$$f:D_1 \to D_2$$
 is monotonic iff $f(d) \sqsubseteq_{D_2} f(d')$ for all $d \sqsubseteq_{D_1} d' \{d_1, d_2, \ldots\}$ is a chain iff $d_1 \sqsubseteq d_2 \sqsubseteq d_3 \sqsubseteq \ldots$

$$\{\mathsf{fact}_0,\mathsf{fact}_1,\ldots\} \text{ is a chain where} \qquad \mathsf{fact}_0(x) = \bot \text{ for all } x \in \mathbb{Z}_\bot$$

$$\mathsf{fact}_1(x) = \begin{cases} x!, & \mathsf{for } 0 \leq x < 1 \\ 1, & \mathsf{for } x < 0 \\ \bot, & \mathsf{for } x = \bot \text{ or } 1 \leq x \end{cases}$$

$$\mathsf{fact}_2(x) = \begin{cases} \mathsf{fact}_2(x) = \mathsf{for all } x \in \mathbb{Z}_\bot$$

$$\mathsf{for } x < 0 \\ \bot, & \mathsf{for } x < 0 \\ \bot, & \mathsf{for } x = \bot \text{ or } 2 \leq x \end{cases}$$

$$\vdots$$

Least upper bound: $\sqcup \{fact_0, fact_1, fact_2, \ldots\} = fact with$

$$\operatorname{fact}(x) = \begin{cases} x!, & \text{for } 0 \leq x \\ 1, & \text{for } x < 0 \\ \bot, & \text{for } x = \bot \end{cases}$$

A reflexive partial ordering \sqsubseteq on a set D is *complete* iff

- (1) D has a smallest element \bot_D
- (2) every chain S of D has a least upper bound $\Box S \in D$

$$d_1 \sqsubseteq d_2 \sqsubseteq d_3 \sqsubseteq \dots \xrightarrow{\text{lub}} d$$

$$f_{\downarrow} f_{\downarrow} f_{\downarrow}$$

 $f: D_1 \to D_2$ is *continuous* if $f(\sqcup S) = \sqcup f(S)$ for every chain S of D_1 . f is *continuous* \Rightarrow f is *monotonic*

\sqsubseteq is a cpo on:

- Base Domains \mathbb{Z}_{\perp} , \mathbb{B}_{\perp} , C_{\perp} , F_{\perp}
- Product Domains $D_1 \times \ldots \times D_n$
- Function Domains $\langle D_1 \to D_2 \rangle$ (continuous functions)