
Logic Programming SS 2015
Solution - Exam 19.08.2015

aaProf. Dr. Jürgen Giesl Cornelius Aschermann, Jera Hensel

Master Exam Version V3M

First Name:

Last Name:

Immatriculation Number:

Course of Studies (please mark exactly one):

◦ Informatik Bachelor ◦ Informatik Master
◦ SSE Master ◦ Other:

Maximal Points Achieved Points
Exercise 1 13
Exercise 2 10
Exercise 3 11
Exercise 4 14
Exercise 5 6
Exercise 6 6
Total 60
Grade -

Instructions:

• On every sheet please give your first name, last name, and immatriculation number.

• You must solve the exam without consulting any extra documents (e.g., course notes).

• Make sure your answers are readable. Do not use red or green pens or pencils.

• Please answer the exercises on the exercise sheets. If needed, also use the back sides of the
exercise sheets.

• Answers on extra sheets can only be accepted if they are clearly marked with your name, your
immatriculation number, and the exercise number.

• Cross out text that should not be considered in the evaluation.

• Students that try to cheat do not pass the exam.

• At the end of the exam, please return all sheets together with the exercise sheets.

1

Logic Programming SS 2015
Solution - Exam 19.08.2015

Exercise 1 (Theoretical Foundations): (4 + 4 + 5 = 13 points)

Let ϕ = p(0, 0)∧∀X, Y (p(X, Y)→ p(Y, s(X))) and ψ = ∃Z p(Z, s(Z)) be formulas over the signature
(Σ,∆) with Σ = Σ0 ∪Σ1,Σ0 = {0},Σ1 = {s}, and ∆ = ∆2 = {p}.

a) Prove that {ϕ} |= ψ by means of SLD resolution.

Hint: First transform the formula ϕ ∧ ¬ψ into an equivalent clause set.

b) Explicitly give a Herbrand model of the formula ϕ (i.e., specify a carrier and a meaning for all
function and predicate symbols). You do not have to provide a proof for your answer.

c) Prove or disprove: If K is a set of clauses without variables, S is a model of K, K1, K2 ∈ K and
R is a resolvent of K1 and K2, then S is a model of K ∪ {R}.

Solution:

a)

ϕ ∧ ¬ψ ⇔ p(0, 0) ∧ ∀X, Y (p(X, Y)→ p(Y, s(X))) ∧ ¬∃Z p(Z, s(Z))

⇔ p(0, 0) ∧ ∀X, Y (¬p(X, Y) ∨ p(Y, s(X))) ∧ ¬∃Z p(Z, s(Z))

⇔ p(0, 0) ∧ ∀X, Y (¬p(X, Y) ∨ p(Y, s(X))) ∧ ∀Z ¬p(Z, s(Z))

⇔ ∀X, Y, Z (p(0, 0) ∧ (¬p(X, Y) ∨ p(Y, s(X))) ∧ ¬p(Z, s(Z)))

Thus, the equivalent clause set for ϕ ∧ ¬ψ is {p(0, 0)}, {¬p(X, Y), p(Y, s(X))}, {¬p(Z, s(Z))}.
We perform SLD resolution on this clause set to show {ϕ} |= ψ.

{p(0, 0)} {¬p(X, Y), p(Y, s(X))} {¬p(Z, s(Z))}

{¬p(Z,Z)}

Y/Z,X/Z

�

Z/0

Hence, we have proven {ϕ} |= ψ.

�

b) We have S |= ϕ for the Herbrand structure S = (T (Σ), α) with α0 = 0, αs(t) = s(t), and

αp = {(si(0), si(0)) | i ≥ 0} ∪ {(si(0), si+1(0)) | i ≥ 0}

Alternative solution: αp = T (Σ)× T (Σ)

2

Logic Programming SS 2015
Solution - Exam 19.08.2015

c) Let S be a model of K. Then there is a literal L ∈ K1 such that L ∈ K2 and R = (K1 \ {L}) ∪
(K2 \ {L}). Assume S 6|= K∪ {R}. With S |= K it follows that S 6|= R. If S |= L, S |= K2 implies
S |= K2 \ {L} and hence S |= R. If S |= L, S |= K1 implies S |= K1 \ {L} and hence S |= R.
Therefore, each model of K is also a model of K ∪ {R}.

.

3

Logic Programming SS 2015
Solution - Exam 19.08.2015

Exercise 2 (Procedural Semantics, SLD tree): (5 + 5 = 10 points)

Consider the following Prolog program P which can be used to check whether a list contains 4 or 6,
but it does not contain any 2 before the first 4 or 6.

e(2).
e(4).
e(6).
p([X|_]):- e(X),!,not(X = 2).
p([_|XS]):- p(XS).
not(X):- X,!,fail.
not(_).

As an example, the query p([1,2,4,8]) would not be provable (since it contains a 2 and there is no 4
or 6 before).

a) The program P ′ results from P by removing both cuts. Consider the following query:

?- p([1,2,4,8]).

For the logic program P ′ (i.e., without the cuts), please show a successful computation for the
query above (i.e., a computation of the form (G,∅) `+P ′ (�, σ) where G = {¬p[1,2,4,8]}). You
may leave out the negations in the queries.

b) Please give a graphical representation of the SLD tree for the query

?- p([1,4]).

in the program P (i.e., with the cuts). For every part of a tree that is cut off by evaluating !,
please indicate the cut by marking the corresponding edge. For the cut-off parts only indicate the
first cut-off goal, but do not evaluate further.

Solution:

a)

`P ′ ({p([1,2,4,8])}, {})
`P ′ ({p([2,4,8])}, {XS/[2,4,8]})
`P ′ ({p([4,8])}, {XS/[2,4,8],XS’/[4,8]})
`P ′ ({e(4),not(4=2)}, {X/4,XS/[2,4,8],XS’/[4,8]})
`P ′ ({not(4=2)}, {X/4,XS/[2,4,8],XS’/[4,8]})
`P ′ (�, {X/4,XS/[2,4,8],XS’/[4,8]})

4

Logic Programming SS 2015
Solution - Exam 19.08.2015

b) SLD Tree

p([1,4])

e(1),!, not(1=2)

p([4])

e(4),!,not(4=2)

!,not(4=2)

not(4=2)

4=2,!,fail

�

p([])

//

.

5

Logic Programming SS 2015
Solution - Exam 19.08.2015

Exercise 3 (Fixpoint Semantics): (5 + 3 + 3 = 11 points)

Consider the following logic program P over the signature (Σ,∆) with Σ = {0, s} and ∆ = {p}.
p(0, X).
p(s(X), s(s(Y))) :- p(X, Y).

a) For each n ∈ N explicitly give transnP(∅) in closed form, i.e., using a non-recursive definition.

b) Compute the set lfp(transP).

c) Give F JP, {¬p(s(s(0)), X)}K.

Solution:

Let G be the set of all ground terms, i.e., G = {si(0) | i ∈ N} = T (Σ).

a) foo trans0P(∅) = ∅
trans1P(∅) = {p(0, t) | t ∈ G}
trans2P(∅) = {p(s(0), s2(t)) | t ∈ G} ∪ trans1P(∅)

trans3P(∅) = {p(s2(0), s4(t)) | t ∈ G} ∪ trans2P(∅)

...

transnP(∅) = {p(si(0), s2i(t)) | t ∈ G, 0 ≤ i < n}

b) lfp(transP) = {p(si(0), s2i(t)) | t ∈ G, i ≥ 0} (= {p(si(0), sj(0)) | i ≥ 0, j ≥ 2i})

c) F JP, {¬p(s(s(0)), X)}K = {p(s2(0), s4(t)) | t ∈ G} (= {p(s2(0), s4+i(0)) | i ≥ 0})

.

6

Logic Programming SS 2015
Solution - Exam 19.08.2015

Exercise 4 (Definite Logic Programming): (7 + 7 = 14 points)

a) We consider Deterministic Finite Automata (DFAs). An example for such an automaton is given
below. It accepts all words where the number of “a” characters in the word is even.

s0start s1

a

b

a

b

We encode this automaton into Prolog facts as follows:

start(s0).
final(s0).
delta(s0,a,s1).
delta(s1,a,s0).
delta(s1,b,s1).
delta(s0,b,s0).

As a quick reminder: A DFA is a five-tuple (Q,Σ, δ, q0, F). Here, Q is a set of states (in our
case {s0, s1}), Σ is the set of alphabet symbols (in our case {a, b}). The transition function δ:
Q × Σ 7→ Q maps the current state to the next state given that a certain symbol from Σ was
read. The automaton starts in the start state q0 and accepts the word if it stops in a final state
from the set F ⊆ Q (in our case F = {s0}).
We say that an automaton (Q,Σ, δ, q0, F) accepts a word w = (a1, a2, . . . , an) ∈ Σn if there is a
run q0

a1−→ q1
a2−→ q2

a3−→ · · · an−→ qn such that for all i ∈ {1 . . . , n} it holds that δ(qi−1, ai) = qi
and qn ∈ F .
In the example above, we encoded the start state q0 with the fact start(s0), the set of final
states F is encoded by the fact final(s0), the transition function is encoded by the delta/3
predicate such that delta(qi, a, qj) holds iff δ(qi , a) = qj . The sets Q and Σ are implicitly
defined by the arguments of delta.

Implement a predicate accepts/1. The query: ?- accepts(Word) should succeed iff the DFA
accepts the given word. In our example, the query ?- accepts([a,b,a]) should succeed but the
query ?- accepts([a,b]) should fail. Your clause for accepts should work for any DFA (i.e.,
for any clauses defining start, final, and delta).

7

Logic Programming SS 2015
Solution - Exam 19.08.2015

b) Consider the set partition problem: Given a set S = {a1, . . . , an} of integer numbers, find a
partition of S into two sets L and R such that

• Σai∈L ai = Σai∈R ai

• L ∪ R = S

• L ∩ R = ∅.
Implement a predicate partition/3 such that ?- partition(S,L,R) succeeds iff L and R are
a valid partition of S. For example, partition([1,2,3],L,R) should succeed with answer sub-
stitution L = [1,2], R = [3]. On lists with duplicate entries your implementation may behave
arbitrarily.

Solution:

a) Finite Automaton

run_on(State ,[]) :- final(State).
run_on(State ,[C|Word]) :- delta(State ,C,StateN), run_on(StateN ,Word).
accepts(Word):- start(State), run_on(State ,Word).

b) Set Partition

partition_helper ([], [], [], 0, 0).
partition_helper ([X|XS], [X|L], R, SUML , SUMR) :-

partition_helper(XS , L, R, SUMN , SUMR), SUML is SUMN+X.
partition_helper ([X|XS], L, [X|R], SUML , SUMR) :-

partition_helper(XS , L, R, SUML , SUMN), SUMR is SUMN+X.

partition(S, L, R) :- partition_helper(S, L, R, X, X).

.

8

Logic Programming SS 2015
Solution - Exam 19.08.2015

Exercise 5 (Universality): (6 points)

Consider a function f : Nn+1 → N. The function g : Nn+1 → N is defined as:

g(k1, . . . , kn, m) = k iff f (k1, . . . , kn, k) = m and

for all 0 ≤ k ′ < k we have f (k1, . . . , kn, k
′) is defined and f (k1, . . . , kn, k

′) < m

As an example, consider the function f̂ : N3 → N with f̂ (x, y , k) = x − y + k . The function
ĝ : N3 → N, constructed as described above, computes ĝ(2, 1, 3) = 2. The reason is that for
x = 2, y = 1, 2 is the smallest k such that f̂ (x, y , k) = 3 and f̂ (x, y , k ′) < 3 for all 0 ≤ k ′ < k .
Indeed, f̂ (2, 1, 0) = 1, f̂ (2, 1, 1) = 2, f̂ (2, 1, 2) = 3. On the other hand, ĝ(5, 0, 4) is undefined, because
for k ′ = 0 we already have f̂ (5, 0, 0) > 4.

Consider a definite logic program P which computes the function f using a predicate symbol f ∈ ∆n+2:

f (k1, . . . , kn+1) = k iff P |= f(k1, . . . , kn+1, k).

Here, numbers are represented by terms built from 0 ∈ Σ0, s ∈ Σ1 (i.e., 0 = 0, 1 = s(0), 2 =

s(s(0)), . . .).

Please extend the definite logic program P such that it also computes the function g using the predicate
symbol g ∈ ∆n+2 (but without any built-in predicates):

g(k1, . . . , kn, m) = k iff P |= g(k1, . . . , kn, m, k).

Solution:

g(X1, . . . , Xn,M,Z) : − f′(X1, . . . , Xn,M, 0, Z).

f′(X1, . . . , Xn,M, Y, Y) : − f(X1, . . . , Xn, Y,M).

f′(X1, . . . , Xn,M, Y, Z) : − f(X1, . . . , Xn, Y, A), smaller(A,M), f′(X1, . . . , Xn,M, s(Y), Z).

f′(X1, . . . , Xn,M, Y, Z) : − f(X1, . . . , Xn, Y, A), smaller(M,A), f′(X1, . . . , Xn,M, Y, Z).

smaller(0, s(_)).

smaller(s(X), s(Y)) : − smaller(X, Y).

.

9

Logic Programming SS 2015
Solution - Exam 19.08.2015

Exercise 6 (Programming with CLP): (6 points)

In this task, we use Prolog to solve simple systems of equations. Here, the Prolog list

[[30, B, C], [20, A, C], [10, A, B]]

encodes the following system of equations.

30 = B + C

20 = A+ C

10 = A+ B

0 ≤ A ≤ 100

0 ≤ B ≤ 100

0 ≤ C ≤ 100

We require that variables may only be instantiated by integers between 0 and 100. The first element
of every equation is always a constant. All other elements are always variables. There will always be at
least one variable and there may be more variables than in the example. E.g., [[5, A, B, C ,D], [5,
A]] would be a valid system of equations.
Implement a Prolog predicate solve/1 that finds a satisfying solution for such equation systems.
For example, the query ?- solve([[30, B, C], [20, A, C], [10, A, B]]), label([A, B, C])
should succeed with the unique substitution A = 0, B = 10, C = 20.

The following line is already given:

:- use_module(library(clpfd)).

Solution:

:- use_module(library(clpfd)).

sum([], 0).
sum([X|XS], Z):- X in 0..100 , sum(XS ,ZP), Z #= X + ZP.

solve_eqn ([CONST|VARS]) :- sum(VARS ,CONST).

solve ([]).
solve ([E|EQS]):- solve_eqn(E), solve(EQS).

.

10

