First name	Last name	Matriculation number

Exercise 1 (2+2+2 points)

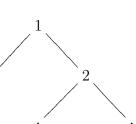
The following data structure represents binary trees only containing values in the inner nodes: data Tree a = Leaf | Node (Tree a) a (Tree a)

Consider the tree t of integers on the right-hand side. The representation of t as an object of type Tree Int in Haskell would be:

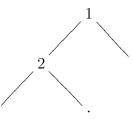
Node (Node Leaf 2 Leaf) 1 Leaf

Implement the following functions in Haskell.

(a) Please implement the function swapTree which returns the tree where all left children have been swapped with the corresponding right children. When computing swapTree t one would obtain the tree on the right-hand side. Apart from the function declaration, also give the most general type declaration for swapTree. You may not use 2any higher-order functions.



1



First name	Last name	Matriculation number	

 $\mathbf{2}$

(b) The function foldTree of type (a -> b -> a -> a) -> a -> Tree b -> a works as follows: foldTree n l t replaces all occurrences of the constructor Node in the tree t by n and it replaces all occurrences of the constructor Leaf in t by l. Suppose there is the function add:

add :: Int \rightarrow Int \rightarrow Int \rightarrow Int add x y z = x + y + z

For the tree t from (a), "foldTree add 0 t" should compute:

foldTree add 0 (Node (Node Leaf 2 Leaf) 1 Leaf) = add (add 0 2 0) 1 0 = 3

Here, Node is replaced by add and Leaf is replaced by 0.

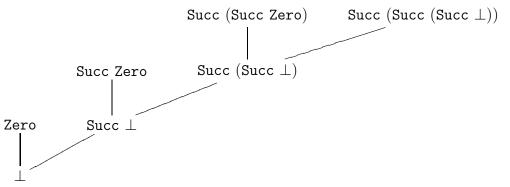
Now use the foldTree function to implement the swapTree function again.

First name	Last name	Matriculation number	
			و

(c) Consider the following data type declaration for natural numbers:

data Nats = Zero | Succ Nats

A graphical representation of the first four levels of the domain for Nats could look like this:



Sketch a graphical representation of the first three levels of the domain for the data type Tree Bool.

First name	Last name	Matriculation number

Exercise 2 (2+3 points)

Consider the following Haskell declarations for the half function:

half :: Int \rightarrow Int half (x+2) = 1 + (half x) half _ = 0

(a) Give the Haskell declarations for the higher-order function f_half corresponding to half, i.e., the higher-order function f_half such that the least fixpoint of f_half is half. In addition to the function declaration(s), also give the type declaration of f_half. Since you may use full Haskell for f_half, you do not need to translate half into simple Haskell.

(b) We add the Haskell declaration bot = bot. For each $n \in \mathbb{N}$ determine which function from \mathbb{Z}_{\perp} to \mathbb{Z}_{\perp} is computed by $\texttt{f_half}^n$ bot. Here " $\texttt{f_half}^n$ bot" represents the *n*fold application of $\texttt{f_half}$ to bot, i.e., it denotes $\texttt{f_half}$ ($\texttt{f_half}$... ($\texttt{f_half}$ bot)...).

n times

4

Give the function computed by "f_halfⁿ bot" in closed form, i.e., using a non-recursive definition.

First name	Last name	Matriculation number

 $\mathbf{5}$

Exercise 3 (3+3 points)

Let \sqsubseteq be a complete order and let f be a function which is continuous (and therefore also monotonic).

Prove or disprove the following statements:

(a) { $f^n(\perp)$ | $n \in \{0, 1, 2, ...\}$ } is a chain.

(b) $\sqcup \{ f^n(\bot) \mid n \in \{0, 1, 2, \ldots\} \}$ is a fixpoint of f.

First name	Last name	Matriculation number

Exercise 4 (3 points)

We define the following algebraic data type for lists:

data List a = Nil | Cons a (List a)

Write declarations in **simple** Haskell for the function maxList::List Int -> Int. Here, for empty lists the function should return bot. For non-empty lists, maxList should return the maximum of that list. For example, maxList (Cons 1 (Cons (-2) Nil)) should return 1.

Your solution should use the functions defined in the transformation from the lecture such as $sel_{n,i}$, isa_{constr} , $argof_{constr}$, and bot. You do not have to use the transformation rules from the lecture, though. Additionally, you may use the built-in function max :: Int -> Int -> Int for computing the maximum of two integers.

First name	Last name	Matriculation number

Exercise 5 (2+4 points)

Consider the following data structures for natural numbers and polymorphic lists:

data Nats = Zero | Succ Nats data List a = Nil | Cons a (List a)

Let δ be the set of rules from Definition 3.3.5, i.e., δ contains among others the following rules:

 $\begin{array}{rcl} \text{fix} & \to & \lambda f. \ f \ (\text{fix} \ f) \\ \text{if True} & \to & \lambda x \ y. \ x \\ \text{isa}_{\text{Nil}} \ \text{Nil} & \to & \text{True} \end{array}$

(a) Please translate the following Haskell-expression into an equivalent lambda term (e.g., using $\mathcal{L}am$). It suffices to give the result of the transformation.

First name	Last name	Matriculation number

(b) Let "fix t" be the lambda term from (a). Please reduce "(fix t) Nil" by WHNO-reduction with the $\rightarrow_{\beta\delta}$ -relation. You have to give **all** intermediate steps until one reaches **weak** head normal form.

First name	Last name	Matriculation number

Exercise 6 (4 points)

Use the type inference algorithm \mathcal{W} to determine the most general type of the following λ -term under the initial type assumption A_0 . Show the results of all sub-computations and unifications, too. If the term is not well typed, show how and why the \mathcal{W} -algorithm detects this.

 $\lambda f. f$ (Succ Zero)

The initial type assumption A_0 contains at least the following: