First name

Last name

Matriculation number

Exercise 1 (2+2+2 points)

The following data structure represents binary trees only containing values at the leaves:
data Tree a = Node (Tree a) (Tree a)

Consider the tree t of integers on the right-hand
side. The representation of t as an object of type
Tree Int in Haskell would be:

Node (Node (Leaf 1) (Leaf 2)) (Leaf 3)

Implement the following functions in Haskell.

/\3
1/ \2

(a) The function foldTree of type (a -> a > a) -> (b -> a) -> Tree b -> a works as
follows: foldTree n 1 t replaces all occurrences of the constructor Node in the tree t
by n and it replaces all occurrences of the constructor Leaf in t by 1. So for the tree
t above, foldTree (+) id t should compute (+) ((+) (id 1) (id 2)) (id 3) which
finally results in 6. Here, Node is replaced by (+) and Leaf is replaced by id.

(b) Use the foldTree function from (a) to implement the maxTree function which returns the
largest (w.r.t. >) element of the tree. Apart from the function declaration, also give the

most general type declaration for maxTree.

lecture
Rechteck

lecture
Rechteck

First name Last name Matriculation number

(¢) Consider the following data type declaration for natural numbers:
data Nats = Zero | Succ Nats

A graphical representation of the first four levels of the domain for Nats could look like this:

Succ (Succ Zero) Succ (Succ (Succ 1))
Succ Zero Succ (Succ 1)

Ze‘ro Succ L
1

Sketch a graphical representation of the first three levels of the domain Drtypee poo1 for the
data type Tree Bool.

lecture
Rechteck

First name Last name Matriculation number

Exercise 2 (243 points)

Consider the following Haskell declarations for the double function:

double :: Int -> Int
double (x+1) = 2 + (double x)
double _ =0

(a) Give the Haskell declarations for the higher-order function f_double corresponding to

double, i.e., the higher-order function f_double such that the least fixpoint of f_double
is double. In addition to the function declaration(s), also give the type declaration of
f_double. Since you may use full Haskell for f_double, you do not need to translate
double into simple Haskell.

We add the Haskell declaration bot = bot. For each n € IN determine which function
is computed by f_double™ bot. Here “f_double” bot” represents the n-fold application
of £_double to bot, i.e., it is short for f_double (f_double ... (f_double bot)...). Give

-~

n times
the function in closed form, i.e., using a non-recursive definition.

lecture
Rechteck

lecture
Rechteck

First name Last name Matriculation number

Exercise 3 (343 points)

Let C be a complete order and let f be a function which is continuous (and, therefore, also
monotonic).

Prove or disprove the following statements:

(a) { fM(L) | ne{0,1,2,...} }is a chain.

(b) U{ f™(L) | ne{0,1,2,...} }is a fixpoint of f.

lecture
Rechteck

lecture
Rechteck

First name Last name Matriculation number

Exercise 4 (3 points)

We define the following algebraic data type for lists:
data List a = Nil | Cons a (List a)

Write a program in simple Haskell which computes the function sum :: List Int -> Int.
Here, sum adds all integers in a list of integers. For example, sum (Cons 1 (Cons (-2) Nil))
should return -1.

Your solution should use the functions defined in the transformation from the lecture such as
sel, ;, iSaconstr, and argof You do not have to use the transformation rules from the
lecture, though.

constr*

lecture
Rechteck

First name

Last name

Matriculation number

Exercise 5 (243 points)

Consider the following data structure for natural numbers:

data Nats

Succ Nats | Zero

Let 0 be the set of rules from Definition 3.3.5, i.e., contains at least the following rules:

iSazer, (Succ (Succ Zero)) — False

fix — Af. f (fix f)
if False — Mrvy.y

(a) Please translate the following Haskell-expression into a lambda term using Lam. It suffices

to give the result of the transformation.

let g = \x -> if (isa_Zero x) then Zero else Succ (g (argof_Succ x))
in g (Succ (Succ Zero))

(b) Reduce the lambda term from (a) by WHNO-reduction with the — gs-relation. You do not
have to give the intermediate steps but only the weak head normal form (which is not
the same as the normal form).

lecture
Rechteck

lecture
Rechteck

First name

Last name

Matriculation number

Exercise 6 (4 points)

Use the type inference algorithm W to determine the most general type of the following A-term
under the initial type assumption Ay. Show the results of all sub-computations and unifications,
too. If the term is not well typed, show how and why the W-algorithm detects this.

fix (Az. Succ x)

In this exercise, please use the initial type assumption A, as presented in the lecture. This type
assumption contains at least the following:

Ap(Succ)
Ao(fIX)

Nats — Nats
Va. (a —a) = a

lecture
Rechteck

