
First name Last name Matriculation number
1

Exercise 1 (2+2+2 points)

The following data structure represents binary trees only containing values at the leaves:
data Tree a = Node (Tree a) (Tree a) | Leaf a

Consider the tree t of integers on the right-hand
side. The representation of t as an object of type
Tree Int in Haskell would be:

Node (Node (Leaf 1) (Leaf 2)) (Leaf 3)

·

>>
>>

>>
>>

��
��

��
��

·

<<
<<

<<
<<

��
��

��
��

3

1 2

Implement the following functions in Haskell.

(a) The function foldTree of type (a -> a -> a) -> (b -> a) -> Tree b -> a works as
follows: foldTree n l t replaces all occurrences of the constructor Node in the tree t

by n and it replaces all occurrences of the constructor Leaf in t by l. So for the tree
t above, foldTree (+) id t should compute (+) ((+) (id 1) (id 2)) (id 3) which
finally results in 6. Here, Node is replaced by (+) and Leaf is replaced by id.

foldTree f g (Leaf x) = g x

foldTree f g (Node l r) = f (foldTree f g l) (foldTree f g r)

(b) Use the foldTree function from (a) to implement the maxTree function which returns the
largest (w.r.t. >) element of the tree. Apart from the function declaration, also give the
most general type declaration for maxTree.

maxTree :: Ord a => Tree a -> a

maxTree = foldTree max id

1

lecture
Rechteck

lecture
Rechteck



First name Last name Matriculation number
2

(c) Consider the following data type declaration for natural numbers:

data Nats = Zero | Succ Nats

A graphical representation of the first four levels of the domain for Nats could look like this:

Succ (Succ Zero) Succ (Succ (Succ ⊥))

iiiiiiiiiiiiiiii

Succ Zero Succ (Succ ⊥)

llllllllllllll

Zero Succ ⊥

qqqqqqqqqqqq

⊥

Sketch a graphical representation of the first three levels of the domain DTree Bool for the
data type Tree Bool.

Node (Node ⊥ ⊥) ⊥

FFFFFFFFFFFFFFFFFFFFFF
Node ⊥ (Node ⊥ ⊥)

xxxxxxxxxxxxxxxxxxxxxx

Leaf True Leaf False

nnnnnnnnnnnnn
Node (Leaf ⊥) ⊥

SSSSSSSSSSSSSS
Node ⊥ (Leaf ⊥)

kkkkkkkkkkkkkk

Leaf ⊥ Node ⊥ ⊥

cccccccccccccccccccccccccccccccccccccccccccccccccccccc

⊥

2

lecture
Rechteck



First name Last name Matriculation number
3

Exercise 2 (2+3 points)

Consider the following Haskell declarations for the double function:

double :: Int -> Int

double (x+1) = 2 + (double x)

double _ = 0

(a) Give the Haskell declarations for the higher-order function f double corresponding to
double, i.e., the higher-order function f double such that the least fixpoint of f double

is double. In addition to the function declaration(s), also give the type declaration of
f double. Since you may use full Haskell for f double, you do not need to translate
double into simple Haskell.

f double :: (Int -> Int) -> (Int -> Int)

f double double (x+1) = 2 + (double x)

f double double = 0

(b) We add the Haskell declaration bot = bot. For each n ∈ IN determine which function
is computed by f doublen bot. Here “f doublen bot” represents the n-fold application
of f double to bot, i.e., it is short for f double (f double . . . (f double

︸ ︷︷ ︸

n times

bot) . . .). Give

the function in closed form, i.e., using a non-recursive definition.

(f double
n(⊥))(x) =







2 · x, if 0 < x < n
0, if x ≤ 0 ∧ n > 0
⊥, if n = 0 ∨ x = ⊥ ∨ x ≥ n

3

lecture
Rechteck

lecture
Rechteck



First name Last name Matriculation number
4

Exercise 3 (3+3 points)

Let v be a complete order and let f be a function which is continuous (and, therefore, also
monotonic).

Prove or disprove the following statements:

(a) { fn(⊥) | n ∈ {0, 1, 2, . . .} } is a chain.

We must prove fn(⊥) v fn+1(⊥) for all n ∈ {0, 1, 2, . . .}.

– n = 0: By definition we have ⊥ v f(⊥)

– n → n + 1: The function f is continuous and therefore also monotonic.
Thus, fn(⊥) v fn+1(⊥) implies fn+1(⊥) v fn+2(⊥).

(b) t{ fn(⊥) | n ∈ {0, 1, 2, . . .} } is a fixpoint of f .

f(t{fn(⊥) | n ∈ {0, 1, 2, . . .}})
f continuous

= tf({fn(⊥) | n ∈ {0, 1, 2, . . .}})

= t{fn+1(⊥) | n ∈ {0, 1, 2, . . .}}

= t{fn(⊥) | n ∈ {1, 2, . . .}}

= t({fn(⊥) | n ∈ {1, 2, . . .}} ∪ {⊥})

= t({fn(⊥) | n ∈ {1, 2, . . .}} ∪ {f 0(⊥)})

= t{fn(⊥) | n ∈ {0, 1, 2, . . .}}

4

lecture
Rechteck

lecture
Rechteck



First name Last name Matriculation number
5

Exercise 4 (3 points)

We define the following algebraic data type for lists:

data List a = Nil | Cons a (List a)

Write a program in simple Haskell which computes the function sum :: List Int -> Int.
Here, sum adds all integers in a list of integers. For example, sum (Cons 1 (Cons (-2) Nil))

should return -1.

Your solution should use the functions defined in the transformation from the lecture such as
seln,i, isaconstr, and argof

constr
. You do not have to use the transformation rules from the

lecture, though.

let sum = \l -> if (isaNil l)

then 0

else (sel2,1 (argofCons l)) + (sum (sel2,2 (argofCons l)))

5

lecture
Rechteck



First name Last name Matriculation number
6

Exercise 5 (2+3 points)

Consider the following data structure for natural numbers:

data Nats = Succ Nats | Zero

Let δ be the set of rules from Definition 3.3.5, i.e., δ contains at least the following rules:

fix → λf. f (fix f)

if False → λx y. y

isaZero (Succ (Succ Zero)) → False

(a) Please translate the following Haskell-expression into a lambda term using Lam. It suffices
to give the result of the transformation.

let g = \x -> if (isa_Zero x) then Zero else Succ (g (argof_Succ x))

in g (Succ (Succ Zero))

(fix (λg x. if (isaZero x) Zero (Succ (g (argof
Succ

x))))) (Succ (Succ Zero))

(b) Reduce the lambda term from (a) by WHNO-reduction with the →βδ-relation. You do not
have to give the intermediate steps but only the weak head normal form (which is not
the same as the normal form).

Let A = λg x. if (isaZero x) Zero (Succ (g (argofSucc x)))

fix (λg x. if (isaZero x) Zero (Succ (g (argofSucc x)))) (Succ (Succ Zero))

= fix A (Succ (Succ Zero))

→δ (λf. f (fix f)) A (Succ (Succ Zero))

→β A (fix A) (Succ (Succ Zero))

→β (λx. if (isaZero x) Zero (Succ (fix A (argofSucc x)))) (Succ (Succ Zero))

→β if (isaZero (Succ (Succ Zero))) Zero (Succ (fix A (argofSucc (Succ (Succ Zero)))))

→δ if False Zero (Succ (fix A (argofSucc (Succ (Succ Zero)))))

→δ (λx y. y) Zero (Succ (fix A (argofSucc (Succ (Succ Zero)))))

→β (λy. y) (Succ (fix A (argofSucc (Succ (Succ Zero)))))

→β Succ (fix A (argofSucc (Succ (Succ Zero))))

6

lecture
Rechteck

lecture
Rechteck



First name Last name Matriculation number
7

Exercise 6 (4 points)

Use the type inference algorithm W to determine the most general type of the following λ-term
under the initial type assumption A0. Show the results of all sub-computations and unifications,
too. If the term is not well typed, show how and why the W-algorithm detects this.

fix (λx. Succ x)

In this exercise, please use the initial type assumption A0 as presented in the lecture. This type
assumption contains at least the following:

A0(Succ) = Nats → Nats

A0(fix) = ∀a. (a → a) → a

W (A0, fix (λx. Succ x))
W (A0, fix)
= (id, (b0 → b0) → b0)
W (A0, λx. Succ x)

W (A0 + {x :: b1}, Succ x)
W (A0 + {x :: b1}, Succ)
= (id, Nats → Nats)
W (A0 + {x :: b1}, x)
= (id, b1)
mgu((Nats → Nats), (b1 → b2)) = [b1/Nats, b2/Nats]

= ([b1/Nats, b2/Nats], Nats)
= ([b1/Nats, b2/Nats], Nats → Nats)
mgu(((b0 → b0) → b0), ((Nats → Nats) → b3)) = [b0/Nats, b3/Nats]

= ([b1/Nats, b2/Nats, b0/Nats, b3/Nats], Nats)

Resulting type: Nats

7

lecture
Rechteck


