

Functional Programming Exam, March 19, 2010 Prof. Dr. Jürgen Giesl Carsten Fuhs

Course of study (please mark exactly one):

- Bachelor of Informatik Wahlpflicht
- Master of Mathematik
- On every sheet please give your first name, last name, and matriculation number.
- You must solve the exam **without** consulting any **extra documents** (e.g., course notes).
- Make sure your answers are readable. Do not use **red pens or pencils**.
- Please answer the exercises on the **exercise sheets**. If needed, also use the back sides of the exercise sheets.
- Answers on extra sheets can only be accepted if they are clearly marked with your name, your matriculation number, and the **exercise number**.
- Cross out text that should not be considered in the evaluation.
- Students that try to cheat **do not pass** the exam.
- At the end of the exam, please return all sheets together with the exercise sheets.

	Total number of points	Number of points obtained
Exercise 1	24	
Exercise 2	9	
Exercise 3	6	
Exercise 4	9	
Exercise 5	10	
Total	58	
Grade	-	

First name	Last name	Matriculation number

Exercise 1 (4 + 5 + 4 + 6 + 5 = 24 points)

The following data structure represents polymorphic binary trees that contain values only in special Value nodes that have a single successor:

data Tree a = Leaf | Node (Tree a) (Tree a) | Value a (Tree a)

Consider the tree t of characters on the right-hand side. The representation of t as an object of type Tree Char in Haskell would be:

(Node (Value 'a' (Value 'b' Leaf)) (Node (Node Leaf Leaf) (Value 'c' Leaf)))

Implement the following functions in Haskell.

(a) The function foldTree of type

$(a \rightarrow b \rightarrow b) \rightarrow (b \rightarrow b \rightarrow b) \rightarrow b \rightarrow$ Tree a $\rightarrow b$

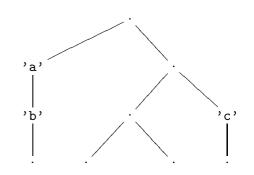
works as follows: foldTree f g h x replaces all occurrences of the constructor Value in the tree x by f, it replaces all occurrences of the constructor Node in x by g, and it replaces all occurrences of the constructor Leaf in x by h. So for the tree t above,

```
foldTree (:) (++) [] t
```

should compute

((++) ((:) 'a' ((:) 'b' [])) ((++) ((++) [] []) ((:) 'c' []))),

which in the end results in "abc" (i.e., in the list ['a', 'b', 'c']). Here, Value is replaced by (:), Node is replaced by (++), and Leaf is replaced by [].



 $\mathbf{2}$

First name	Last name	Matriculation number

- (b) Use the foldTree function from (a) to implement the average function which has the type Tree Int -> Int and returns the average of the values that are stored in the tree. This should be accomplished as follows:
 - Use foldTree with suitable functions as arguments in order to compute the sum of the values stored in the trees.
 - Use foldTree with suitable functions as arguments in order to compute the *number* of Value-objects in the tree.
 - Perform integer division with the pre-defined function div :: Int -> Int -> Int on these values to obtain the result.

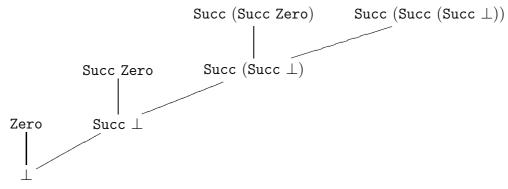
Here your function is required to work correctly only on those trees that contain the constructor Value at least once.

First name	Last name	Matriculation number

(c) Consider the following data type declaration for natural numbers:

data Nats = Zero | Succ Nats

A graphical representation of the first four levels of the domain for Nats could look like this:



Sketch a graphical representation of the first three levels of the domain for the data type Tree Bool.

First name	Last name	Matriculation number

(d) We call a list ys of integers an n-times even product of a list xs if ys has length n and if all elements of ys are even numbers that occur in xs. The goal of this exercise is to write a function evenProducts :: [Int] -> Int -> [[Int]] that takes a list of integers xs and a natural number n and returns a list that contains all n-times even products of xs. For example, evenProducts [4,5,6] 2 = [[4,4], [4,6], [6,4], [6,6]].

The following declarations are already given:

```
evenProducts :: [Int] -> Int -> [[Int]]
evenProducts xs 0 = []
evenProducts xs 1 = map (\z -> [z]) (filter even xs)
```

Please give the declaration of evenProducts for the missing case of numbers that are at least 2. Perform your implementation only with the help of a list comprehension, i.e., you should use exactly one declaration of the following form:

```
evenProducts xs (n+2) = [ \dots | \dots ]
```

First name	Last name	Matriculation number

(e) We define the *level* n of a tree as the list of those values that are at distance n from the root of the tree. Here, the root node has distance 0 from the root, and a non-root node has distance n + 1 from the root if its parent node has distance n from the root.

Write a Haskell function level :: Tree a -> Int -> [a] which, given a tree t and a natural number n, computes the list of all values in t that occur there at level n (with repetition, i.e., a value should appear in the result list as many times as it appears on level n).

As an example, consider again the tree t from the beginning of the exercise. Here we have level t 2 = ['b', 'c'] and level t 7 = [].

First name	Last name	Matriculation number

Exercise 2 (4 + 5 = 9 points)

Consider the following Haskell declarations for the fib function, which for a natural number x computes the value *fibonacci*(x):

```
fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib (x+2) = fib (x+1) + fib x
```

(a) Please give the Haskell declarations for the higher-order function f_fib corresponding to fib, i.e., the higher-order function f_fib such that the least fixpoint of f_fib is fib. In addition to the function declaration(s), please also give the type declaration of f_fib. Since you may use full Haskell for f_fib, you do not need to translate fib into simple Haskell.

(b) We add the Haskell declaration bot = bot. For each n ∈ N please determine which function is computed by f_fibⁿ bot. Here "f_fibⁿ bot" represents the n-fold application of f_fib to bot, i.e., it is short for f_fib (f_fib ... (f_fib bot)...).

$$n \text{ times}$$

Let $f_n : \mathbb{Z}_{\perp} \to \mathbb{Z}_{\perp}$ be the function that is computed by f_fib^n bot. Give f_n in **closed form**, i.e., using a non-recursive definition. In this definition, you may use the function *fibonacci* : $\mathbb{N} \to \mathbb{N}$ where *fibonacci*(x) computes the x-th Fibonacci number. Here it suffices to give the result of your calculations. You do not need to present any intermediate steps.

First name	Last name	Matriculation number

Exercise 3 (3 + 3 = 6 points)

Let D_1, D_2, D_3 be domains with corresponding complete partial orders $\sqsubseteq_{D_1}, \sqsubseteq_{D_2}, \sqsubseteq_{D_3}$. As we know from the lecture, then also $\sqsubseteq_{(D_2 \times D_3)_{\perp}}$ is a complete partial order on $(D_2 \times D_3)_{\perp}$. Now let $f: D_1 \to D_2$ and $g: D_1 \to D_3$ be functions. We then define the function $h: D_1 \to (D_2 \times D_3)_{\perp}$ via h(x) = (f(x), g(x)).

(a) Prove or disprove: If f and g are *strict* functions, then also h is a strict function.

(b) Prove or disprove: If f and g are *monotonic* functions, then also h is a monotonic function.

First name	Last name	Matriculation number

Exercise 4 (4 + 5 = 9 points)

Consider the following data structure for polymorphic lists:

data List a = Nil | Cons a (List a)

(a) Please translate the following Haskell expression into an equivalent lambda term (e.g., using *Lam*). Recall that pre-defined functions like odd or (+) are translated into constants of the lambda calculus.

It suffices to give the result of the transformation.

```
let f = x \rightarrow if (odd x) then (y \rightarrow x) else f ((+) x 3) in f
```

First name	Last name	Matriculation number	
			10

(b) Let δ be the set of rules for evaluating the lambda terms resulting from Haskell, i.e., δ contains at least the following rules:

$$\begin{array}{rcl} \mbox{fix} & \to & \lambda f. \; f \; (\mbox{fix} \; f) \\ \mbox{times 3 2} & \to & 6 \end{array}$$

Now let the lambda term t be defined as follows:

$$t = (\lambda x. (\texttt{fix } \lambda g. x)) \ (\lambda z. (\texttt{times 3 2}))$$

Please reduce the lambda term t by WHNO-reduction with the $\rightarrow_{\beta\delta}$ -relation. You have to give **all** intermediate steps until you reach **weak head normal form** (and no further steps).

First name	Last name	Matriculation number	
			11

Exercise 5 (10 points)

Use the type inference algorithm \mathcal{W} to determine the most general type of the following lambda term under the initial type assumption A_0 . Show the results of all sub-computations and unifications, too. If the term is not well typed, show how and why the \mathcal{W} -algorithm detects this.

 $((\text{Cons }\lambda x. x) y)$

The initial type assumption A_0 contains at least the following:

 $\begin{array}{rcl} A_0(\texttt{Cons}) &=& \forall a. \; (a \to (\texttt{List} \; a \to \texttt{List} \; a)) \\ A_0(x) &=& \forall a. \; a \\ A_0(y) &=& \forall a. \; a \end{array}$