LuFG

Informatik Il

Functional Programming SS12
Solution - Exam (V3B) 15.08.2012

Prof. Dr. J. Giesl M. Brockschmidt, F. Emmes
Exercise 1 (Quiz): (4+4+ 4+ 4+ 4 = 20 points)
Give a short proof sketch or a counterexample for each of the following statements:

a)

b)

)

d)

)

Solution:

a)

b)

d)

e)

Is C always a complete partial order for flat domains like Z, ,B ,...7

1 if Z and xz <
Can the function f:7Z, — Z with f(x) = tre . and 2 < 0 be implemented in Haskell?
0 otherwise
0 ifh(z)#L forallzeZ

1 otherwise

Isg: (Z—7Z,)— Z, with g(h) = { continuous?

If a lambda term ¢ can be reduced to s with — g5 using an outermost strategy, can t also be reduced to
s with —gs using an innermost strategy? Here, you may choose an arbitrary delta-rule set 4.

The —gs reduction in lambda calculus is confluent. Is Simple Haskell also confluent?

Yes, because flat domains only have chains of finite length and a minimal element. Hence, by Theorem
2.1.13(a), C is a complete partial order.

No, as f is not continuous and thus, not computable: Consider the chain S = {L,0}. There exists no
least upper bound for f(S) = {0,1}, and hence f(US) = Uf(S) does not hold.

0 ifz<qg

No. For a counterexample, let f;(z) = o
1 otherwise

Then for the chain S = {f1, f2,...}, we have US = f,, with fo(z) = 0 for all © € Z. Then Ug(S) =
1L #£0=g(US).

Alternatively, a more intuitive solution: If g were continuous, it would be computable. As it implicitly
solves the halting program for an input function, it is known to be uncomputable, hence, we have a
contradiction.

No. Consider the term (Az.42) bot as example (with the usual d-rule bot — bot for bot), which is
reduced to 42 using an outermost strategy and does not have a normal form when reducing according to
an innermost strategy.

Yes, as Simple Haskell can be implemented using the — 5 reduction.

Exercise 2 (Programming in Haskell): (10 4+ 10 4+ 8 4+ 10 4+ 6 = 44 points)

We define a polymorphic data structure HamsterCave to
represent hamster caves which can contain different types
of food.

data HamsterCave food

= EmptyTunnel

| FoodTunnel food

| Branch (HamsterCave food) (HamsterCave food)

deriving Show ~.

LuFG

Informatik Il

Functional Programming SS12
Solution - Exam (V3B) 15.08.2012

The data structure HamsterFood is used to represent food
for hamsters. For example, exampleCave is a valid expres-
sion of type HamsterCave HamsterFood.

data HamsterFood = Grain | Nuts deriving Show

exampleCave :: HamsterCave HamsterFood
exampleCave = Branch

a)

b)

d)

(Branch EmptyTunnel (FoodTunnel Grain))
(Branch (FoodTunnel Nuts) (Branch EmptyTunnel EmptyTunnel))

Implement a function digAndFillCave :: Int -> HamsterCave HamsterFood, such that for any inte-
ger number n > 1, digAndFillCave n creates a hamster cave without empty tunnels of depth n, such
that the number of FoodTunnels containing Grain equals the number of FoodTunnels containing Nuts.
Here, the depth of a cave is the maximal number of “nodes” on any path from the entry of the cave to a
dead end. Thus, exampleCave has depth 4.

Implement a fold function foldHamsterCave, including its type declaration, for the data structure
HamsterCave. As usual, the fold function replaces the data constructors in a HamsterCave expres-
sion by functions specified by the user. The first argument of foldHamsterCave should be the function
for the case of the empty tunnel, the second argument the function for the case of the food tunnel, and
the third argument the function for the case of a branch. As an example, the following function definition
uses foldHamsterCave to determine the number of dead ends (either with or without food) in a cave,
such that the call number0OfDeadEnds exampleCave returns 5.

numberOfDeadEnds :: HamsterCave food -> Int
number0fDeadEnds cave = foldHamsterCave 1 (_ -> 1) (+) cave

Implement the function collectFood :: HamsterCave food -> (HamsterCave food, [food]), which
returns a tuple for a given hamster cave. The first argument of the tuple is the same hamster cave as the
one given to the function, but without any food (i.e., every FoodTunnel is replaced by an EmptyTunnel).
The second argument is a list of all the food that was removed from the cave. For the definition
of collectFood, use only one defining equation where the right-hand side is a call to the function
foldHamsterCave.

For example, a call collectFood exampleCave should return the following tuple:

(Branch (Branch EmptyTunnel EmptyTunnel)
(Branch EmptyTunnel (Branch EmptyTunnel EmptyTunnel))
, [Grain,Nuts])

Implement a cyclic data structure pascalsTriangle
[[Int]] (conmsisting of lists of lists of Ints) that
represents Pascal’s triangle. The first row of the trian-

a

gle is represented by the first list of integers ([1]), the

second row by the second list ([1,1]), and so forth. +

Each row in Pascal’s triangle is constructed from its

preceding row, by adding each pair of consecutive num- u‘} %EEJ %LJ
bers. For this, it is assumed that all numbers lying Bl -

outside of the preceding row are zeros. u\J %i“] %i\J %I_J
Hint: You should use use the function zipWith :: (a t T +

~

->b ->c) -> [a] -> [b]l -> [c], which applies 1
the function given as its first argument to combine +
the elements of two lists. For example zipWith (Tj 5
(++) ["a","b"] ["c", "d", "e"] results in the list

["ac","bd"]. Note that the length of the resulting list

is the smallest length of both input lists.

LuFG

Informatik Il

Functional Programming SS12
Solution - Exam (V3B) 15.08.2012

e) Write a Haskell expression in form of a list comprehension to compute all prime numbers. To determine
if a number i is prime, test whether no number from 2 to i - 1 divides i. You may use the functions

all :: (a -> Bool) -> [a]l -> Bool where all p xs is True iff p x is True for all elements x of the
list xs, the function not :: Bool -> Bool, and the function divides as defined below.
divides :: Int -> Int -> Bool
i ‘divides® j = j ‘mod¢ i == 0
Solution:
a) digAndFillCave :: Int -> HamsterCave HamsterFood
digAndFillCave n | n > 1 = Branch (cave Nuts (n-1)) (cave Grain (n-1))
where

FoodTunnel food
Branch (cave food (n-1)) (cave food (n-1))

cave food 1

cave food n

b) foldHamsterCave

:: result

-> (food -> result)

-> (result -> result -> result)
-> HamsterCave food

-> result

foldHamsterCave fET fTWF fTB = go
where

go EmptyTunnel = fET
go (FoodTunnel f) = fTWF f
go (Branch left right) = fTB (go left) (go right)

c) collectFood :: HamsterCave food -> (HamsterCave food, [food])
collectFood = foldHamsterCave

(EmptyTunnel, [1)
(\x -> (EmptyTunnel, [x]))
(\(t1, f1) (tr, fr) -> (Branch tl tr, fl1 ++ fr))

d) pascalsTriangle :: [[Int]]
pascalsTriangle = [1] : map nextRow pascalsTriangle
where

nextRow oldRow = zipWith (+) (oldRow ++ [0]) ([0] ++ oldRow)

e) [i | i< [2..], all (\j -> not (j ‘divides® i)) [2..i-1]]
Exercise 3 (Semantics): (21 4+ 10 + 5 4+ 4 = 40 points)
a) i) Let C be a cpoon D and f : D — D be continuous. Prove the fixpoint theorem, i.e., that

ii)

U{f%(L) | i € N} exists and that this is the least fixpoint of f. You may use all other results from
the lecture in your proof.

Let D = 2N, ie., D is the set of all sets of natural numbers and let C denote the usual subset
relation.

1) Prove that every chain S C D has a least upper bound w.r.t. the relation C.

2

) Prove that C is a cpo on D.
3) Give an example for an infinite chain in (D, C).
)

4) Give a monotonic, non-continuous function f : D — D. You do not need to prove that f has

these properties.

1 Functional Programming SS12

Solution - Exam (V3B) 15.08.2012

Informatik Il

b) i) Consider the following Haskell function mult:

mult :: (Int, Int) -> Int
mult (0, y) = 0
mult (x, y) =y + mult (x - 1, y)

Please give the Haskell declaration for the higher-order function f_mult corresponding to mult, i.e.,
the higher-order function f_mult such that the least fixpoint of £f_mult is mult. In addition to the
function declaration, please also give the type declaration of f_mult. You may use full Haskell for
f_mult.

ii) Let ¢¢ mue be the semantics of the function f_mult. Give the semantics of ¢f .,,,(L) for n € N,
i.e., the semantics of the n-fold application of ¢¢ mut to L. B

iii) Give all fixpoints of ¢s nu+ and mark the least fixpoint.

c) Consider the following data type declaration for natural numbers:
data Nats = Z | S Nats

A graphical representation of the first four levels of the domain for Nats could look like this:

S (s 2) S (S (S L))

\

sz s (s 1)

\ /

Z S L

\ /

i

Now consider the following data type declarations:

data X =AXY | BY
EY |

I
data Y Y H

Give a graphical representation of the first three levels of the domain for the type X. The third level
contains the element A (A L 1) L, for example.

d) Consider the usual definition for Nats above, i.e., data Nats = Z | S Nats.

Write a function plus :: Nats -> Nats -> Nats in Simple Haskell that computes the sum of two
natural numbers, i.e., plus S(S(Z)) S(Z) should yield S(S(S(Z))). Your solution should use the func-
tions defined in the transformation from the lecture such as sel,, ;, iSaconstr ; argof and bot. You
do not have to use the transformation rules from the lecture, though.

constr’

Solution:

LuFG

Informatik Il

Functional Programming SS12
Solution - Exam (V3B) 15.08.2012

a)

b)

i) We first prove that fi(1) C fi*!(L) holds for all i € N by induction. As base case, we consider

i)

ii)

i =0 and of course, f(L) = 1L C f!(L) holds.

In the induction step, we assume that for some i > 0, f*=1(L) C f%(L) holds. Then, because f is
continuous, f is also monotonic, hence f(f*~(L)) C f(f* (L)) & fi(L) E f(L) holds.

Thus, {fi(L) | i € N} is a chain and because C is a cpo on D, LU{f*(L) | i € N} exists. We now
need to prove that this is the least fixpoint of f. First, we prove that this is indeed a fixpoint:

FO{f(L) i e N} =uf({fi(L)|ieN}) (f continuous)
=u{f (L)]ieN}
=U{f (L) |ieNFU{L})
—U{fiL) i e N

Now assume there is another fixpoint d of f. We need to prove U{f(L) | i € N} C d and do this by

inductively proving f(L) C d. In the base case, f'(1) = L C d obviously holds. In the induction

step, assume f¢(1) C d already holds. Then, because f is monotonic, we have f(f* (L)) C f(d).

But as d is a fixpoint of f, we can conclude that (1) C d.

Let S = {M1,M2, .. } with Ml - Mi+1-

1) We have US = |J M;. Obviously, M; C |J M;. Now assume that there is some other upper bound
B with |JM; € B. Then there is some e € |JM; \ B and by construction, there is some k with

e € M. As e € B, we have M € B and hence, B is not an upper bound of S w.r.t. C. Thus,
we have a contradiction.

2) In 1), we have proven that for every chain, there exists a lub. Obviously, we have |JM; € D.
With @ as the minimal element, C is a cpo for D.

3) Let N; :={k € N| k <i}. Then, N; C N;1; holds and hence, {Ny, N, ...} is a chain.

0 M is finite
J(M) = {{42} otherwise

Alternative: The function g from Ex. 1 c).

f_mult :: ((Int, Int) -> Int) -> ((Int, Int) -> Int)
f_mult mult (0, y) = 0
f_mult mult (x, y) =y + mult (x - 1, y)

0 ifr=0An>0
(gb?f’imult(J-))(‘ray): -y 1f0<x<n/\y7éL

1 otherwise
iii) The least fixpoint of ¢¢ nu1e is the function
ifz=0
glx,y)=<Rz-y fO0O<xzAy#L
1 otherwise

Another fixpoint is the function

0 ifx=0
hz,y)=qx-y ifzt LAy#L
1 ife=1V(@#0Ay=_1) (thisis “otherwise”)

1 Functional Programming SS12

Solution - Exam (V3B) 15.08.2012

Informatik Il

To be a fixpoint, a function f has to satisfy the equality f(ci,c2) = ¢¢ mue(f)(c1,c2), which is
equivalent to f(c1,c2) = 0 for ¢; = 0 (this is the first case in the definitions above).

For ¢; # 0, we have f(c1,c2) = ca+ f(c1—1, ¢2). This implies that for ¢; = L, the result has to be L,
as ¢; — 1 is not well-defined in that case. For ¢ = L (and ¢; # 0, as that case was handled above),
the result also has to be L, as ¢a + f(c1 — 1,¢2) is not well-defined in that case. This corresponds
to the last case in the definition of A.

So finally, we are left with the cases for ¢1,co € Z, for which f(e1,c2) = ca + f(e1 — 1,¢2) has to
hold, which is exactly the condition for multiplication, yielding the middle case.

)L A(BL) L

A(AL L ALH AL(EL) B H B(E L)

Al 1l B L

d) plus = \x -> \y ->
if (isaz x) then y
else if (isag x)
then S (plus (argofg x) y)
else bot

Alternative:

plus = \x -> \y ->
if (isaz x) then y
else S (plus (argofg x) y)

Exercise 4 (Lambda Calculus): (4 + 6 = 10 points)

a) Please translate the following Haskell expression into an equivalent lambda term (e.g., using Lam).
Translate the pre-defined function < to LessThan, + to Plus and - to Minus (remember that the infix
notation of <, +, - is not allowed in lambda calculus). It suffices to give the result of the transformation:

let quot = \x y -> if x < y then 0 else 1 + quot (x-y) y in quot v w
b) Let ¢ = Afact.(Az.(If (LessThanOrE z 1) 1 (Times z (fact (Minus x 1))))) and

0 = { If True — Az y.x,
If False — Az y.y,
fix = Mf.f(fix f)}
U{Minuszy—z|z,y€ZANz=12—y}
U {Timeszy =z |z, y€ZNz=12" Yy}
U { LessThanOrEx y — b | z,y €ZA ((x <yAb=True)V (z >y Ab=False))}

1 Functional Programming SS12

Solution - Exam (V3B) 15.08.2012

Informatik Il

Please reduce fix ¢t 1 by WHNO-reduction with the — gs-relation. List all intermediate steps until reach-
ing weak head normal form, but please write “¢” instead of the term it represents whenever possible.

Solution:

a) (fix (Aquot x y.If (LessThan = y) 0 (Plus 1 (quot (Minus z y) y)))) v w
b)

fixt1
S5 OV (fix) £ 1
g t(fixt) 1
—3 (Az.(If (LessThanOrE z 1) 1 (Times z (fix ¢ (Minus z 1))))) 1
—p If (LessThanOrE 1 1) 1 (Times 1 (fix ¢ (Minus 1 1))) (%)
—s If True 1l (Times 1 (fix ¢t (Minus 1 1)))
—s (Az.(Ay.x)) 1 (Times 1 (fix ¢t (Minus 1 1)))
—g (Ay.1l) (Times 1 (fix ¢ (Minus 1 1)))
s 1

[The original exam had a mixed use of If and if, so technically, it was OK to stop after reaching the
term marked with (x).]

Exercise 5 (Type Inference): (6 points)

Using the initial type assumption Ay := {z :: Va.a — Int} infer the type of the expression Ay.yx using the
algorithm W.

Solution:

W(Ao, My.y z)
W(Ao+{y b}, yx)

W(Ag + {y :: bi},y) = (id, b1)

W(Ap +{y :: b1}, z) = (id,bs — Int)
mgu(bl, (b2 — Int) — bg) = [bl/(bg — Int) — bgD
= ([bl/(bg — Int) — b3]7b3)

= ([bl/(bg — Int) — bg], ((bg — Int) — bg) — bg)

