
Multithreading and Synchronisation
Introductory seminar: Advanced programming concepts

Boris Kosmynin

boris.kosmynin@rwth-aachen.de

Lennart Meyer

lennart.friedrich.meyer@rwth-aachen.de

May 18, 2017

1 Introduction

Every user should be familiar with the concurrency of applications in one or another way. The
most apparent way is during the day to day usage of a computer: while copying multiple �les or
simply by listening to music while writing a document. But it does not mean that all the Threads
of which any process are one composed are run simultaneously. Depending on the properties of
the hardware used, Threads can be run in a pseudo-parallel way if only one processing unit is
available or actually simultaneously on a multi-core or even multi-processor machine[1, 1.1]. In
the case of Java, which runs in a virtual environment called the Java Virtual Machine or for
short JVM, it is decided at run-time whether the operating system and underlying hardware are
able to run and schedule multiple Threads. Then the scheduling task is given (if possible) to the
operating system for a better utilisation of the hardware and a better performance or kept by
the JVM which would then emulate a suitable scheduler, even on a device which is not able to
handle multiple, parallel processes[2, 12.1.1]. The fact that the JVM will emulate the necessary
environment adds an important compatibility feature which allows for mainstream deployment
of multithreaded applications.

2 Scheduling

Scheduling is the process of assigning resources to special tasks or in our context to Threads.
This very important task is carried out by a component of the operating system, the scheduler if
available or emulated by the JVM if not. There are many methods by which the scheduler can
assign resources. A very well known one is the round robin, which assigns every task a time slot
and cycles through them[3, p.178].
As scheduling is the basis of multithreaded computing a well-developed scheduler is essential for
performance and user satisfaction. As already mentioned in the introduction there are two basic
schedulers: a native one, handled by the operating system, and the one of the JVM. We are
going to take a look at the native types of schedulers.
These can be divided into three categories: Batch, Interactive and Real-Time. Batch scheduling
is most often used in the business and industry worlds for all kinds of computations for which

1



people usually do not wait. Interactive scheduling is used in systems with multiple, independent
users, who all want compute-time and do not want to wait for it. Also, it has to keep processes
from hogging the CPU and blocking out other processes and users. The last kind is Real-Time
scheduling, but it does not need a normal scheduler because processes running on such systems
are aware of their timing or block quickly[4, pp.153]. In the chapter Scheduling Goals we are going
to take a closer look at the most important goals and most common algorithms to accommodate
this task.

2.1 Scheduling Goals

For a running system it is important that the scheduler handles all processes in a fair way. That
means that every process has a fair share of the compute resources. Also policy enforcement is
essential for a stable and secure operation. High-priority processes like safety control should not
be killed under any circumstances, even if a process gets delayed. Another important goal is to
keep the system balanced and busy. For example processes which utilize CPU power can run
simultaneously with processes that utilize the I/O, without compromising the performance.
Depending on the scheduling system, other important goals are in place: For Batch-systems it
is important to maximise the systems' throughput and to minimise the turnaround time. That
means that the number of jobs per hour should be maximised and the time needed for the
completion(from submission to termination) of tasks should be minimised.
On the other hand interactive-systems give greater value to minimising response time and to
meet users' expectations. Minimising the response time is a mostly trivial concept but the
banaler it gets the more important is a well-conceived implementation. No user wants to wait
for an application to schedule when he clicks on its icon. This directly ties into meeting an users'
expectations: While a �le transaction like uploading or copying is expected to take time, other
tasks, like changing the volume, should be processed as fast as possible.
Real-Time systems have other properties, thus di�erent goals. This type of system is used for
example in video and audio playback, thus data consistency has a high priority when scheduling
processes[4, pp.154-156].

2.2 Scheduling in Batch Systems

Now we are going to have a look at some scheduling algorithms for batch systems.

First-Come, First-Served The most basic algorithm there is. It assigns computing resources
as tasks come in and queues all further tasks. Its strength is its simplicity and fairness, as every
process gets the time it needs. The disadvantage is the lack of resource distribution. As an
example consider a compute-bound process that takes one second to complete followed by an
I/O-bound process that does 100 reads or writes. Instead of splitting the compute-bound process
and inserting one read or write at each split, barely slowing the process down, it �rst completes
one process and then starts another[4, pp.156].

Shortest Job First This also very basic algorithm optimises the turnaround time of a system
by running the short jobs �rst. At this point it is implied that one needs to know the run times
in advance. As example lets' assume we have four jobs A;B;C;D with run times of 8, 4, 4,
4 minutes respectively. Now we can see in Figure 1 that the overall time for the queue does
not change, but instead of taking 8 minutes for A, 12 for B, 16 for C and 20 for D, which is 14
minutes on average, the turnaround time is now 4, 8, 12 and 20 minutes, which is only 11 minutes

2



on average. At this point it is worth pointing out that an optimal result is only achieved if all
jobs are available simultaneously, and no wait time needs to be taken into account[4, pp.157].

8 4 4 4 4 4 4 8

A B C D B C D A

(a) (b)

Figure 1: An example of Shortest-Job-First scheduling[4, p.157].

Shortest Remaining Time Next This algorithm is a variant of the Shortest-Job-First algorithm.
It additionally needs to know the expected run times and compares the run time of each new
job with the remaining time of the current one. If the new job needs less time to �nish then the
current, the current job gets suspended and the new one started[4, p.157]. It should be noticed
that jobs may be suspended for longer periods if the incoming jobs have smaller run times than
the remaining time of the current job.

2.3 Scheduling in Interactive Systems

The following algorithms can be used to schedule an interactive system.

Round-Robin Scheduling Round-Robin is one of the oldest, simplest, fairest and most widely
used algorithms. Each job is assigned a time slot, called a quantum. If a job exceeds its quantum
it gets suspended and is moved to the end of the queue. Then the next job gets started. If a job
�nishes before its quantum has elapsed the next one starts directly. The only really interesting
issue with Round-Robin is the length of a quantum. After each quantum the system requires
some time to do administrative work, like saving and loading registers or reloading the memory
cache. So depending on the quantums length quite some time is wasted. But longer quanta while
improving the CPU e�ciency may also worsen the turnaround time, if many jobs are added to
the queue at once. A reasonable quantum length is often around 20-50 msec[4, pp.158].

Priority Scheduling Round-Robin assumes that all processes have the same priority, but not
all operators share this opinion. This leads to priority scheduling. The process with the highest
priority is allowed to run and the rest is queued up behind it. To keep processes from running
inde�nitely, each process either gets an maximum time quantum and is pushed back in the queue
when the quantum expires or the priority gets reduced at each clock until another process has
the highest, which then gets run and so on. Priorities can be assigned statically or dynamically.
Statically means that each group1 has a �xed value, which gets applied as the priority of the

1For example grouped by the users rank or the price of an option in a commercial data center.

3



processes it is running. Dynamically means that the system assigns priorities depending on
its' goals. An often used variation is the combination of priority scheduling and Round-Robin
scheduling, where processes are grouped into priority classes, which use priority scheduling, but
use Round-Robin inside of the classes[4, pp.159].

Figure 2: An example of the combination of Round-Robin and Priority scheduling with the tasks
t1; t2; t3; s1; s2; s3.

3 Synchronisation

Synchronisation is an omnipresent term in the common cooperation and communication of
Threads. When several Threads access the same variables, data and commands, it might be
possible that unintentional concurrency occur between them. As the scheduler coordinates the
priorities of the di�erent Threads it becomes possible that one Thread is inuenced to a greater
extent than another. So one Thread has more inuence to a variable than the other ones.
Moreover, if a Thread executes a non-atomic operation2 and the execution is interrupted by the
scheduler, the operation will not be continued until the Thread is given permission to go on
working. This can lead to inconsistent results, because the evaluation of the command won't
give any sense to the user[5, pp.479].

3.1 Concepts of synchronisation

There are di�erent ways to realize synchronisation in Java. Now we are going to explain the
concepts of Monitoring and Locks.

3.1.1 Monitoring

In Java, several commands and methods represent a critical part of Threads. A keyword capsules
these commands or methods, so they are locked for other Threads as soon as one Thread wants to
use them. The keyword synchronized de�nes the beginning of the critical areas. For example:
When one Thread uses the synchronized command or method, a control barrier will be set
to the common used object-variable or to the this.-Pointer of the synchronized method, so
other Threads have to wait until the current Thread has �nished its task and deallocates the
synchronized block[5, p.481-485].

Wait and Notify Next to the principle of monitoring, the methods void wait() and void notify()

are equally important to synchronisation. They provide a trouble-free control in the chronologi-
cal sequence of events between several Threads. Besides the barrier, the object variable, which is
marked with the keyword synchronized, contains a waitlist for Threads. Until a Thread enters

2Atomic operations are not interruptible by other operations.

4



a monitored area and claims for its work, the method wait() is able to remove the barrier and
the Thread will be set to the wait-modus by scheduling. It is guaranteed that the Thread does
not disturb other processes and consume too much computing power while waiting. When in
another place of the program a Thread works on the object variable inside of a monitored area
and uses the notify() method, the Thread that is in a wait mode, is allowed to go on working.
Furthermore, the methods are only allowed to implement within the critical areas. In literature
for Computerterms the scenario is described through an example of the interaction between pro-
ducer and consumer: The consumer waits until the producer is �nished so that the consumer is
able to use the product [5, p.485-488].

Interrupt() Next to notify() the method void interrupt() is able to reactivate waiting
Threads. Every Thread is equipped with an Interrupt-Flag. It can be inuenced by the non-
static method t.interrupt() to True or False. When an Interrupt-Flag of a Thread t is set
to True and then executes the method wait() afterwards, the interpreter throws instantly the
InterruptedException. This implicates that the Thread is henceforth interrupted. Therefore
the method interrupt() is able to interrupt other waiting Threads instead of its own.
To check the Interrupt-Flag the method boolean isInterrupted() is used to establish the
Status of a Thread[6, pp. 350].

3.1.2 Locks

In contrast to monitors, locks do not have any keywords like synchronized, so the programmer
is forced to set up and to remove Locks manually using the methods lock() and unlock(). One
advantage in contrast to monitors is that Locks are not set in blocks. It is possible that the lock
is set in a di�erent method than the unlock of the barrier. Another advantage is that locks are
di�erentiable, whether they are used for writing or reading[1, pp.141].

ReentrantLock Locks are implemented by the interface ReentrantLock. It provides other
useful methods to organize the communication between several Threads. One example is that
the programmer is able to call up the waiting Threads[1, pp.142].

ReadWriteLock The interface ReadWriteLock is used to specialize and characterize existing
Locks. So the programmer is able to di�er between writing and reading by using the methods
readLock() and writeLock()[1, p.143].

Conditions For solving general problems of synchronisation, Locks are equipped with the inter-
face Conditions which can be compared to the methods wait() and notify() under the alias
term await() and signal()[1, pp.143].

4 Possible Issues and Errors

A Thread is limited in the way it communicates with other Threads. Issues and error conditions
sneak into the process without any knowledge of the programmer.

4.1 Deadlocks

Deadlocks occur when one Thread is locked and a second Thread has not the opportunity to
unlock it, because it also has to wait. Both Threads are useless during the whole program-
cycle because they stay under mutual dependency to each other. This phenomenon is known as

5



Deadlock. One example: The �rst client goes to an ATM and wants to withdraw money, but
the ATM is empty and a Bank-O�cer can not re�ll the ATM because the bank has a short run
of money. The second Client is not able to deposit his money, because the �rst Client blocks the
entrance. Without communication it is not possible to remove the disagreement and to solve the
problem. A Deadlock is di�cult to detect, because it does not appear by compiling. The only
way to prevent Deadlocks is to adjust the code[7, p.61-64].

Figure 3: Deadlock[7, p.63]

4.2 Exceptions

Multithreading does not depend on special hardware or is not involved in a complex interaction
structure. It only needs one or more processors and additional memory to run Threads correctly.
Memory and processor errors are caused by the whole virtual machine and not by a single
Thread instead. Generally speaking there should not occur any errors. The only serious errors
are generated by the programmer himself when he coded incorrectly or �ts the synchronisation
in a wrong place in the program. To lean forward these issues, Java is able to throw exceptions.
In the next part, we are going to introduce the common Exceptions which occur when the
programmer wants to work on Threads[7, pp.217].

InterruptedException InterruptedException is the most emerged Exception by Thread im-
plementations. When the programmer uses the sleep() method and the exception is thrown by
the interpreter it implies that the Thread does not sleep for the stated amount of time. In addi-
tion, when the wait() method is implemented in the program and the InterruptedException
occurs, it is possible that the wait() method does not gain the noti�cation to set the Thread
into the line[7, pp.218].

IllegalThreadStateException The IllegalThreadStateException and
IllegalArguementException are specialized as run-time exceptions. The start() method
which is implemented in the Thread class too, throws this type of Exception when a Thread was
started in the past but is activated again by this method[7, pp.220].

6



IllegalArgumentException When the user wants to allocate a priority manually to a Thread
and the priority is not remitted, the IllegalArguementException is thrown by the interpreter[7,
p.221].

5 Practical Implementation in Java 8

In the following we are going to take a look at how to implement multithreading in Java.

5.1 The Thread Class and the Runnable Interface

The �rst thing to know is that one has the option to use the Runnable interface or to extend
the Thread class. It is considered the better practice to extend the Thread class if possible,
but because Java does not allow for multiple inheritances there is the option to implement the
Runnable interface. This option has only minor disadvantages compared to the Thread class
because that implements the interface itself. In both cases, one has to overwrite the run()

method. The method contains the code which should run in a separate Thread. To start a
Thread, the classes start() method has to be excecuted[1, pp.19-22]. This is a possible source
of error because it sometimes seems logical to execute the run() method instead. The e�ect
might not be noticed because the code is run in both cases but only by using the start()

method will a new Thread be created[2, 12.2.3].

Code 1: Thread creation

1 public class MyThread extends Thread{

2 public void run(){

3 // my Code

4 }

5 public static void main (String [] args){

6 MyThread t = new MyThread();

7 t.start();

8 }

9 }

5.2 Synchronisation of Java Threads

The interaction between Threads, while being synchronised, is interpreted as simple as the
example below. We present di�erent methods which are equipped with the special keyword
synchronized. Also, the keyword can be used to clarify single object variables, which are ac-
cessed by the Threads. The keyword represents the beginning of a critical area, where only one
single Thread is able to enter simultaneously. This measure prevents race conditions between
the several Threads and permits that they work together instead of harming each other. This
was already clari�ed in chapter 3.

5.2.1 Wait and Notify

Most important, the user has to pay attention that wait() and notify() are declared within the
synchronized block. The method void notifyAll() is used to reactivate all waiting Threads.
In addition it has to be implemented like wait() and notify() in the program code. Next, the

7



method wait() can be specialized by the parameters long millisecond and int nanosecond

to wait(milli, nano). This declares the maximal wait-time of a Thread until it starts again.
When the parameters are both zero it is familiar to the regular wait() method without param-
eters. Furthermore, there is no maximum the Threads have to wait.
When wait() and notify() occur recursively in the program this can results in a Deadlock.
Another disadvantage is that wait() and notify() are not static methods so the are not able
to implement in non-static synchronized blocks easily[6, pp. 348].
To improve synchronized we embedded the methods wait() and notify() in our example.

Code 2: Synchronised Code[6, p.218]

1 class Synchronization{

2 synchronized void waiterMethod() {

3 // Do some Stuff

4

5 //Now we need to wait for notifier to do something

6 wait();

7 //Continue where we left off

8 }

9 synchronized void notifierMethod() {

10 //Do some Stuff

11

12 //Notify waiter that weve done it

13 notify();

14 //Do more things

15 }

16 }

5.3 Scheduling

Similar to the priorities assigned to a task by the operating system a developer has the possibil-
ity to micromanage the priorities of the Threads he implements. To do this one has to extend
the Thread class. It o�ers the methods setPriority(int newPriority) and getPriority()

to set and get a Threads' priority. Also the constants MIN_PRIORITY, MAX_PRIORITY and
NORM_PRIORITY, which are set to 1, 10 and 5 can be used[1, pp.75].

5.4 Example on the Implementation of Multithreading in Java 8

As an example for the implementation of multithreading we are going to write a program
which consists of two classes. The ThreadExampleMain class manages the GUI3 and starts
the ThreadExampleCounter class as a new Thread. Furthermore, we use the SimpleIO4 class to
prompt the user for a command using a graphical window.
We start by implementing the ThreadExampleCounter class. We override the run method of
the Thread class and use a while-loop to constantly increase an integer and output the value.
Furthermore, we embed the sleep command to slow down the execution of the loop. Because

3Graphical User Interface
4SimpleIO is known from the 'Programmirung' lecture held by Prof. Dr. J. Giesl at RWTH Aachen University

in 2016

8



of that we have to nest the while-loop in a try-block to catch the InterruptedException men-
tioned earlier, which is thrown when we try to interrupt the sleep method.
We start the main method of the ThreadExampleMain class by creating a new object from the
ThreadExampleCounter class we implemented earlier and starting the new Thread. We are us-
ing a while-loop to constantly prompt the user for a command. If the command is the letter 'q'
the application quits by sending an interrupt to the running Thread. In any other case the
command is translated to an integer and a for-loop counting down from the inputted integer
to zero is started. These operations again have to be nested in a try-block to catch a possible
NumberFormatException which is thrown if the input does not consist of only numbers but also
has letters in it.

Code 3: ThreadExampleMain.java

1 public class ThreadExampleMain{

2 public static void main(String[] args){

3 boolean state = true;

4 // new Tread from the ThreadExampleCounter class

5 ThreadExampleCounter tc = new ThreadExampleCounter();

6 // start the Thread

7 tc.start();

8 // notice .start() not .run()

9 while(state){

10 int j;

11 // generating a SimpleIO prompt

12 String s = SimpleIO.getString("Enter a command:");

13 if(s.equals("q")){

14 // disable the while loop and send interrupt to the Thread

15 state = false;

16 tc.interrupt();

17 }else{

18 // catch errors in case input does not consists of numbers

19 try{

20 j= Integer.parseInt(s);

21 for(int i=j; i>0; i--){

22 System.out.println(i);

23 }

24 }catch(NumberFormatException e){

25 SimpleIO.output("Wrong Number Format!","Error");

26 }

27 }

28 }

29 }

30 }

9



Code 4: ThreadExampleCounter.java

1 public class ThreadExampleCounter extends Thread{

2 // overwritten run()-methode from the Thread class

3 public void run(){

4 int i = 0;

5 // try to catch the InterruptedException from the sleep methode

6 try{

7 while(true){

8 System.out.println(i);

9 i++;

10 Thread.sleep(200);

11 }

12 } catch(InterruptedException e){} } }

6 Conclusion

To sum up, one could say that the concept of multithreading is one of, if not the most valuable,
advanced programming concepts. In future, every programmer will be needing multithreading
because of its diversity. It allows for better hardware utilisation and thus better performance.
Furthermore, it allows better separation of application components like GUI and logic.
All in all, we are now able to produce professional code which concludes parts of multithreading
and synchronisation. Also now we know how to handle di�erent exceptions, errors, deadlocks
and race conditions which can occur within multithreading.
Hopefully, the reader would have become more interested in the topic and in the world of mul-
tithreading and synchronisation. It is also wished that this term paper enriches the reader's
programming skills and their understanding of the theory of multithreading in general.

References

[1] R. Oechsle, Parallele und verteilte Anwendungen in Java: mit 156 Programmen. Lehrb�ucher
zur Informatik, M�unchen: Hanser, 3., erw. au ed., 2011. OCLC: 700067788.

[2] C. Ullenboom, Java ist auch eine Insel: das umfassende Handbuch. Galileo computing, Bonn:
Galileo Press, 10., aktualisierte und �uberarb. au., 1. nachdr ed., 2012. OCLC: 844927873.

[3] P. Niemeyer and J. Peck, Exploring Java. The Java series, Bonn ; Sebastopol [Calif]: O'Reilly
& Associates, 1st ed ed., 1996.

[4] A. S. Tanenbaum and H. Bos, Modern operating systems. Always learning, Boston: Pearson,
global ed., 4. ed ed., 2015. OCLC: 892574803.

[5] G. Kr�uger, Handbuch der Java-Programmierung. M�unchen: Addison-Wesley, 3. au., [stu-
dentenausgabe]., [nachdr.] ed., 2004. OCLC: 249133452.

[6] T. Rauber and G. R�unger, Parallele Programmierung. eXamen.press, Berlin: Springer, 3.
au ed., 2012. OCLC: 816197646.

[7] S. Oaks and H. Wong, Java threads. The Java series, Sebastopol, CA: O'Reilly & Associates,
1st ed ed., 1997.

10


