

Prof. Dr. Jürgen Giesl

SSE Master

Carsten Fuhs, Carsten Otto, Thomas Ströder

Master Exam Version	V3M
First Name:	
Last Name:	
Immatriculation Number:	
Course of Studies (please	mark exactly one):
 Informatik Bachelo 	r o Informatik Master

Other: _______

	Maximal Points	Achieved Points
Exercise 1	10	
Exercise 2	16	
Exercise 3	9	
Exercise 4	10	
Exercise 5	10	
Exercise 6	5	
Total	60	
Grade	-	

Instructions:

- On every sheet please give your first name, last name, and immatriculation number.
- You must solve the exam without consulting any extra documents (e.g., course notes).
- Make sure your answers are readable. Do not use **red or green pens or pencils**.
- Please answer the exercises on the **exercise sheets**. If needed, also use the back sides of the exercise sheets.
- Answers on extra sheets can only be accepted if they are clearly marked with your name, your immatriculation number, and the **exercise number**.
- Cross out text that should not be considered in the evaluation.
- Students that try to cheat **do not pass** the exam.
- At the end of the exam, please return all sheets together with the exercise sheets.

Immatriculation Number:

Exercise 1 (Theoretical Foundations):

$$(3 + 3 + 4 = 10 \text{ points})$$

Let $\varphi = q(0, s(0)) \land \forall X, Y (q(X, Y) \rightarrow q(s(X), s(Y)))$ and $\psi = \exists Z q(s(Z), s(s(Z)))$ be formulas over the signature (Σ, Δ) with $\Sigma = \Sigma_0 \cup \Sigma_1, \Sigma_0 = \{0\}, \Sigma_1 = \{s\}, \text{ and } \Delta = \Delta_2 = \{q\}.$

- **a)** Prove that $\varphi \models \psi$ by means of resolution.
 - Hint: First transform the formula $\phi \land \neg \psi$ into an equivalent clause set.
- **b)** Explicitly give a Herbrand model of the formula φ (i.e., specify a carrier and a meaning for all function and predicate symbols). You do not have to provide a proof for your answer.
- c) Prove or disprove that input resolution is complete for arbitrary clause sets.

Exercise 2 (Procedural Semantics, SLD tree):

(7 + 9 = 16 points)

Consider the following Prolog program \mathcal{P} which can be used to sort a list of numbers using the *bubblesort* algorithm:

```
\label{eq:bubble_loss} \begin{split} &\text{bubble}(L,\ R) := \text{swap}(L,\ N),\ !,\ \text{bubble}(N,\ R).\\ &\text{bubble}(L,\ L).\\ &\text{swap}([A,B|L]),\ [B,A|L]) := B < A.\\ &\text{swap}([A|L],\ [A|N]) := \text{swap}(L,\ N). \end{split}
```

Hint: As usual, you should treat < as if it were defined by the infinitely many facts

- 0 < 1. 1 < 2. 0 < 2.
 - a) The program \mathcal{P}' results from \mathcal{P} by **removing the cut**. Consider the following query:

```
?- bubble([2,1,0], [1,2,X]).
```

For the logic program \mathcal{P}' , i.e. **without the cut**, please show a successful computation for the query above (i.e., a computation of the form $(G, \varnothing) \vdash_{\mathcal{P}'}^+ (\Box, \sigma)$ where $G = \{\neg bubble([2, 1, 0], [1, 2, X])\}$). It suffices to give substitutions only for those variables which are used to define the value of the variable X in the query.

Immatriculation Number:

b) Please give a graphical representation of the SLD tree for the query ?- bubble([2, 1], X). in the program \mathcal{P} (i.e., **with the cut**).

Immatriculation Number:

Exercise 3 (Fixpoint Semantics):

$$(3 + 3 + 3 = 9 points)$$

Consider the following logic program \mathcal{P} over the signature (Σ, Δ) with $\Sigma = \{0, s\}$ and $\Delta = \{gt\}$.

$$gt(s(X), 0).$$

 $gt(s(X), s(Y)) :- gt(X, Y).$

- a) For each $n \in \mathbb{N}$ explicitly give $\underline{\operatorname{trans}}_{\mathcal{P}}^{n}(\varnothing)$ in closed form, i.e., using a non-recursive definition.
- **b)** Compute the set $lfp(\underline{trans}_{\mathcal{P}})$.
- c) Give $F[P, \{\neg gt(s(s(X)), Y)\}]$.

Immatriculation Number:

Exercise 4 (Universality):

(10 points)

Consider a function $f: \mathbb{N}^{n+1} \to \mathbb{N}$. The function $g: \mathbb{N}^n \to \mathbb{N}$ is defined by *fixpointing* of f:

$$g(k_1, \ldots, k_n) = k$$
 iff $f(k_1, \ldots, k_n, k) = k$ and
for all $0 \le k' < k$ we have $f(k_1, \ldots, k_n, k')$ is defined and $f(k_1, \ldots, k_n, k') \ne k'$

As an example, consider the function $\hat{f}: \mathbb{N}^2 \to \mathbb{N}$ with $\hat{f}(x,y) = y^2 - 3y + x$. The function $\hat{g}: \mathbb{N} \to \mathbb{N}$, constructed using *fixpointing* of \hat{f} as described above, computes $\hat{g}(4) = 2$. The reason is that for x = 4, 2 is the smallest y so that $\hat{f}(x,y) = y$. Indeed, $\hat{f}(4,\mathbf{0}) = \mathbf{4}$, $\hat{f}(4,\mathbf{1}) = \mathbf{2}$, $\hat{f}(4,\mathbf{2}) = \mathbf{2}$.

Consider a definite logic program \mathcal{P} which computes the function f using a predicate symbol $\underline{\mathbf{f}} \in \Delta^{n+2}$:

$$f(k_1, \ldots, k_{n+1}) = k' \text{ iff } \mathcal{P} \models \underline{\underline{f}}(\underline{k_1}, \ldots, \underline{k_{n+1}}, \underline{k'}).$$

Here, numbers are represented by terms built from $0 \in \Sigma_0$, $s \in \Sigma_1$ (i.e., $\underline{0} = 0$, $\underline{1} = s(0)$, $\underline{2} = s(s(0))$, . . .).

Please extend the definite logic program \mathcal{P} such that it also computes the function g using the predicate symbol $g \in \Delta^{n+1}$ (but **without any built-in predicates**):

$$g(k_1,\ldots,k_n)=k \text{ iff } \mathcal{P}\models g(k_1,\ldots,k_n,\underline{k}).$$

Immatriculation Number:

Exercise 5 (Definite Logic Programming):

(10 points)

Implement the predicate solve/1 in Prolog. This predicate can be used as a primitive SAT-solver for clause sets represented as lists of lists of literals. More precisely, a clause set is a list t of the form $[[l_1^1, l_2^1, \dots, l_{k_1}^1], [l_1^2, l_2^2, \dots, l_{k_2}^2], \dots, [l_1^n, l_2^n, \dots, l_{k_n}^n]]$

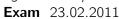
where all I_i^j are of the form pos(X) or neg(X) for some Prolog variables X. The list t represents a set of clauses where pos(X) stands for the propositional variable X while neg(X) stands for its negation. A call solve(t) succeeds with a substitution satisfying the represented clause set t (by setting the variables to 1 or 0) if this set is satisfiable or fails if this set is unsatisfiable. If t does not represent a clause set as described above, then solve(t) may behave arbitrarily. You **must not use** any built-in predicates in this exercise. The following example calls to solve/1 illustrate its definition:

- ?- solve([[pos(A),pos(B)],[neg(A),neg(B)]]). has the two answer substitutions A = 1, B = 0 and A = 0, B = 1 (the order of the solutions is up to your implementation)
- ?- solve([[pos(A)],[neg(A)]]). fails

Hint: In this representation, a clause is satisfied if it contains at least one literal of the form pos(1) or neg(0). Moreover, a clause set is satisfied if all its clauses are satisfied. It might be useful to implement this predicate in a way that the following example calls work as described below, although this is not mandatory.

- ?- solve([[pos(1),pos(B)],[neg(1),neg(B)]]). succeeds with the answer substitution B = 0
- ?- solve([[pos(1),pos(0)],[neg(1),neg(0)]]). succeeds with the empty answer substitution

Immatriculation Number:



Name:

Exercise 6 (Arithmetic):

(5 points)

Implement the predicate binomial/3 in Prolog. A call of binomial(t_1 , t_2 , t_3) works as follows. If t_1 and t_2 are integers with $t_1 < t_2$ or at least one of t_1 or t_2 is negative, then it fails. If t_1 and t_2 are non-negative integers with $t_1 \geq t_2$, then t_3 is unified with the integer resulting from $\binom{t_1}{t_2}$. If t_1 or t_2 is no integer, binomial/3 may behave arbitrarily.

Remember that the binomial coefficient $\binom{n}{k}$ for non-negative integers n and k with $n \ge k$ is defined as $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ with 0! = 1.

The following example calls to binomial/3 illustrate its definition:

- ?- binomial(-3,2,X). fails
- ?- binomial(2,3,X). fails
- ?- binomial(3,2,X). succeeds with the answer substitution X = 3
- ?- binomial(3,2,1). fails