LuFG

Informatik Il

Functional Programming SS16

Exam 19.09.2016

Prof. Dr. J. Giesl

D. Korzeniewski

Second Exam in Functional Programming SS 2016

First Name:

Last Name:

Matriculation Number:

Course of Studies (please mark exactly one):

o Informatik Bachelor
o Informatik Master

o Mathematik Master
o Software Systems Engineering Master

o Other:
Available Points | Achieved Points
Exercise 1 37
Exercise 2 38
Exercise 3 25
Exercise 4 20
] Sum 120
Notes:

e On all sheets (including additional sheets) you must write your first name, your last
name and your matriculation number.

e Give your answers in readable and understandable form.

e Use permanent pens. Do not use red or green pens and do not use pencils.

e Please write your answers on the exam sheets (also use the reverse sides).

e For each exercise part, give at most one solution. Cancel out everything else. Otherwise
all solutions of the particular exercise part will give you O points.

e If we observe any attempt of deception, the whole exam will be evaluated to 0 points.

e At the end of the exam, hand in all sheets together with the sheets containing the

exam questions.

LuFG

Informatik Il

ame:

Functional Programming SS16
Exam 19.09.2016
Matriculation Number:

Exercise 1 (Programming in Haskell): (7 + 7+ 5+ 18 = 37 points)

We define a polymorphic data structure Maze to represent a maze (i.e., a labyrinth) that can contain treasures

and traps. The data structure Discovery is used to represent traps and treasures.
data Maze a data Discovery

= Intersection (Maze a) (Maze a) = Trap String

| Corridor a (Maze a) | Treasure

| DeadEnd a

| Exit

For example, aMaze is a valid expression of type Maze Discovery.

aMaze =

Intersection (Corridor (Trap "a trap door") (DeadEnd Treasure))

(Intersection (DeadEnd Treasure) Exit)

In the following exercises, you are allowed to use the functions given above, functions implemented in preceding
parts of the exercise, and predefined functions from the Haskell-Prelude. Moreover, you are always allowed to
implement additional auxiliary functions.

a) Implement a function buildMaze :: Int -> Maze Int that gets a random seed as input.

The
[]
[]
[]

call (buildMaze seed) for an integer seed should create a maze according to the following rules:
with probability £ the function returns Exit
with probability = the function returns a DeadEnd with a random number as argument

with probability = the function returns a Corridor with a random number and a random submaze

b Gl a= ot

with probability £ the function returns an Intersection with two random submazes, which differ
with high probability (i.e., they are constructed from different seeds)

Hints:

You are given a function rand :: Int -> Int which creates a new uniformly distributed (pseudo)
random number from an input number, the seed. Already a small difference in the seed creates very
different results (i.e., the sequence produced by consecutive calls (rand seed) and (rand (seed+1))
is reasonably random). Also using a previous random number as new seed produces reasonably ran-
dom sequences.

For each decision during the generation, for each number inserted into the maze, and for each
submaze a new random number should be used. So for any integer seed never use (rand seed)
twice in a computation.

To get a result with a certain probability, you should generate a (pseudo) random number and
perform an appropriate case analysis depending on the value of this random number.

Functional Programming SS16
Exam 19.09.2016

LuFG

Informatik If . .
ame: Matriculation Number:

b) Implement a function mapMaze which gets a function and a maze as input. It should return a maze,
where the function is applied to each element stored in the maze. For example, if it gets a function
even :: Int -> Bool and a maze of type Maze Int, it should return a maze where we have True at
each position where there was an even number in the input maze.

Also give a reasonable type declaration for the function!

¢) Implement a function populateMaze :: Maze Int -> Maze Discovery which takes a maze as returned
by buildMaze from part a) and returns a maze filled with different Discoveries which depend on the
numbers that were in the maze before. The function should replace even numbers with
(Trap "a trap door") and odd numbers by a Treasure.

Hints:
You may use mapMaze from the previous task (even if you have not solved the previous task).

LuFG

Informatik Il

Functional Programming SS16
Exam 19.09.2016

ame: Matriculation Number:

d) In this part of the exercise, you should implement a small game where you control an adventurer who
explores a Maze Discovery.

1)

Implement a function react :: Discovery -> Int -> I0 Int that handles the reaction to a
Discovery. It gets a Discovery and the number of already collected treasures as input. For traps
it should output a message indicating that a trap was reached including the String of the trap and
that all treasures were lost. So the result in this case is 0, wrapped in the IO monad. For treasures,
it should print that a treasure was found and the new number of treasures collected. The result in
this case is the input number incremented by one, wrapped in the IO monad.

Hints:

e To print a String, you should use the function putStr :: String -> I0 () or the function
putStrln :: String -> I0 (), if the output should end with a line break.

Implement a function exploreMaze :: Maze Discovery -> [Maze Discovery] -> Int -> I0 Q).
This function is the main loop of the game. The first input parameter is the maze in front of the
adventurer, the second parameter is the current path of Intersections back to the starting point,
and the third parameter is the number of already collected treasures.

At an Intersection the user gets asked for input, the possibilities are 1 for left, r for right, or b for
back. Depending on the input, the exploration should continue at the first (left) or second (right)
argument of the Intersection, or for input b at the first Intersection in the list of exploreMaze’s
second input parameter.

At a Corridor or DeadEnd, first react should be called and after that, the exploration continues either
at the following maze or, in case of a DeadEnd, at the first Intersection in the list of exploreMaze’s
second input parameter.

At an Exit, the user gets a message which indicates that the adventurer escaped the maze and prints
the number of treasures collected.

During the main loop you should always update the current path back to the starting point if you
move out of an Intersection and the function react from 1) can help you to update the current
number of treasures.

We assume that one can also escape the maze via the entrance. So, whenever the adventurer should
go back, either because of a DeadEnd or the user input b, but the list in the second input parameter
is empty, the function should behave as if an Exit was encountered.

A run might look as follows:

*Main> exploreMaze aMaze [] 0

Go left, right, or back? (l|r|b) 1

You reached a trap door and lost your treasures!

You found another treasure! You now have 1 treasures.
Go left, right, or back? (l|r|b) 1

You reached a trap door and lost your treasures!

You found another treasure! You now have 1 treasures.
Go left, right, or back? (llr|b) r

Go left, right, or back? (l|r|b) 1

You found another treasure! You now have 2 treasures.
Go left, right, or back? (llr|b) b

Go left, right, or back? (llr|b) r

Go left, right, or back? (llr|b) r

You escaped the maze with 2 treasures.

Hints:

e You should use the function getChar :: I0 Char to read a character input from the user.

e You do not have to handle wrong user input correctly, i.e., you may assume that the user will only
supply valid input.

e You do not have to pay attention to output formating (spaces, line breaks).

e You do not have do modify the maze, e.g, if treasures are found they are not removed but may be
collected multiple times.

Functional Programming SS16
Exam 19.09.2016

LuFG

Informatik Il

ame: Matriculation Number:

[) Functional Programming SS16
Exam 19.09.2016

Informatik If . .
Name: Matriculation Number:

Exercise 2 (Semantics): (17 + 12 4+ 9 = 38 points)

a) i) Prove or disprove continuity for each of the functions f,g:(Z, - 2Z,) > 7Z,

Fh) = {0 if 1h(0) =0

1 otherwise

0 if h(z) =0 holds for all z € Z
g(h) = .
1 otherwise

If you want to make use of the fact that computable functions are continuous, give an implementation
of the function and an argument for the correctness of the implementation.

Functional Programming SS16
Exam 19.09.2016

LuFG

Informatik Il

ame: Matriculation Number:

ii) Let L denote the set of all Haskell lists of type [Int]. For example [1,3,5,5,2], [1,2,3,2,1], and
the infinite list [3,6,9,12,...] are contained in L.

Let ¢ € L. We define s : L — NU{cco} where s(¢) is the length of the longest prefix of ¢ that is sorted
in ascending order. For example s([1,3,5,5,2]) = 3, s([4,3,1]) =1, and s([3,6,9,12,...]) =

Let <¢ort C L x L be the partial order defined as ¢1 <.t £2 if and only if s(¢1) < s(¢3) or £1 = {5.
Here, we have n < oo for every n € N, but co £ oo.

Prove or disprove each of the following statements:
1) There is an infinite chain in (L, <sopt)-
2) The order <y,; is complete on L.

3) The order <, is confluent.

Functional Programming SS16
Exam 19.09.2016

LuFG

Informatik If . .
ame: Matriculation Number:

b) i) Consider the following Haskell function f:

f :: (Int, Int) -> Int
f (x, 0) = x
f &, yp=y*xf &x,y-1

Please give the Haskell declaration for the higher-order function ff corresponding to f, i.e., the
higher-order function £f such that the least fixpoint of £f is £. In addition to the function declaration,
please also give the type declaration for £f. You may use full Haskell for ££.

ii) Let ¢¢s be the semantics of the function £ff. Give the definition of ¢f; (L) in closed form for any
n € Nj i.e., give a non-recursive definition of the function that results from applying ¢¢¢ n-times to
L. Here, you should assume that Int can represent all integers, so no overflow can occur.

iii) Give the definition of the least fixpoint of ¢¢s in closed form.

[) Functional Programming SS16

Informatik Il Exam 19.09.2016
ame: Matriculation Number:

c) Consider the data type declarations on the left and, as an example, the graphical representation of the
first three levels of the domain for Nats on the right:

Sz S(s 1) 374 level
data Nats = Z | S Nats
data Maze a
C a (Maze a) yA S L 2nd Jayel

| D a
| E

data Discovery \ /

= Tp String | Ts

1 15 level

Give a graphical representation of the first three levels of the domain for the type Maze Discovery.

Functional Programming SS16
Exam 19.09.2016

LuFG

Informatik If . .
ame: Matriculation Number:

Exercise 3 (Lambda Calculus): (9 + 10 + 6 = 25 points)

a) Consider the following Haskell function:

len :: List a -> Int
len Nil = 0
len (Cons x xs) = 1 + len xs

Here Cons and Nil are the list constructors as defined in the lecture.

Please give an equivalent function in simple Haskell. Here, you can of course use predefined functions
like isa_Nil, argof_Cons, and sel_n_k. Additionally, implement the function in the lambda calculus,
i.e., give a lambda term ¢ such that, for all lists 1list and y € Z, y is the length of 1ist if and only
if 1en 1ist can be reduced to y via WHNO-reduction with the —gs-relation and the set of rules 4 as
introduced in the lecture to implement Haskell.

You can use infix notation for predefined functions like (==) or (+).

You do not have to use the transformation algorithms presented in the lecture. It is sufficient to just
give an equivalent simple program and an equivalent lambda term.

10

Functional Programming SS16
Exam 19.09.2016

LuFG

Informatik Il

ame: Matriculation Number:

b) Let
t=Xgzy.if (zxy==0)y (gz (y+=x))

and

0= {if True —» Az y.zx,
if False — Az y.v,

fix = A f. f(fix f)}

U{z—y—z|z,y,2€ZANz=0—y}
U{z+y—z|z,y,2€ZNz=a+y}
U{zxy—z|z,y,2€ZNz=x-y}

U{z==x—True|z cZ}

U {xz==y —>False|z,y€Z,x #y}

Please reduce fix ¢t 3 0 by WHNO-reduction with the — gs-relation. List all intermediate steps until
reaching weak head normal form, but please write “t” instead of

Agryif (zxy==0)y (92 (y+))

whenever possible.

11

Functional Programming SS16
Exam 19.09.2016

LuFG

Informatik Il

ame: Matriculation Number:

c) Consider Az.xzab as a representation of pairs of values (a,b) in pure lambda calculus.

Give a definition for a pure lambda term apply which applies a given term f to both elements of a
pair, i.e., apply f (Az.zab) =3 Av.z(fa),(fb)) should hold. You may use the shorthand notations

True = Az y.x and False = Az y.y in your solution.

Explain your solution shortly!

12

[) Functional Programming SS16
Exam 19.09.2016

Informatik If . .
Name: Matriculation Number:

Exercise 4 (Type Inference): (20 points)

Using the initial type assumption Ay := {f :: Va.(a — Lista)}, infer the type of the expression f (Az.f x)

using the algorithm W.
Indicate the computed most general type or explain the problem the algorithm encounters if the expression is

not well typed.

13

