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Abstract. We describe the system AProVE, an automated prover to
verify (innermost) termination of term rewrite systems (TRSs). For this
system, we have developed and implemented efficient algorithms based
on classical simplification orders, dependency pairs, and the size-change
principle. In particular, it contains many new improvements of the de-
pendency pair approach that make automated termination proving more
powerful and efficient. In AProVE, termination proofs can be performed
with a user-friendly graphical interface and the system is currently among
the most powerful termination provers available.

1 Introduction

The system AProVE (Automated Program Verification Environment) offers a va-
riety of techniques for automated termination proofs of TRSs: First, it provides
efficient implementations of classical simplification orders to prove termination
“directly” (recursive path orders possibly with status [6, 20], Knuth-Bendix or-
ders [21], and polynomial orders [23]), cf. Sect. 2. To increase the power of auto-
mated termination proofs, we implemented the dependency pair technique [2, 13]
in AProVE which allows the application of classical orders to examples where au-
tomated termination analysis would fail otherwise (Sect. 3). In contrast to most
other implementations, we integrated numerous refinements such as narrowing,
rewriting, and instantiation of dependency pairs [2, 12, 15, 16], recent improve-
ments to reduce the constraints generated by the dependency pair technique [15,
16], etc. Therefore, AProVE succeeds on many examples where all other auto-
mated termination provers fail. Thus, the principles used in AProVE’s implemen-
tation may also be very helpful for other tools based on dependency pairs (Arts

[1], CiME [5], TTT [19]) or on other related approaches for termination of TRSs
(Termptation [4], Cariboo [10]). Apart from direct termination proofs and de-
pendency pairs, as a third termination technique, AProVE offers the size-change
principle [24] and it is also possible to combine this principle with dependency
pairs [28] (Sect. 4). The tool is written in Java and proofs can be performed both
in a fully automated or in an interactive mode via a graphical user interface. The
modular design of AProVE’s implementation is explained in Sect. 5. In Sect. 6
we show how to run the system and compare AProVE with related tools.

2 Direct Termination Proofs

This section describes the base orders of AProVE which can be used for direct ter-



mination proofs, but also
for proofs with constraint
generation techniques like
dependency pairs or the
size-change principle.

In direct termination
proofs, the system tries
to find a reduction order
where all rules are decreas-
ing. The following path
orders are available: the
embedding order (EMB),
the lexicographic path or-
der (LPO, [20]), the LPO

with status which com-
pares subterms lexicographically w.r.t. arbitrary permutations (LPOS), the recur-

sive path order comparing subterms as mul-
tisets (RPO, [6]), and the RPO with status
which combines LPOS and RPO (RPOS).

Path orders may be parameterized by
a precedence on function symbols and a
status which determines how arguments of
function symbols are compared. To explore
the search space for these parameters, the
system leaves them as unspecified (or “min-
imal”) as possible. The user can decide
between depth-first or breadth-first search
and one can configure path orders by decid-

ing whether different function symbols may be equiv-
alent w.r.t. the precedence (“Nonstrict Prece-

dence”). It is also possible to restrict potential equiv-
alences to certain pairs of function symbols.

AProVE also offers Knuth-Bendix orders (KBO,
[21]) using the polynomial-time algorithm of [22] and
the technique of [9] to compute the degenerate sub-
system of homogeneous linear inequalities.

The last class of orders in AProVE are polynomial
orders (POLO, [23]) where every function symbol is as-
sociated with a polynomial with natural coefficients.
The user can specify the degree of the polynomials
and the range of the coefficients. One can also pro-
vide individual polynomials for some function sym-
bols manually. To prove termination, AProVE gen-
erates a set of polynomial inequalities stating that
left-hand sides of rules should be greater than the
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corresponding right-hand sides. By the method of partial derivation [11, 23],
these inequalities are transformed into inequalities only containing coefficients,
but no variables anymore. Finally, a search algorithm determines suitable coeffi-
cients that satisfy the resulting inequalities. The user can choose between brute
force search, greedy search, a genetic algorithm, and a constraint-based method
based on interval arithmetic, which is the preferred one in most examples.

To improve power and efficiency of au-
tomated termination proofs, one can apply
a pre-processing step to remove rules from
the TRS that do not influence the termi-
nation behavior. When selecting “Remove
Redundant Rules”, AProVE tries to find a
monotonic order � such that the rules of the
TRS R are at least weakly decreasing (i.e.,
at least l % r for all l → r ∈ R). Then those
rules which are strictly decreasing can be re-
moved, i.e., it suffices to prove termination
of R \ {l → r | l � r}. This extends existing
related approaches to remove rules [17, 30].

For this pre-processing, we use linear
polynomial interpretations with coefficients
from {0, 1} . AProVE’s algorithm for polynomial orders solves constraints where
some inequalities are strictly decreasing and all others are weakly decreasing in
just one search attempt without backtracking [16]. Thus, removal of rules can
be done very efficiently and it is repeated until no rule can be removed anymore.

3 Termination Proofs with Dependency Pairs

The dependency pair approach [2, 13] increases the power of automated termi-
nation analysis significantly. Instead of comparing left- and right-hand sides of
rules, now we compare left-hand sides with those subterms of right-hand sides
that correspond to function calls. More precisely, the root symbols of left-hand
sides are called defined and all other symbols are constructors. For each defined
symbol f we introduce a fresh tuple symbol F . For each rule f(s1, . . . , sn) → r

and each subterm g(t1, . . . , tm) of r with defined root g, we build a dependency
pair F (s1, . . . , sn) → G(t1, . . . , tm). To prove termination one now has to find a
weakly monotonic order � such that s � t for all dependency pairs s → t and
l % r for all rules l → r. When proving innermost termination, l % r is only re-
quired for the usable rules of the defined symbols in the right-hand sides of de-
pendency pairs. The usable rules for a symbol f are the f -rules together with
the usable rules for all defined symbols occurring in right-hand sides of f -rules.

General Options and Base Order

In AProVE, one can select whether to use the dependency pair approach for ter-
mination or for innermost termination proofs. The system can also check if a TRS
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is non-overlapping
(because then in-
nermost termina-
tion implies ter-
mination). AProVE

contains recent de-
pendency pair im-
provements which
combine different
modularity crite-
ria and reduce the
set of usable rules
[15]. They can be
switched off for
experimental pur-
poses. To search
for suitable orders
�, one can se-
lect any base or-
der from Sect. 2.

Argument Filter

However, most of
these orders are strongly monotonic, while the dependency pair approach only re-
quires weak monotonicity. (For polynomial orders, a weakly monotonic variant is
obtained by permitting the coefficient 0. But LPO(S), RPO(S), and KBO are always
strongly monotonic.) Thus, before searching for an order, some of the arguments
of the function symbols in the constraints can be eliminated by an argument fil-
tering π [2]. For example, a binary function symbol f can be turned into a unary
symbol by eliminating f ’s first argument. Then π replaces all terms f(t1, t2) in
the constraints by f(t2). Hence, we can obtain a weakly monotonic order �π

from a strongly monotonic order � and an argument filtering π by defining
s �π t iff π(s) � π(t). Moreover, for innermost termination proofs, we developed
an improvement by first applying the argument filtering and determining the
usable rules afterwards [15]. The advantage is that the argument filtering may
eliminate some symbols f from the right-hand sides of dependency pairs and
rules. Then, one does not have to require l %π r for the f -rules anymore. For
this improvement, one has to select “Improved DPs” in the General Options.

Since there are exponentially many argument filterings, a crucial problem is
to explore this search space efficiently. AProVE uses a depth-first algorithm [15]
to determine suitable filterings by treating the constraints one after another. We
start with the set of argument filterings possibly satisfying the first constraint.
Here we use the idea of [18] to keep argument filterings as “undefined” as possi-
ble. Then this set is reduced further to those filterings which can possibly satisfy
the second constraint as well. This procedure is repeated until all constraints are
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investigated. By inspecting the constraints in a suitable order (instead of treating
them separately as in [18]), already after the first constraint the set of possible
argument filterings is rather small and in this way, one only inspects a small
subset of all potential argument filterings. To use our refinement of performing
filtering before computing usable rules, we also developed an algorithm to de-
termine suitable argument filterings in this improved approach automatically,
which is non-trivial since the filtering determines the resulting constraints.

One can also combine the search for the argument filtering with the search
for the base order by choosing the option “Consider Order Parameters”. If the
user selects this option, then the system additionally stores the corresponding
parameters of the order for each possible argument filtering (e.g., a minimal set
of precedences and stati as described in Sect. 2).

Heuristics

To improve performance, one can use heuristics to restrict the set of possible
argument filterings. The most successful heuristic “Type” only regards argument
filterings where for every symbol f , either no argument position is eliminated
or all non-eliminated argument positions are of the same type. Here, we use a
(monomorphic) type inference algorithm to transform a TRS into a sorted TRS
(where in every rule l → r, l and r must be well-typed terms of the same type).

When selecting the heuristic “EMB for DPs”, only the very simple embedding
order is used for orienting constraints like s �π t which come from dependency
pairs s → t. Only for constraints l %π r from rules l → r, one may apply
more complicated orders like LPO, RPO(S), etc. Since our depth-first algorithm
to determine argument filterings starts with the dependency pairs, this reduces
the search space significantly without compromising power very much.

This depth-first algorithm uses a top-down approach where constraints from
f -rules are considered before g-rules, if f calls g. As an alternative heuristic, we
also offer a “Bottom-Up algorithm” which starts with determining an argument
filtering for constructors and then moves upwards through the recursion hierar-
chy where g is treated before f if f calls g. To obtain an efficient technique, here
the system only determines one single argument filtering at each choice point,
even if several ones are possible and it does not perform any backtracking. This
algorithm reduces the search space enormously, but is also restricts the power,
since the proof can fail if one selects the “wrong” argument filtering at some
point. Thus, this heuristic is suitable as a fast pre-processing step and if it fails,
one should still apply the full dependency pair approach afterwards, cf. Sect. 5.

DP Graph

To perform (innermost) termination proofs in a modular way, one constructs an
estimated (innermost) dependency graph and regards its cycles separately [2,
13]. One can select between standard [2] and more powerful recent estimations
(EDG∗ / EIDG∗∗) [16, 18]. The graphs are displayed in a special “Graph”-window.

For each cycle, only one dependency pair must be strictly decreasing and the
others just have to be weakly decreasing. As shown in [18], one should not com-

5



pute all cycles, but only maximal cycles (strongly connected components (SCCs)).
The reason is that the chosen argument filtering and base order may make sev-
eral dependency pairs in an SCC strictly decreasing. In that case, subcycles of
the SCC containing such a strictly decreasing dependency pair do not have to
be considered anymore. So after solving the constraints for the initial SCCs,
all strictly decreasing dependency pairs are removed and one now builds SCCs
from the remaining dependency pairs, etc. This algorithm is chosen by selecting
“Cycles”. The algorithm “SCCs” requires a strict decrease for all dependency
pairs in an SCC and is only intended for experimental purposes.

In order to benefit from all existing refinements on modularity of dependency
pairs, we developed and implemented an improved technique which permits the
combination of recent results on modularity of Cε-terminating TRSs [29] with
arbitrary estimations of dependency graphs, cf. [15]. This improvement is only
available if one selects “Improved DPs” in the General Options.

DP Transformations

To increase power, a dependency pair can be transformed into several new pairs
by narrowing, rewriting, and instantiation [2, 12, 15, 16]. In contrast to [12, 15],
AProVE can instantiate dependency pairs both w.r.t. the pairs before and be-
hind it in chains (the latter is called forward instantiation) [16]. The user can
select which of these transformations should be applicable. Usually, all transfor-
mations should be enabled, since they are often crucial for the success of the
proof and they can never “harm”: if the termination proof succeeds without
transformations, then it also succeeds when performing transformations [16],
but not vice versa. However, the problem is when to use these transformations,
since they may be applicable infinitely often. Moreover, transformations may
increase runtime by producing a large number of similar constraints. AProVE

performs transformations in “safe” cases where their application is guaranteed to
terminate [15]. We distinguish between increasing and decreasing safe transfor-
mations. Decreasing transformations delete dependency pairs or SCCs and there-
fore, they do not have a negative impact on the efficiency. The user can disable
both kinds of safe transformations. If turned on, decreasing transformations are
applied before trying
to solve the constraints
for an SCC. Increas-
ing transformations are
only used a limited
number of times when
a proof attempt fails,
and then the proof
is re-attempted again.

Interaction

In addition to the fully
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automated mode, (innermost) termination proofs with dependency pairs can be
performed interactively. Here, the user can specify which transformation steps
should be performed and for any cycle or SCC, one can determine (parts of)
the argument filtering, the base order, and the dependency pair which should
be strictly decreasing. The constraints resulting from such selections are imme-
diately displayed, such that interactive proofs are supported in a very comfort-
able way. This mode is intended for the development of new heuristics and for
machine-assisted proofs of particularly challenging examples.

4 Termination Proofs with the Size-Change Principle

A new size-change principle for termination of functional programs was pre-
sented in [24] and extended to TRSs in [28]. A similar principle is also known for
logic programs [8]. AProVE offers the technique of [28, Thm. 11] for size-change
termination of TRSs using the embedding order as underlying base order.1

AProVE also contains the combination of the size-change principle with de-
pendency pairs from [28], which often succeeds with much simpler argument
filterings and base orders than the pure dependency pair approach. Again, each
SCC of the estimated (innermost) dependency graph is treated separately. In
case of failure for some SCC, the dependency pairs are transformed by narrow-
ing, rewriting, or instantiation and the proof attempt is re-started. If the user has
selected the “hybrid” algorithm, then the pure dependency pair method is tried
as soon as the limits for the transformations are reached. Thus, then the com-
bined method is used as a fast technique which is checked first for every SCC
and only if it fails, one uses the ordinary dependency pair approach on this SCC.

5 Design of AProVE’s Implementation

All techniques of the previous two sections are SCC-processors which transform
one SCC into a set of new SCCs: The dependency pair approach takes an SCC
and if the constraints for this SCC can be solved, it deletes the strictly decreasing
dependency pairs and returns the SCCs of the remaining subgraph. The DP
transformations also produce a set of new SCCs out of a given one. Finally, the
combination of dependency pairs with the size-change principle processes the
SCCs of the estimated (innermost) dependency graph one by one, too. Therefore,
all these techniques are implemented as modules which take one SCC as input
and return a set of SCCs. So AProVE uses the following main algorithm, where
one may choose different SCC-processors in Step 4 (b).

1. Remove redundant rules of the TRS which do not influence termination.

2. Check whether the TRS is non-overlapping. Then it is sufficient to

prove innermost termination instead of termination.

3. Compute initial SCCs of the estimated (innermost) dependency graph.

1 As shown in [28], only very restricted base orders are sound in connection with the
size-change principle. In addition to the results in [28], the full embedding order may
be used, where f(. . . , xi, . . .) � xi also holds for defined function symbols f .
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4. While there are SCCs left and there is no failure:

(a) Remove one SCC P from the set of SCCs.

(b) Choose an SCC-processor.

(c) Transform P with the chosen SCC-processor.

(d) Add the resulting new set of SCCs to the remaining SCCs.

Due to this modular structure, procedures which combine different termina-
tion techniques can easily be implemented in AProVE. One just has to configure
which SCC-processors should be taken in Step 4 (b). It is advantageous if one
first tries to use fast SCC-processors which benefit from successful heuristics. In
this way, SCCs that are easy to handle can be treated efficiently. Only for SCCs
where these fast SCC-processors fail, one should use slower but more powerful
SCC-processors afterwards. Examples for such termination procedures offered in
AProVE are the hybrid algorithm described in Sect. 4 or the following “Meta
Combination” algorithm. This algorithm is particularly useful if one does not
want to get involved with the details of termination proving, but wants to use
AProVE in a “black box”-mode. In Step 4 (b), it always takes the first processor
from the following list that is applicable (i.e., that can transform the SCC P into
a new set of SCCs different from P). Here, we use linear polynomial interpreta-
tions with coefficients from {0, 1} and LPOs with “Nonstrict Precedence”.

• Decreasing safe transformations

• “DPs using Bottom-Up algorithm” with POLO and LPO as base orders

• Dependency pairs with the heuristic “EMB for DPs” and LPO

• Full dependency pair approach with POLO as base order

• Increasing safe transformations

6 Running AProVE and Comparison with Other Tools

AProVE accepts four input languages: logic and (first-order) functional programs,
conditional and unconditional TRSs. Functional and logic programs are trans-
lated into conditional TRSs and conditional TRSs are transformed further into
unconditional TRSs [12, 25]. For logic programs, these transformations corre-
spond to the approach of the termination prover TALP [26].

The results of the termination proof are displayed in html-format and can be
stored in html- or LATEX-format. Moreover, a “System Log” describes all (pos-
sibly failed) proof attempts. Any termination proof attempt may be interrupted
by a stop-button. Instead of running the system on only one TRS or program,
one can also run it on collections and directories of examples in a “Batch Mode”.

Compared with other recent automated termination provers for TRSs (Arts

[1], Cariboo [10], CiME [5], Termptation [4], TTT [19]), AProVE is the only sys-
tem incorporating improvements like automated dependency pair transforma-
tions, applying argument filterings before usable rules, and combining modular-
ity results based on Cε-termination with recent dependency graph estimations.
Moreover, it offers more base orders than any other system, it can also handle
conditional TRSs, and integrates the size-change principle. Finally, AProVE’s
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design permits the combination of powerful heuristics and different termination
techniques as in the “Meta Combination” algorithm of Sect. 5. In addition, the
system has a graphical user interface and a comfortable interactive component.

Due to the numerous improvements developed and integrated in AProVE, it
succeeded on more examples than any other system at the exhibition/competiti-
on of automated termination provers at the International Termination Workshop
2003 [14]. These results are confirmed by the following experiments, where we
give an empirical comparison of AProVE 1.0 (using the “Meta Combination” al-
gorithm) with the only two other tools currently available on the web (CiME and
Termptation). The tools were tested on the collections of [3, 7, 27] (130 TRSs for
termination, 151 TRSs for innermost termination). To show that the techniques
described in [19] are a substantial restriction, in the last row we ran AProVE

in a mode where we switched off all improvements and only used the methods
available in [19]. Since [19] contains several base orders and argument filtering
heuristics, we took the ones which gave the best overall result on this collection.

Termination Innermost Term.
System Power Time Power Time

AProVE 95.4 % 26.2 s 98.0 % 34.3 s
CiME 71.5 % 660.7 s — —
Termptation 65.4 % 521.8 s 72.8 % 681.7 s
AProVE with techniques of [19] 51.5 % 868.5 s — —

The “Power” column contains the percentage of those examples in the collection
where the proof attempt was successful. The “Time” column gives the overall
time for running the system on all examples of the collection (also on the ones
where the proof attempt failed). For each example we used a time-out of 60
seconds on a Pentium IV with 2.4 GHz and 1 GB memory. For more details
on the above experiments and to download AProVE, the reader is referred to
http://www-i2.informatik.rwth-aachen.de/AProVE/ATP.html.
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