
First name Last name Matriculation number
1

Exercise 1 (4 + 5 + 4 + 5 + 6 = 24 points)

The following data structure represents polymorphic binary trees that contain values only in
special Value nodes that have a single successor:
data Tree a = Leaf | Node (Tree a) (Tree a) | Value a (Tree a)

Consider the tree t of characters on the right-hand side.
The representation of t as an object of type Tree Char

in Haskell would be:

(Node (Value ’a’ (Value ’b’ Leaf)) (Node (Node

Leaf Leaf) (Value ’c’ Leaf)))

·

==
==

==
==

ooooooooooooo

’a’ ·

BB
BB

BB
BB

��
��

��
��

’b’ ·

��
��

��
��

==
==

==
==

’c’

· · · ·

Implement the following functions in Haskell.

(a) The function foldTree of type

(a -> b -> b) -> (b -> b -> b) -> b -> Tree a -> b

works as follows: foldTree f g h x replaces all occurrences of the constructor Value in
the tree x by f, it replaces all occurrences of the constructor Node in x by g, and it replaces
all occurrences of the constructor Leaf in x by h. So for the tree t above,

foldTree (:) (++) [] t

should compute

((++) ((:) ’a’ ((:) ’b’ [])) ((++) ((++) [] []) ((:) ’c’ []))),

which in the end results in "abc" (i.e., in the list [’a’,’b’,’c’]). Here, Value is replaced
by (:), Node is replaced by (++), and Leaf is replaced by [].

foldTree f g h (Value n x) = f n (foldTree f g h x)

foldTree f g h (Node x y) = g (foldTree f g h x) (foldTree f g h y)

foldTree h Leaf = h

1

First name Last name Matriculation number
2

(b) Use the foldTree function from (a) to implement the average function which has the
type Tree Int -> Int and returns the average of the values that are stored in the tree.
This should be accomplished as follows:

– Use foldTree with suitable functions as arguments in order to compute the sum of
the values stored in the trees.

– Use foldTree with suitable functions as arguments in order to compute the number

of Value-objects in the tree.

– Perform integer division with the pre-defined function div :: Int -> Int -> Int

on these values to obtain the result.

Here your function is required to work correctly only on those trees that contain the
constructor Value at least once.

average t = div (foldTree (+) (+) 0 t) (foldTree (\x y -> y+1) (+) 0 t)

First name Last name Matriculation number
3

(c) Consider the following data type declaration for natural numbers:

data Nats = Zero | Succ Nats

A graphical representation of the first four levels of the domain for Nats could look like this:

Succ (Succ Zero) Succ (Succ (Succ ⊥))

iiiiiiiiiiiiiiii

Succ Zero Succ (Succ ⊥)

llllllllllllll

Zero Succ ⊥

qqqqqqqqqqqq

⊥

Sketch a graphical representation of the first three levels of the domain for the data type
Tree Bool.

Node ⊥ (Value ⊥ ⊥) Node ⊥ (Node ⊥ ⊥)

Value ⊥ (Node ⊥ ⊥) Value ⊥ (Value ⊥ ⊥) Node ⊥ Leaf

Value ⊥ Leaf Node Leaf ⊥

Value True ⊥ Node (Node ⊥ ⊥) ⊥

Value False ⊥ Node (Value ⊥ ⊥) ⊥

Value ⊥ ⊥

UUUUUUUUUUUUUUUUUU

KKKKKKKKKKKKKKKKKKKKKKKKK

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

9999999999999999999999999999999999999

Leaf Node ⊥ ⊥

KKKKKKKKKKKKKKKKKKKKKKKK

UUUUUUUUUUUUUUUUU

8888888888888888888888888888888888888

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

⊥

VVVVVVVVVVVVVVVVVVVVV

iiiiiiiiiiiiiiiiiiii

First name Last name Matriculation number
4

(d) Write a Haskell function printStars that first reads a string from the user, then prints
this string on the console, converts the string to a number n (using the pre-defined function
read) and in the end also prints n times the character ’*’ on the console. Also give the
type declaration for your function.

You may use the do-notation, but you are not obliged to use it. You do not have to check
whether the input string is really a number. Some of the following pre-defined functions
can be helpful:

– getLine :: IO String reads a string from the user

– read :: String -> Int converts a string to a number

– putStr :: String -> IO () writes a string to the console

An example run should look as given below. Here the string “7” was read from the user.

Main> printStars

7

7*******

-- without do-notation

printStars :: IO ()

printStars = getLine >>= \s -> putStr s >> putStr (take (read s) (repeat ’*’))

-- alternative: with do-notation

printStars2 :: IO ()

printStars2 = do s <- getLine

putStr s

putStr (take (read s) (repeat ’*’))

First name Last name Matriculation number
5

(e) We call a list ys of integers an n-times even product of a list xs if ys has length n and if
all elements of ys are even numbers that occur in xs. The goal of this exercise is to write
a function evenProducts :: [Int] -> Int -> [[Int]] that takes a list of integers xs
and a natural number n and returns a list that contains all n-times even products of xs.
For example, evenProducts [4,5,6] 2 = [[4,4], [4,6], [6,4], [6,6]].

The following declarations are already given:

evenProducts :: [Int] -> Int -> [[Int]]

evenProducts xs 0 = []

evenProducts xs 1 = map (\z -> [z]) (filter even xs)

Please give the declaration of evenProducts for the missing case of numbers that are at
least 2. Perform your implementation only with the help of a list comprehension, i.e.,
you should use exactly one declaration of the following form:

evenProducts xs (n+2) = [... | ...]

evenProducts xs (n+2) = [y:ys | y <- xs, even y, ys <- evenProducts xs (n+1)]

First name Last name Matriculation number
6

Exercise 2 (4 + 5 = 9 points)

Consider the following Haskell declarations for the fib function, which for a natural number x
computes the value fibonacci(x):

fib :: Int -> Int

fib 0 = 0

fib 1 = 1

fib (x+2) = fib (x+1) + fib x

(a) Please give the Haskell declarations for the higher-order function f fib corresponding to
fib, i.e., the higher-order function f fib such that the least fixpoint of f fib is fib. In
addition to the function declaration(s), please also give the type declaration of f fib. Since
you may use full Haskell for f fib, you do not need to translate fib into simple Haskell.

f fib :: (Int -> Int) -> (Int -> Int)

f fib fib 0 = 0

f fib fib 1 = 1

f fib fib (x+2) = fib (x+1) + fib x

(b) We add the Haskell declaration bot = bot. For each n ∈ N please determine which
function is computed by f fibn bot. Here “f fibn bot” represents the n-fold application
of f fib to bot, i.e., it is short for f fib (f fib . . . (f fib

︸ ︷︷ ︸

n times

bot) . . .).

Let fn : Z⊥ → Z⊥ be the function that is computed by f fibn bot.
Give fn in closed form, i.e., using a non-recursive definition. In this definition, you
may use the function fibonacci : N → N where fibonacci(x) computes the x-th Fibonacci
number. Here it suffices to give the result of your calculations. You do not need to present
any intermediate steps.

(f fib
n(⊥))(x) =

{
fibonacci(x), if n > 0 and 0 ≤ x ≤ n
⊥, otherwise

First name Last name Matriculation number
7

Exercise 3 (3 + 3 = 6 points)

Let D1, D2, D3 be domains with corresponding complete partial orders ⊑D1
,⊑D2

,⊑D3
. As we

know from the lecture, then also ⊑(D2×D3)⊥ is a complete partial order on (D2 × D3)⊥.

Now let f : D1 → D2 and g : D1 → D3 be functions.
We then define the function h : D1 → (D2 × D3)⊥ via h(x) = (f(x), g(x)).

(a) Prove or disprove: If f and g are strict functions, then also h is a strict function.

The statement does not hold. Consider the following counterexample: D1 = D2 = D3 =
B⊥ and f = g = ⊥B⊥→B⊥

. Obviously f and g are strict functions, i.e., f(⊥B⊥
) = g(⊥B⊥

) =
⊥B⊥

. However, we have h(⊥B⊥
) = (⊥B⊥

,⊥B⊥
) 6= ⊥(B⊥×B⊥)⊥.

(b) Prove or disprove: If f and g are monotonic functions, then also h is a monotonic function.

Let x ⊑D1
y. Then we have:

h(x)

= (f(x), g(x)) f and g are monotonic, def. of ⊑(D2×D3)⊥

⊑(D2×D3)⊥ (f(y), g(y))

= h(y)

Hence, also h is monotonic. �

First name Last name Matriculation number
8

Exercise 4 (4 + 5 = 9 points)

Consider the following data structure for polymorphic lists:

data List a = Nil | Cons a (List a)

(a) Please translate the following Haskell expression into an equivalent lambda term (e.g., using
Lam). Recall that pre-defined functions like odd or (+) are translated into constants of
the lambda calculus.

It suffices to give the result of the transformation.

let f = \x -> if (odd x) then (\y -> x) else f ((+) x 3)

in f

fix (λf x. if (odd x) (λy.x) (f ((+) x 3)))

First name Last name Matriculation number
9

(b) Let δ be the set of rules for evaluating the lambda terms resulting from Haskell, i.e., δ
contains at least the following rules:

fix → λf. f (fix f)

times 3 2 → 6

Now let the lambda term t be defined as follows:

t = (λx. (fix λg. x)) (λz. (times 3 2))

Please reduce the lambda term t by WHNO-reduction with the →βδ-relation. You have
to give all intermediate steps until you reach weak head normal form (and no further
steps).

(λx. (fix λg. x)) (λz. (times 3 2))

→β fix (λg. λz. (times 3 2))

→δ (λf. f (fix f)) (λg. λz. (times 3 2))

→β (λg. λz. (times 3 2)) (fix (λg. λz. (times 3 2)))

→β λz. (times 3 2)

First name Last name Matriculation number
10

Exercise 5 (10 points)

Use the type inference algorithm W to determine the most general type of the following lambda
term under the initial type assumption A0. Show the results of all sub-computations and unifi-
cations, too. If the term is not well typed, show how and why the W-algorithm detects this.

((Cons λx. x) y)

The initial type assumption A0 contains at least the following:

A0(Cons) = ∀a. (a → (List a → List a))
A0(x) = ∀a. a
A0(y) = ∀a. a

W(A0, ((Cons λx. x) y))
W(A0, (Cons λx. x))

W(A0, Cons)
= (id, (b1 → (List b1 → List b1)))
W(A0, λx. x)

W(A0 + {x :: b2}, x)
= (id, b2)

= (id, (b2 → b2))
mgu((b1 → (List b1 → List b1)), ((b2 → b2) → b3))

= [b1/(b2 → b2), b3/(List (b2 → b2) → List (b2 → b2))]
= ([b1/(b2 → b2), b3/(List (b2 → b2) → List (b2 → b2))], (List (b2 → b2) → List (b2 → b2)))
W(A0, y)
= (id, b4)
mgu((List (b2 → b2) → List (b2 → b2)), (b4 → b5)) = [b4/List (b2 → b2), b5/List (b2 → b2)]

= ([b1/(b2 → b2), b3/(List (b2 → b2) → List (b2 → b2)), b4/List (b2 → b2), b5/List (b2 → b2)],
List (b2 → b2))

Resulting type: List (b2 → b2)

