

Functional Programming Exam, March 19, 2010

Prof. Dr. Jürgen Giesl Carsten Fuhs

First name:		
Last name:		
Matr. number:		

Course of study (please mark exactly one):

- Master of Informatik
- Bachelor of Informatik for Master's studies
- On every sheet please give your first name, last name, and matriculation number.
- You must solve the exam without consulting any extra documents (e.g., course notes).
- Make sure your answers are readable. Do not use **red pens or pencils**.
- Please answer the exercises on the **exercise sheets**. If needed, also use the back sides of the exercise sheets.
- Answers on extra sheets can only be accepted if they are clearly marked with your name, your matriculation number, and the **exercise number**.
- Cross out text that should not be considered in the evaluation.
- Students that try to cheat **do not pass** the exam.
- At the end of the exam, please return all sheets together with the exercise sheets.

	Total number of points	Number of points obtained
Exercise 1	18	
Exercise 2	9	
Exercise 3	6	
Exercise 4	6	
Exercise 5	9	
Exercise 6	10	
Total	58	
Grade	-	

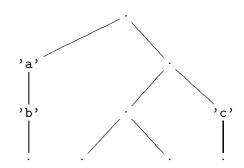
First name	Last name	Matriculation number

Exercise 1 (4 + 5 + 4 + 5 = 18 points)

The following data structure represents polymorphic binary trees that contain values only in special Value nodes that have a single successor:

Consider the tree t of characters on the right-hand side. The representation of t as an object of type Tree Char in Haskell would be:

(Node (Value 'a' (Value 'b' Leaf)) (Node (Node Leaf Leaf) (Value 'c' Leaf)))



Implement the following functions in Haskell.

(a) The function foldTree of type

$$(a \rightarrow b \rightarrow b) \rightarrow (b \rightarrow b \rightarrow b) \rightarrow Tree a \rightarrow b$$

works as follows: foldTree f g h x replaces all occurrences of the constructor Value in the tree x by f, it replaces all occurrences of the constructor Node in x by g, and it replaces all occurrences of the constructor Leaf in x by h. So for the tree t above,

should compute

which in the end results in "abc" (i.e., in the list ['a','b','c']). Here, Value is replaced by (:), Node is replaced by (++), and Leaf is replaced by [].

First name	Last name	Matriculation number

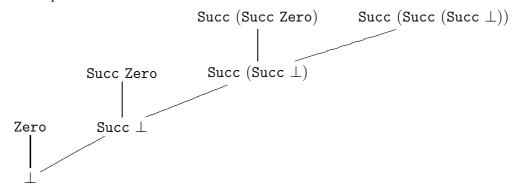
- (b) Use the foldTree function from (a) to implement the average function which has the type Tree Int -> Int and returns the average of the values that are stored in the tree. This should be accomplished as follows:
 - Use foldTree with suitable functions as arguments in order to compute the sum of the values stored in the trees.
 - Use foldTree with suitable functions as arguments in order to compute the number of Value-objects in the tree.
 - Perform integer division with the pre-defined function div :: Int -> Int on these values to obtain the result.

Here your function is required to work correctly only on those trees that contain the constructor Value at least once.

First name	Last name	Matriculation number

(c) Consider the following data type declaration for natural numbers:

A graphical representation of the first four levels of the domain for Nats could look like this:



Sketch a graphical representation of the first three levels of the domain for the data type Tree Bool.

First name	Last name	Matriculation number

(d) Write a Haskell function **printStars** that first reads a string from the user, then prints this string on the console, converts the string to a number **n** (using the pre-defined function **read**) and in the end also prints **n** times the character '*' on the console. Also give the type declaration for your function.

You may use the do-notation, but you are not obliged to use it. You do not have to check whether the input string is really a number. Some of the following pre-defined functions can be helpful:

```
- \mathtt{getLine} :: IO \mathtt{String} \operatorname{reads} a string from the user
```

- read :: String -> Int converts a string to a number

- putStr :: String -> IO () writes a string to the console

An example run should look as given below. Here the string "7" was read from the user.

Main> printStars
7
7*******

First name	Last name	Matriculation number

Exercise 2 (4 + 5 = 9 points)

Consider the following Haskell declarations for the fib function, which for a natural number x computes the value fibonacci(x):

```
fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib (x+2) = fib (x+1) + fib x
```

(a) Please give the Haskell declarations for the higher-order function f_fib corresponding to fib, i.e., the higher-order function f_fib such that the least fixpoint of f_fib is fib. In addition to the function declaration(s), please also give the type declaration of f_fib. Since you may use full Haskell for f_fib, you do not need to translate fib into simple Haskell.

(b) We add the Haskell declaration bot = bot. For each $n \in \mathbb{N}$ please determine which function is computed by f_fib^n bot. Here " f_fib^n bot" represents the n-fold application of f_fib to bot, i.e., it is short for f_fib (f_fib ... (f_fib bot)...).

Let $f_n: \mathbb{Z}_{\perp} \to \mathbb{Z}_{\perp}$ be the function that is computed by f_fib^n bot.

Give f_n in **closed form**, i.e., using a non-recursive definition. In this definition, you may use the function $fibonacci : \mathbb{N} \to \mathbb{N}$ where fibonacci(x) computes the x-th Fibonacci number. Here it suffices to give the result of your calculations. You do not need to present any intermediate steps.

First name	Last name	Matriculation number

Exercise 3 (3 + 3 = 6 points)

Let D_1, D_2, D_3 be domains with corresponding complete partial orders $\sqsubseteq_{D_1}, \sqsubseteq_{D_2}, \sqsubseteq_{D_3}$. As we know from the lecture, then also $\sqsubseteq_{(D_2 \times D_3)_{\perp}}$ is a complete partial order on $(D_2 \times D_3)_{\perp}$.

Now let $f: D_1 \to D_2$ and $g: D_1 \to D_3$ be functions. We then define the function $h: D_1 \to (D_2 \times D_3)_{\perp}$ via h(x) = (f(x), g(x)).

(a) Prove or disprove: If f and g are strict functions, then also h is a strict function.

(b) Prove or disprove: If f and g are monotonic functions, then also h is a monotonic function.

,	-			
٠		,		
7		١	ı	

First name	Last name	Matriculation number

Exercise 4 (6 points)

We define the following data structures for natural numbers and polymorphic lists:

```
data Nats = Zero | Succ Nats
data List a = Nil | Cons a (List a)
```

Consider the following expression in complex Haskell:

Please give an equivalent expression let get = ... in get in simple Haskell.

Your solution should use the functions defined in the transformation from the lecture such as $\mathtt{sel}_{n,i}$, $\mathtt{isa}_{\mathtt{constr}}$, and $\mathtt{argof}_{\mathtt{constr}}$. However, you do not have to use the transformation rules from the lecture.

First name	Last name	Matriculation number

Exercise 5 (4 + 5 = 9 points)

Consider the following data structure for polymorphic lists:

(a) Please translate the following Haskell expression into an equivalent lambda term (e.g., using $\mathcal{L}am$). Recall that pre-defined functions like odd or (+) are translated into constants of the lambda calculus.

It suffices to give the result of the transformation.

let
$$f = \x \rightarrow if (odd x)$$
 then $(\y \rightarrow x)$ else $f ((+) x 3)$ in f

First name	Last name	Matriculation number

(b) Let δ be the set of rules for evaluating the lambda terms resulting from Haskell, i.e., δ contains at least the following rules:

$$\begin{array}{rcl} \text{fix} & \to & \lambda f. \; f \; (\text{fix} \; f) \\ \text{times} \; 3 \; 2 & \to & 6 \end{array}$$

Now let the lambda term t be defined as follows:

$$t = (\lambda x.\,(\text{fix }\lambda g.\,x))\ (\lambda z.\,(\text{times 3 2}))$$

Please reduce the lambda term t by WHNO-reduction with the $\rightarrow_{\beta\delta}$ -relation. You have to give all intermediate steps until you reach weak head normal form (and no further steps).

First name	Last name	Matriculation number

Exercise 6 (10 points)

Use the type inference algorithm W to determine the most general type of the following lambda term under the initial type assumption A_0 . Show the results of all sub-computations and unifications, too. If the term is not well typed, show how and why the W-algorithm detects this.

$$((Cons \lambda x. x) y)$$

The initial type assumption A_0 contains at least the following:

$$\begin{array}{lcl} A_0(\mathtt{Cons}) & = & \forall a.\; (a \rightarrow (\mathtt{List}\; a \rightarrow \mathtt{List}\; a)) \\ A_0(x) & = & \forall a.\; a \\ A_0(y) & = & \forall a.\; a \end{array}$$