
Interval Constraint Propagation

Seminar in Satisfiability Checking

Ömer Sali
Supervision: Johanna Nellen

Abstract

Numerous problems in the areas of soft- and hardware verification, optimisation
and planning can be formalised by quantifier-free formulas over the theory of nonlinear
real arithmetic. The runtime of existing decision procedures based on algorithms such
as cylindrical algebraic decomposition depends heavily on the size of the underlying
solution search space of a given formula. Interval constraint propagation (ICP) serves
as a method for reducing this search space prior to a call of a complete decision
procedure. Applied to linear constraints, ICP can suffer from the slow convergence
problem, where the use of dedicated linear real arithmetic (LRA) solvers would be
superior. In this paper, we give a full description of ICP and present an approach for
separating the linear and nonlinear solving stages. This results in an integration of
ICP with LRA solvers to efficiently decide nonlinear real arithmetic problems.

1 Introduction

Propositional logic is well-suited for the verification of logic programs or the bounded model
checking of discrete systems such as digital controllers. Its importance led to the devel-
opment of highly efficient decision procedures like the Davis-Putnam-Logemann-Loveland
(DPLL) algorithm to determine the satisfiability of Boolean formulas (see [2, Chapter 2]).
Other inherently continuous problems in the area of optimisation require the expressive-
ness of theories. Therefore, propositional logic is extended with theory constraints to so
called satisfiability modulo theories (SMT). The focus of this paper lies on SMT formulas
that are Boolean combinations of polynomial constraints with real-valued variables:

Definition 1.1 The syntax of a formula in the quantifier-free fragment of the nonlinear
real arithmetic (QFNRA) is defined by the following grammar:

formula ::= constraint | (formula ∧ formula) | (formula ∨ formula) | (¬formula)

constraint ::= term < term | term ≤ term | term = term | term ≥ term | term > term

term ::= variable | constant | term+ term | term · term

where constant ∈ R, and variable ∈ {x1, x2, . . .} with values from the domain R.

To clarify the structure of QFNRA formulas, consider for example

φ := ((σ1 : x2
1 + x2 ≥ 10 ∧ σ2 : x1 · x3

3 ≤ 5) ∨ σ3 : x2 + 2 · x3 = 0),

which consists of three constraints σ1, σ2, σ3 with real-valued variables x1, x2, x3. The only
difference between linear and nonlinear formulas is, that the multiplication of variables
instead of just variables and constants is allowed. But while highly efficient algorithms
like Simplex or the Ellipsoid method exist for deciding linear real arithmetic (QFLRA),
efficient decision procedures for QFNRA are rather sparse. Existing complete algorithms
like cylindrical algebraic decomposition (CAD) show a double-exponential runtime even on
practical problems. The runtime depends especially on the size of the underlying solution

1



φ

SAT solver UNSAT

Constraints Explanation

Theory solver SAT

Boolean
abstraction

unsat.

assign.

solution

unsat.

(a) The full lazy approach

φ

SAT solver
SAT or
UNSAT

Constraints
partial SAT

or Explanation

Theory solver

Boolean
abstraction

solution
or unsat.

part.
assign.

part. sol.
or unsat.

(b) The less lazy approach

Figure 1: The basic scheme of DPLL-based SMT solving

search space. Interval constraint propagation (ICP) is an efficient numerical method for
finding tight interval over-approximations of solution sets of QFNRA formulas prior to a
call of a complete decision procedure. It uses the given set of constraints for deductions
that lead to a contraction of the initial search space without excluding any solutions.
However, a problem with ICP is that it handles both linear and nonlinear constraints for
inference. Applied to linear constraints, it can suffer from the slow convergence problem
(see Example 3.3 on page 5). As there already exist optimised algorithms for deciding
linear arithmetic problems, solving all constraints in ICP is suboptimal. We tackle this
problem by separating the linear and nonlinear solving stages. We use ICP to search for
interval solutions of the nonlinear constraints, and a LRA solver to validate the solutions
and incrementally provide more constraints to ICP for the search space refinement.

2 Preliminaries

Several tools for deciding the satisfiability of SMT formulas over a quantifier-free first-
order theory T rely on the DPLL(T ) framework: They combine a Boolean satisfiability
solver based on the DPLL procedure to resolve the Boolean structure of a given formula,
and a dedicated theory solver capable of verifying the consistency of conjunctions of theory
constraints. In what follows, we have a closer look on the DPLL(QFNRA) approach.

A given QFNRA formula φ is first transformed into an equisatisfiable formula φCNF in
conjunctive normal form. This can be done efficiently by using Tseitin’s encoding to get

φCNF =
k∧
i=1

li∨
j=1

`ij with `ij ∈ {σij ,¬σij} for QFNRA constraints σij .

Next, the negations in negative literals lij = ¬σij with a constraint σij : pij ∼ qij and a
relation ∼ ∈ {<,≤,=,≥, >} are eliminated by pushing them to the theory constraints:
< and ≤ get replaced with ≥ and > and vice versa. Since no inequalities are allowed
as relations in Definition 1.1 of QFNRA constraints, equalities like pij = qij are negated
by replacing them with the clause pij < qij ∨ pij > qij , which does not affect the CNF
structure. In the following, we assume that this lightweight transformation was already
done and that φCNF consists of positive literals only. From this, the Boolean abstraction
φB is constructed by introducing a fresh Boolean variable eij for every new constraint σij

2



and keeping the Boolean skeleton intact, which gives

φB =
k∧
i=1

li∨
j=1

eij , where eij replaces the constraint σij .

A DPLL-based SAT solver now systematically tries to find assignments for the Boolean
skeleton φB (see Figure 1a). For every found model α |= φB, the corresponding set of
constraints Σ = {σij | α |= eij} is handed over to the theory solver and checked for
consistency. Recall that the Boolean abstraction φB does not contain any negations and
is therefore a monotone formula. Hence, the original formula φ must be satisfiable if and
only if Σ is consistent. If the theory solver fails to find a solution of the given constraint
set Σ, it provides a preferably minimal infeasible subset of Σ as explanation to the SAT
solver, which is used to narrow the search for feasible assignments. The formula is declared
to be unsatisfiable, if the SAT solver is not able to find any further satisfying assignments.

Above, we described the progress of a DPLL-based SMT solver working in full lazy
mode, that first finds a complete assignment for the Boolean skeleton of a formula before
invoking the theory solver. A major improvement of this approach is shown in Figure 1b
operating in less lazy mode: Here, the theory solver is called more often already for
incomplete assignments. Depending on the answer of the theory solver on this partial
constraint set, the SAT solver can adjust its partial solution until a complete assignment
is found. This approach requires a theory solver that manages an internal state to make use
of previous consistency checks. It should support incrementality by allowing the belated
assertion of new and removal of already asserted constraints. From this list of requirements
we conclude, that such a theory solver should implement the following minimal interface:

assert/remove(Constraint): These procedures realise the incrementality of the theory
solver for adding/removing constraints for the next consistency check. Note, that
remove() must undo all the effects of the given constraint on the entire calculation.

check(): This main function performs the consistency check over all asserted constraints
and returns a SAT/UNSAT answer. In case of satisfiability a model is constructed.
Otherwise, check() provides a preferably minimal infeasible subset as explanation.

For the next sections, we take a LRA solver and a complete NRA solver both implementing
this interface as given and develop on top of them a new ICP module with this interface.

3 Interfacing ICP with LRA solvers

For the rest of this section, let Σ = {σ1, . . . , σm} be a set of QFNRA constraints with
variables Var(Σ) = {x1, . . . , xn}. By I = [I, I] we denote a closed interval with lower
bound I ∈ R ∪ {−∞} and upper bound I ∈ R ∪ {+∞}. Here, ±∞ are of course not
included in I, we merely write [−∞,+∞] instead of (−∞,+∞) to avoid case distinctions.
Suppose that the solution set Sol(Σ) = {~p ∈ Rn | ~p |= Σ} of Σ is bounded by an initial
interval box I0 ∈ In, where I is the set of all closed intervals as defined before. The interval
I0
j is the domain of the variable xj in the constraint set Σ for all 1 ≤ j ≤ n. For a detailed

description of the following subject, refer to [1, Sections 2–3] and [3, Chapters 2–4].

3.1 Interval Constraint Propagation

The main idea of interval constraint propagation (ICP) is to efficiently reduce the initial
interval box I0 of the constraint set Σ without losing any existing solution. ICP either

3



Contract Split Contract

Figure 2: An exemplary contraction sequence

detects the unsatisfiability of Σ if the interval domain of some variable is narrowed to
the empty set, or it returns an interval assignment for the variables that tightly over-
approximates the solution set Sol(Σ), satisfying some preset precision requirement.

Example 3.1 Consider the set Σ = {σ1 : x2 = 2x1 + 1} together with the initial interval
box I0 = [1, 3]× [5, 9]. To narrow down this search space, we may argue as follows:

• Since the initial interval of x2 is I0
2 = [5, 9], to satisfy the constraint σ1, the value of

x1 has to lie within [2, 4]. Taking the intersection with the initial interval I0
1 = [1, 3]

on x1, we can narrow down the interval of x1 to I1
1 = [2, 3].

• Since the initial interval of x1 is I0
1 = [1, 3], to satisfy the constraint σ1, the value of

x2 has to lie within [3, 7]. Taking the intersection with the initial interval I0
2 = [5, 9]

on x2, we can narrow down the interval of x2 to I1
2 = [5, 7].

Thus, the new interval box is given by I1 = [2, 3]× [5, 7].

In the above example, the given constraint itself is used for an argumentation which leads
to a tightening of the initial interval box. The main idea of ICP is to fully automate this
reasoning process by using the given set of constraints for contraction.

Definition 3.1 A contractor Cσ : In → In associated to a constraint σ ∈ Σ is an operator
such that for every interval box I ∈ In the two following properties are satisfied:

Contractance: Cσ(I) ⊆ I. Thus, the contraction never results in a wider box.

Consistency: Cσ(I) ∩ Sol(σ) = I ∩ Sol(σ). Thus, no solutions are excluded.

In practice, there are different approaches to build concrete interval contractors. Here, we
use the main theory based on interval analysis. In order to perform the bound estimations
needed in Example 3.1 systematically, interval analysis extends the arithmetic operations
� ∈ {+,−, ·,÷} from the domain of real numbers R to the set of intervals I, such that

∀I, J ∈ I : S := {x� y | x ∈ I, x ∈ J} ⊆ I � J.

This property claims that the resulting interval I � J constitutes an over-approximation
of the set S. Consider the following definitions of the basic interval arithmetic operators:

Definition 3.2 For intervals I = [I, I] and J = [J, J ] define the interval arithmetic

Addition: I + J := [I + J, I + J ] Subtraction: I − J := [I − J, I − J ]

Multiplication: I · J := [min(I · J, I · J, I · J, I · J),max(I · J, I · J, I · J, I · J)]

Division (0 6∈ J): I ÷ J := I · (1/J), where 1/J := [1/J, 1/J ]

We are now in a position to define interval contractors: Fix a constraint σ ∈ Σ and an
interval box I ∈ In. If xj 6∈ Var(σ), we simply let Cσ(I)j := Ij . Otherwise, write σ as

σ : xj ∼ pj(x1, . . . , xj−1, xj+1, . . . , xn),

4



I0

I1

split

I2 I3

∅

Cσ1

Cσ2

(a) An exemplary state tree

I0

I1

split

I2 I3

∅ ∅

Cσ1

Cσ2 Cσ3

remove(σ3)

I0

I1

split

I1
1 I1

2

∅

Cσ1

Cσ2

(b) State tree pruning to remove the effect of σ3

Figure 3: Management of the internal state with the help of a state tree

where pj does not contain the variable xj . Replace all variables in pj by their inter-
val bounds and apply interval arithmetic to calculate Jj := pj(I1, . . . , Ij−1, Ij+1, . . . , In).
Depending on the type of the relation ∼ in σ, we get the contracted interval as

Cσ(I)j :=



if Ij ≥ Jj then ∅ else [Ij ,min(Ij , Jj)] , if σ : xj < pj

[Ij ,min(Ij , Jj)] , if σ : xj ≤ pj
[max(Ij , Jj),min(Ij , Jj)] , if σ : xj = pj

[max(Ij , Jj), Ij ] , if σ : xj ≥ pj
if Ij ≤ Jj then ∅ else [max(Ij , Jj), Ij ] , if σ : xj > pj

.

This completes the definition of the contractor Cσ. Consider again Example 3.1.

Example 3.2 With the above notation, we again get the same result I1 via

• J1 = 0.5 · ([5, 9]− 1) = [2, 4] and hence I1
1 = Cσ1(I0)1 = [2, 4] ∩ [1, 3] = [2, 3],

• J2 = 2 · [1, 3] + 1 = [3, 7] and hence I1
2 = Cσ1(I0)2 = [3, 7] ∩ [5, 9] = [5, 7].

Unfortunately, the sequence of contractions I0, I1 := Cσi1 (I0), I2 := Cσi2 (I1), . . . may
converge to a fixed point even before a preset threshold for the desired diameter is reached
(see Figure 2). To cope with this problem, we can choose a variable xj along which an
autonomous split of the interval box Ii is performed. This results in two new interval
boxes Ii+1 and Ii+2 with Ii = Ii+1 ] Ii+2 which can be further contracted, splitted, and
searched separately for solutions. The progress of these propagation steps is kept in an
internal state tree as shown in Figure 3a that constitutes the state of the ICP algorithm.

3.2 Formula preprocessing

As pointed out in the last subsection, the proper definition of contractors requires the
given constraints to be solvable in every existing variable. Another major drawback of the
basic ICP algorithm we have seen so far is, that its speed of convergence depends on the
polynomial degree of a constraint used for contraction. Applied to linear constraints, ICP
is therefore known to suffer from the slow convergence phenomenon:

Example 3.3 (Slow convergence) For any number n ∈ 2N consider the constraint set
Σ = {σ1 : x1 = x2 +1, σ2 : x2 = x1} together with the initial interval box I0 = [0, n]× [0, n].
The shortest contraction sequence of ICP to decide unsatisfiability is given by

I0 = [0, n]× [0, n]
Cσ1−→ [1, n]× [0, n− 1]

Cσ2−→ [1, n− 1]× [1, n− 1]
Cσ1−→

[2, n− 1]× [1, n− 2]
Cσ2−→ [2, n− 2]× [2, n− 2]

Cσ1−→ · · · [n2 ,
n
2 ]× [n2 ,

n
2 ]

Cσ1−→ ∅

5



which consists of n + 1 contraction steps. In contrast, the Simplex method needs at most
a constant number of pivot steps regardless of the chosen number n ∈ 2N.

Both problems are covered by the following preprocessing to separate the linear and non-
linear parts in a given constraint σ ∈ Σ: First, write σ in the standard form

σ :
k∑
i=0

ci

li∏
j=0

x
eij
j ∼ d, where ∼ ∈ {<,≤,=,≥, >}, ci, d ∈ R, and eij ∈ N.

For every new nonlinear monomial mi :=
∏li
j=0 x

eij
j that was not considered before, replace

mi in σ by a fresh variable vi and add the nonlinear substitution mi = vi as an additional
constraint. If the left hand side of the resulting linearisation

σ′ :
k∑
i=0

ciyi ∼ d, where yi ∈ {xi, vi}

consists of only one term, then we denote σ′ as a bounding constraint. From now on, we
let N be the set of all nonlinear substitutions and bounds, and let L be the set of all
linearisations obtained by successively preprocessing every constraint σ ∈ Σ.

Example 3.4 The set Σ := {σ1 : 2x2
1−x2 = 1, σ2 : x2

1 +x3
2 > 10} yields the decomposition

N = {x2
1 = v1, x

3
2 = v2} and L = {2v1 − x2 = 1, v1 + v2 > 10}.

Note, that the nonlinear constraint x2
1 = v1 is only introduced once when the nonlinear

monomial x2
1 appears in σ1 for the first time and then reused in σ2 for substitution.

3.3 Incrementality and backtracking

For the communication of the ICP module with a DPLL-based SAT solver in less lazy
mode, we have to provide procedures for the assertion and removal of constraints.

Algorithm 3.1 Activate the contractors of
the given constraint.

1: procedure ICP.assert(Constraint σ)
2: (`,N)← preprocess(σ)
3: LRA.assert(`)
4: NRA.assert(σ)
5: activateContractors(N)
6: save(σ, (`,N))

Algorithm 3.2 Remove all effects of the
given constraints on the entire calculation.

1: procedure ICP.remove(Constraint σ)
2: (`,N)← lookupDecomposition(σ)
3: LRA.remove(`)
4: NRA.remove(σ)
5: deactivateContractors({`} ∪N)
6: pruneStateTree({`} ∪N)
7: remove(σ, (`,N))

Whenever a new constraint σ ∈ Σ is asserted to the ICP module, it is preprocessed
according to the last subsection to decompose it into a linearisation ` and a set N of
nonlinear substitutions and bounds (see Algorithm 3.1, line 2). The linearisation gets
asserted to the LRA module, while the original constraint σ is asserted to the complete
NRA backend module (lines 3–4). Later in the consistency check function, we will query
the LRA module to validate found interval boxes against these linear constraints, and
the NRA backend module to search for solutions only within already contracted interval
boxes. Initially, the ICP module performs contractions only using nonlinear constraints,
whose contractors are activated in line 5. In case the check function later on detects the
inconsistency of the asserted constraints, the collection of all constraints that were used

6



for contraction forms an infeasible subset. But since the infeasible subset needs to be a
subset of the originally asserted constraints, we must be able to retrieve the origins of
these preprocessed constraints. This requires, that a mapping from original constraints
(referred to as origins) to the modified constraints has to be kept (line 6).

The remove procedure (see Algorithm 3.2) withdraws almost all steps done by the
assert procedure in the same way, except for the following two differences: During the
consistency check, selected linear constraints are activated for contraction, which must be
deactivated in addition to the nonlinear constraints (line 5). Furthermore, the internal
state of the ICP module represented by its state tree must be pruned, such that all effects
of the given constraint on the entire calculation are removed as well (see Figure 3b).

3.4 Interfacing ICP with the LRA solver for the consistency check

Ideally, we would like to separate the linear and nonlinear solving stages and apply efficient
algorithms for linear constraints as much as possible. Since both types of constraints share
many variables in nontrivial problems, a complete separation is illusory. The difficulty
lies in devising a consistency checking procedure that efficiently uses the point solutions
returned by an LRA solver to incrementally refine the interval boxes generated by ICP.
In Algorithm 3.3, we use the ICP solver to search for interval solutions of the nonlinear
constraints, and use the LRA solver afterwards to validate the found solution box.

Algorithm 3.3 Check the consistency of the asserted constraints.

1: function ICP.check()
2: if LRA.check() then
3: while hasNextBox() do
4: I ← getNextBox()
5: Σconf ← validate(I)
6: if Σconf = ∅ then
7: NRA.assert(I|Var(Σ))
8: answer ← NRA.check()
9: NRA.remove(I|Var(Σ))

10: if answer = SAT then
11: ICP.model ← NRA.model
12: return SAT
13: else
14: ICP.infSubset

+← NRA.infSubset
15: discardBox(I)

16: else
17: activateContractors(Σconf)

18: ICP.infSubset
+← lookupOrigins(getUsedConstraints())

19: else
20: ICP.infSubset ← lookupOrigins(LRA.infSubset)

21: return UNSAT

The first step is to invoke the consistency check of the LRA solver to check the sat-
isfiability of the linearisations L asserted so far (line 2). If these linear constraints are
already inconsistent, this saves us from entering the expensive constraint propagation
loop (lines 3–17). In this case, the LRA solver provides an infeasible subset of the asserted
constraint set L as explanation (line 20). Since an infeasible subset of ICP has to be a

7



subset of the original constraints Σ, this can not be returned directly. Instead, we look
up the collection of all original constraints from which one of them originated from during
preprocessing. This collection must also be unsatisfiable, since the preprocessing ensured
the equisatisfiability of the original and the preprocessed constraints.

If the linear constraints are consistent, we start ICP directly on the set of nonlinear
substitutions and bounds N asserted so far (line 3). When the ICP module finds a solution
box I fulfilling the precision requirements (line 4), this box is validated against the linear
constraints held by the LRA solver (line 5). This validation procedure is the key component
in the integration of ICP with the LRA solver and hence discussed in the next subsection
in more detail. The result of the validation is the conflict set Σconf of all linear constraints
violating some point in I, which we activate as additional contractors (line 17). This
allows ICP to incrementally refine its search space before returning the next suitable box
in the next iteration of the loop. If no linear constraints are violated, we hand I over to
the complete, but expensive NRA backend module (lines 7–15).

For this purpose, we temporarily assert the search box to the complete backend in
addition to the already asserted original constraints Σ and invoke the consistency check
(lines 7–9). Note, that I also contains superfluous intervals for nonlinear variables intro-
duced during preprocessing, which are not needed by the NRA solver. Therefore, I is
restricted to the set of variables Var(Σ) contained in any original constraint. If a solution
is found, we take the model of the NRA solver as the model of our ICP module before
reporting satisfiability (lines 11–12). If the complete backend rejects the passed search
box, I does not contain any solution for Σ, and we discard it to select the next search
box (lines 14–15). The infeasible subset returned by the NRA solver is added to the
corresponding infeasible subset of the ICP algorithm.

The constraint propagation loop terminates, if every search box that resulted from a
split was rejected. In this case, the collection of all constraints which were used during the
whole calculation forms an infeasible subset. The constraints that were used by the NRA
solver to prove unsatisfiability were already added to the infeasible subset. The constraints
used for contractions can be easily read out of the state tree. As before, we take the origins
of these preprocessed constraints before reporting unsatisfiability (line 18).

The expectation behind the presented algorithm is, that the number of linear con-
straints violating a found search box is rather small compared to the number of all linear
constraints. But even if this assumption is not fulfilled in a worst case scenario, the
stepwise structure for testing necessary conditions enhances the runtime: We start with a
cheap invocation of the LRA solver, continue with the analysis of the nonlinear constraints
and end up in a final inevitable call of the expensive complete NRA backend module.

3.5 Validating a solution box against the linear feasible region

After obtaining a search box which suffices the preset precision requirements, it is necessary
to validate this box against the linear feasible region represented by the solution set Sol(L)
of all linear constraints. There are three possible cases (see Figure 4a):

Case 1: The search box completely resides outside the linear feasible region. In this case,
the box should be discarded without an invocation of the expensive NRA solver.

Case 2: The search box resides partially inside the linear feasible region. Since the inter-
val box constitutes an over-approximation of the (possibly empty) solution set, the
real point solutions could either lie inside or outside the feasible region.

8



Linear Feasible Region

Case 1
~p

Case 2
~p

Case 3
~p

(a) Position of a search box and its sample point

Linear Feasible Region

~a

(b) Nearest vertex of a search box to hyperplane

Figure 4: Relation between a search box and the linear feasible region

Case 3: The search box completely resides inside the linear feasible region. Distinguishing
this case from case 2 is the idea of the following validation procedure.

Let us write Var(N) = {x1, . . . , xn} for all nonlinear and Var(L) \Var(N) = {y1, . . . , ym}
for all pure linear variables that resulted from preprocessing. Let IN := I|Var(N) denote
the restriction of the given box to the nonlinear variables. Ideally, we would like to decide
whether for every point ~x ∈ IN there is an assignment for the remaining linear variables
~y ∈ Rm, such that every linear constraint in L is satisfied, that means

∀~x ∈ IN : ∃~y ∈ Rm : (~x, ~y) |= L. (1)

In case this consistency check fails, we would generate the corresponding conflict set Σconf

of all linear constraints violating some point in IN by

Σconf = {σ ∈ L | ∃~x ∈ IN : ∀~y ∈ Rm : (~x, ~y) 6|= σ}. (2)

This consistency condition can be reformulated as a linear program and decided with the
help of a LRA solver. Unfortunately, every different search box I leads to a completely
new linear program, wherefore the repeated invocation of the corresponding validation
procedure would be reflected in an extraordinary higher runtime. Instead, we propose the
following weakening of the strong consistency condition (1).

For an arbitrary sample point ~p ∈ IN of the nonlinear variables {x1, . . . , xn}, we query
the LRA solver for an assignment of the pure linear variables {y1, . . . , ym} that satisfies the
already asserted linear constraints (see lines 2–4 in Algorithm 3.4). If this check fails, we
practice short-circuiting by taking the infeasible subset of the LRA solver as the conflict
set Σconf (line 11). If the sample point ~p does not conflict any linear constraint, the LRA
solver returns a point solution ~b ∈ Rm for the pure linear variables (line 5). We either have
a case 2 scenario, where the chosen sample point occasionally lies inside the region, or the
search box IN is completely inside such that any chosen point of the box would have been
accepted (see Figure 4a). To distinguish these cases, we now test the full containment of
the box IN in the feasible region with the pure linear variables ~y fixed by~b, and accumulate
all the linear constraints σ ∈ L intersecting the box as our conflict set Σconf (lines 6–9).
This containment proof is the most difficult part of the validation procedure and discussed
below in more detail. Summing up, we check the following weak consistency condition

∃~y = ~b(~p) ∈ Rm : ∀~x ∈ IN : (~x, ~y) |= L.

Since the linear feasible region Sol(L) is determined by the intersection of the solution sets
Sol(σ) for σ ∈ L, it suffices to check each linear constraint separately. Rewrite a σ ∈ L as

σ : ~cT~x ∼ e+ ~dT~y with ~c ∈ Rn, ~d ∈ Rm, e ∈ R, and ∼ ∈ {<,≤} (3)

9



to separate the nonlinear variables ~x from the linear variables ~y. To check the containment
of the whole interval box IN in Sol(σ), we only need to validate the nearest vertex ~a ∈ IN
to the boundary ∂(Sol(σ)) against σ (see Figure 4b). This nearest vertex corresponds to
the point that maximises the left hand side of σ in (3), namely ~a = arg max~x∈IN ~c

T~x.
To obtain this maximum, the ~x variables only need to take their minimum or maximum
values in their intervals depending on their coefficients ~c. We can calculate it directly via

ai :=

{
IN,i , if ci > 0

IN,i , if ci ≤ 0
.

Algorithm 3.4 Validate the given box against the linear feasible region.

1: function validate(Box I)
2: ~p← samplePoint(I|Var(N))
3: LRA.assert(~p)
4: if LRA.check() then
5: ~b← LRA.model|Var(L)\Var(N)

6: for all σ ∈ L do
7: ~a← nearestPoint(σ, I|Var(N))

8: if (~a,~b) 6|= σ then
9: Σconf ← Σconf ∪ {σ}

10: else
11: Σconf ← LRA.infSubset\~p
12: LRA.remove(~p)
13: return Σconf

4 Conclusion

In this paper, we have presented interval constraint propagation as a theory module for the
DPLL framework used to efficiently tighten the search space of QFNRA formulas before the
invocation of a complete decision procedure. Most practical problems in formal verification
contain a large number of linear constraints, and only a small number of nonlinear ones.
Hence, the integration of ICP with LRA solvers to avoid the slow convergence problem
on linear constraints is useful. Another approach to accelerate the contraction process is
to replace the shown interval propagation by the Newton-Raphson method. This variant
can ensure a quadratic speed of convergence even for linear constraints, but dedicated
methods such as Simplex for solving the linear parts of a constraint stay superior.

References

[1] S. Gao, M. Ganai, F. Ivančić, A. Gupta, S. Sankaranarayanan, and E. M. Clarke.
Integrating ICP and LRA Solvers for Deciding Nonlinear Real Arithmetic Problems.
In Proceedings of the FMCAD, pages 81–90. FMCAD Inc, 2010.

[2] D. Kroening and O. Strichman. Decision Procedures: An Algorithmic Point of View.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 2008.

[3] S. Schupp. Interval Constraint Propagation in SMT Compliant Decision Procedures.
Master’s thesis, RWTH Aachen University, March 2013.

10


	Introduction
	Preliminaries
	Interfacing ICP with LRA solvers
	Interval Constraint Propagation
	Formula preprocessing
	Incrementality and backtracking
	Interfacing ICP with the LRA solver for the consistency check
	Validating a solution box against the linear feasible region

	Conclusion

