(s(Z))))

Thus, the equivalent clause set for ϕ ∧ ¬ψ is
{{q(0, s(0))}, {¬q(X, Y), q(s(X), s(Y))}, {¬q(s(Z), s(s(Z)))}}.
We perform resolution on this clause set to show ϕ |= ψ.

{q(0, s(0))} {¬q(X, Y), q(s(X), s(Y))} {¬q(s(Z), s(s(Z)))}

{¬q(Z, s(Z))}
X/Z, Y/s(Z)

�

Z/0

Hence, we have proven ϕ |= ψ.

�

b) We have S |= ϕ for the Herbrand structure S = (T (Σ), α) with α0 = 0, αs(t) = s(t), and
αq = {(si(0), si+1(0)) | i ≥ 0}.

c) Consider the clause set {{p, q}, {p,¬q}, {¬p, q}, {¬p,¬q}}. Using input resolution, we obtain the
following resolution proof.

2

Logic Programming WS 2010/2011
Solution - Exam 23.02.2011

{p, q} {p,¬q} {¬p, q} {¬p,¬q}

{p} {q} {p,¬p} {q,¬q} {¬q} {¬p}

All further input resolution steps lead to already existing clauses and the empty clause cannot be
derived. However, using full resolution, we obtain the following derivation of the empty clause.

{p, q} {p,¬q} {¬p, q} {¬p,¬q}

{p} {¬p}

�

Hence, input resolution is incomplete.

�

.

3

Logic Programming WS 2010/2011
Solution - Exam 23.02.2011

Exercise 2 (Procedural Semantics, SLD tree): (7 + 9 = 16 points)

Consider the following Prolog program P which can be used to sort a list of numbers using the bubblesort
algorithm:

bubble(L, R) :- swap(L, N), !, bubble(N, R).
bubble(L, L).
swap([A,B|L]), [B,A|L]) :- B < A.
swap([A|L], [A|N]) :- swap(L, N).

Hint: As usual, you should treat < as if it were defined by the infinitely many facts

0 < 1.
1 < 2.
0 < 2.
...

a) The program P ′ results from P by removing the cut. Consider the following query:

?- bubble([2,1,0], [1,2,X]).

For the logic program P ′, i.e. without the cut, please show a successful computation for the query
above (i.e., a computation of the form (G,∅) `+P ′ (�, σ) where G = {¬bubble([2, 1, 0], [1, 2, X])}).
It suffices to give substitutions only for those variables which are used to define the value of the
variable X in the query.

4

Logic Programming WS 2010/2011
Solution - Exam 23.02.2011

b) Please give a graphical representation of the SLD tree for the query ?- bubble([2, 1], X). in
the program P (i.e., with the cut).

Solution:

a)

({¬bubble([2, 1, 0], [1, 2, X])},∅)

`P ′ ({¬swap([2, 1, 0], N),¬bubble(N, [1, 2, X])},∅)

`P ′ ({¬(1 < 2),¬bubble([1, 2, 0], [1, 2, X])},∅)

`P ′ ({¬bubble([1, 2, 0], [1, 2, X])},∅)

`P ′ (�, {X/0})

b)

5

Logic Programming WS 2010/2011
Solution - Exam 23.02.2011

In this representation, the nodes and edges deleted by the cut are shown with a gray background
and dashed edges, respectively.

bubble([2,1], X).

swap([2,1], N1), !, bubble(N1, X).
�

X/[2,1]

1 < 2, !, bubble([1,2], X). swap([1], N2), !, bubble([2|N2], X).

N1/[2|N2]

swap([], N3), !, bubble([2,1|N3], X).

N2/[1|N3]

!, bubble([1,2], X).

bubble([1,2], X).

�

X/[1,2]

swap([1,2], N5), !, bubble(N5, X).

2 < 1, !, bubble([2,1], X).

N5/[2,1]

swap([2], N6), !, bubble([1|N6], X).

N5/[1|N6]

swap([], N7), !, bubble([1,2|N7], X).

N6/[2|N7]

.

6

Logic Programming WS 2010/2011
Solution - Exam 23.02.2011

Exercise 3 (Fixpoint Semantics): (3 + 3 + 3 = 9 points)

Consider the following logic program P over the signature (Σ,∆) with Σ = {0, s} and ∆ = {gt}.

gt(s(X), 0).
gt(s(X), s(Y)) :- gt(X, Y).

a) For each n ∈ N explicitly give transnP(∅) in closed form, i.e., using a non-recursive definition.

b) Compute the set lfp(transP).

c) Give F JP, {¬gt(s(s(X)), Y)}K.

Solution:

Let G be the set of all ground terms, i.e., G = {si(0) | i ∈ N}.

a) foo trans0P(∅) = ∅
trans1P(∅) = {gt(s(t), 0) | t ∈ G}
trans2P(∅) = {gt(s(t), 0), gt(s2(t), s(0)) | t ∈ G}

...

transnP(∅) = {gt(si(t), sj(0)) | t ∈ G, 0 ≤ j < i ≤ n}

b) lfp(transP) = {gt(si(0), sj(0)) | i , j ∈ N, i > j}

c) F JP, {¬gt(s(s(X)), Y)}K = {gt(si(0), sj(0)) | i , j ∈ N, i > j, i ≥ 2}

.

7

Logic Programming WS 2010/2011
Solution - Exam 23.02.2011

Exercise 4 (Universality): (10 points)

Consider a function f : Nn+1 → N. The function g : Nn → N is defined by fixpointing of f :

g(k1, . . . , kn) = k iff f (k1, . . . , kn, k) = k and

for all 0 ≤ k ′ < k we have f (k1, . . . , kn, k
′) is defined and f (k1, . . . , kn, k

′) 6= k ′

As an example, consider the function f̂ : N2 → N with f̂ (x, y) = y2− 3y + x . The function ĝ : N→ N,
constructed using fixpointing of f̂ as described above, computes ĝ(4) = 2. The reason is that for x = 4,
2 is the smallest y so that f̂ (x, y) = y . Indeed, f̂ (4, 0) = 4, f̂ (4, 1) = 2, f̂ (4, 2) = 2.

Consider a definite logic program P which computes the function f using a predicate symbol f ∈ ∆n+2:

f (k1, . . . , kn+1) = k ′ iff P |= f(k1, . . . , kn+1, k ′).

Here, numbers are represented by terms built from 0 ∈ Σ0, s ∈ Σ1 (i.e., 0 = 0, 1 = s(0), 2 =

s(s(0)), . . .).

Please extend the definite logic program P such that it also computes the function g using the predicate
symbol g ∈ ∆n+1 (but without any built-in predicates):

g(k1, . . . , kn) = k iff P |= g(k1, . . . , kn, k).

Solution:

g(X1, . . . , Xn, Z) : − f′(X1, . . . , Xn, 0, Z).

f′(X1, . . . , Xn, Y, Y) : − f(X1, . . . , Xn, Y, Y).

f′(X1, . . . , Xn, Y, Z) : − f(X1, . . . , Xn, Y, A), ne(Y, A), f′(X1, . . . , Xn, s(Y), Z).

ne(0, s(Y)).

ne(s(X), 0).

ne(s(X), s(Y)) : − ne(X, Y).

.

8

Logic Programming WS 2010/2011
Solution - Exam 23.02.2011

Exercise 5 (Definite Logic Programming): (10 points)

Implement the predicate solve/1 in Prolog. This predicate can be used as a primitive SAT-solver for
clause sets represented as lists of lists of literals. More precisely, a clause set is a list t of the form
[[l11 , l

1
2 , . . . , l

1
k1

], [l21 , l
2
2 , . . . , l

2
k2

], . . . , [ln1 , l
n
2 , . . . , l

n
kn

]]

where all l ji are of the form pos(X) or neg(X) for some Prolog variables X. The list t represents a set
of clauses where pos(X) stands for the propositional variable X while neg(X) stands for its negation.
A call solve(t) succeeds with a substitution satisfying the represented clause set t (by setting the
variables to 1 or 0) if this set is satisfiable or fails if this set is unsatisfiable. If t does not represent a
clause set as described above, then solve(t) may behave arbitrarily. You must not use any built-in
predicates in this exercise. The following example calls to solve/1 illustrate its definition:

• ?- solve([[pos(A),pos(B)],[neg(A),neg(B)]]). has the two answer substitutions
A = 1, B = 0 and A = 0, B = 1 (the order of the solutions is up to your implementation)

• ?- solve([[pos(A)],[neg(A)]]). fails

Hint: In this representation, a clause is satisfied if it contains at least one literal of the form pos(1) or
neg(0). Moreover, a clause set is satisfied if all its clauses are satisfied. It might be useful to implement
this predicate in a way that the following example calls work as described below, although this is not
mandatory.

• ?- solve([[pos(1),pos(B)],[neg(1),neg(B)]]). succeeds with the answer substitution
B = 0

• ?- solve([[pos(1),pos(0)],[neg(1),neg(0)]]). succeeds with the empty answer substi-
tution

Solution:

solve([]).
solve([C|CS]) :- solveClause(C), solve(CS).

solveClause([pos(1)|_]).
solveClause([neg(0)|_]).
solveClause([_|XS]) :- solveClause(XS).

.

9

Logic Programming WS 2010/2011
Solution - Exam 23.02.2011

Exercise 6 (Arithmetic): (5 points)

Implement the predicate binomial/3 in Prolog. A call of binomial(t1,t2,t3) works as follows. If t1
and t2 are integers with t1 < t2 or at least one of t1 or t2 is negative, then it fails. If t1 and t2 are

non-negative integers with t1 ≥ t2, then t3 is unified with the integer resulting from
(
t1
t2

)
. If t1 or t2 is

no integer, binomial/3 may behave arbitrarily.

Remember that the binomial coefficient
(
n

k

)
for non-negative integers n and k with n ≥ k is defined

as
(
n

k

)
=

n!

k!(n − k)!
with 0! = 1.

The following example calls to binomial/3 illustrate its definition:

• ?- binomial(-3,2,X). fails

• ?- binomial(2,3,X). fails

• ?- binomial(3,2,X). succeeds with the answer substitution X = 3

• ?- binomial(3,2,1). fails

Solution:

binomial(X,Y,Z) :- Y >= 0,
X >= Y,
factorial(X,XF),
factorial(Y,YF),
D is X - Y,
factorial(D,DF),
Z is (XF // (DF * YF)).

factorial(0,1) :- !.
factorial(N,F) :- N1 is N - 1,

factorial(N1,F1),
F is F1 * N.

.

10

