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Abstract

In this thesis, we develop the first automatic termination analysis tool for probabilistic
term rewriting systems based on dependency pairs. A term rewriting system is a formal
computational model that is successfully used as a backend language of tools for analyzing
other programming languages (e.g., Java). The dependency pair approach is one of the
most powerful techniques to automatically analyze the termination of term rewriting
systems. Research has already been carried out in this area for decades, resulting in a
framework for automatic termination and runtime analysis.
We adapt this dependency pair framework to the probabilistic setting. Here, we have
not only the possibility of deterministic or non-deterministic rewrite steps but also
the possibility to perform a certain rewrite step only with a certain probability. For
probabilistic programs, there exist several notions of “termination”. In this thesis, we focus
on innermost almost-sure termination, which means that the probabilistic term rewriting
system terminates with probability one, and we can only rewrite at innermost positions.
Whether we can further adapt the results of this thesis to handle an arbitrary evaluation
strategy or a different notion of “termination” (e.g., positive almost-sure termination)
remains an open question that we plan to address in the future.
In the end, we result in a new probabilistic dependency pair framework that automatically
proves innermost almost-sure termination of probabilistic term rewriting systems. For this,
we fundamentally changed the definition of dependency pairs and chains. We adapted three
of the most important processors to the probabilistic setting: the reduction pair processor,
the dependency graph processor, and the usable rules processor. Moreover, we also added
two new processors designed explicitly for probabilistic term rewriting systems. We are
currently implementing this new probabilistic framework in the Automated Program
Verification Environment (AProVE).
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1 Introduction

For many decades, term rewriting has shown to be a very powerful tool for several aspects
of computer science. It has been used for equational reasoning, computer algebra systems,
the study of the notion of computability, to implement functional programming languages,
automatic verification, and so on [3]. A term rewriting system (TRS) is a model for
computation. It consists of a finite number of rewrite rules ℓ → r that describe how the
system rewrites a term, which is a purely syntactical object. In verification, TRSs are
used as a backend language of tools for analyzing other programming languages, e.g., Java
[30]. Such a tool first transforms a given program P into a TRS R and then proceeds by
analyzing R. Due to its simple syntactic structure, it is easier to work with the TRS than
the program itself. In this thesis, we are mainly interested in the automatic verification
that a given TRS is terminating. The problem is undecidable in general [5]. Still, there
are many approaches to automatically prove termination for a large number of TRSs,
including TRSs that occur in real-world applications, e.g., using lexicographic path orders
[18], using recursive path orders [10], using polynomial interpretations [24], etc. One of
the most powerful approaches in practice is the dependency pair framework [1, 14]. Here,
the main idea is to use a divide-and-conquer framework and to partition a big problem
that is hard to solve into many simpler subproblems. To perform such a partitioning step,
we use so-called DP processors. For the dependency pair framework, we refer to [1] for
the first definition of dependency pairs and chains. The precise processors we use in this
thesis can be found in [1, 14, 13]. In the probabilistic setting, we will use a new type of
dependency tuples instead of dependency pairs. Dependency tuples were already used for
the complexity analysis of TRSs [29]. In the future, this new type of dependency tuples
may also be used to enhance the complexity analysis in the non-probabilistic setting.
Another very important research area is probabilistic programming and the verification of
such a program. The connection between probability theory and computer science has
been studied for a long time and has led to many interesting results. It turns out that many
probabilistic algorithms are more efficient than their deterministic counterpart (e.g., [31]).
Another area of computer science improved by probability theory is IT security, where we
now have probabilistic encryption algorithms [15]. Probabilistic variants of computational
models like Turing machines, automata, and λ-calculus have already been studied for a
long time [21]. In the probabilistic setting, we have many notions of “termination”. A
qualitative translation of the non-probabilistic version would be almost-sure termination.
A program is almost-surely terminating (AST) iff the probability for convergence tends to
1. A strictly stronger notion of termination is positive almost-sure termination (PAST).
Here, we additionally require that the expected runtime is finite. It was shown that
the decision problem for AST and PAST is even harder than the decision problem for
termination. While the former problem is recursively enumerable, the decision problem
whether a program is AST (and PAST) is already Π0

2 (and Σ0
2) complete [19]. There are

many different approaches to prove AST based on weakest pre-expectation calculus [20],
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1. Introduction

abstract interpretations [28], type systems [4], and martingales [7, 8, 27]. However, only a
few methods are suitable for programs with a complicated recursive structure or programs
that mainly target algebraic structures like graphs, lists, etc. For recursive probabilistic
programs on numbers, sized types have been proposed [9]. There is also an automated
type-based analysis of probabilistic functional programs with data types from Wang et al.
[32]. Most recently, Leutgeb et al. [25] created a fully-automated expected amortized cost
analysis for probabilistic data structures that is based on this type-based analysis. They
mainly target amortized costs of randomized variants of self-adjusting data structures
like randomized splay trees, randomized splay heaps, and randomized meldable heaps.
Furthermore, little research exists regarding a probabilistic variant of TRSs. In this thesis,
we try to enhance both of these research areas further. The definition of a probabilistic
TRS (PTRS) used in this thesis is based on [6, 2, 11]. Here, probabilistic rewriting is
captured as a Markov decision process. A single rule may have multiple possible outcomes
with a certain probability, while the rule selection remains non-deterministic. Hence, both
non-determinism and probabilistic aspects are present. We will see that their combination
leads to interesting results that differ from the non-probabilistic setting, where we only
have determinism and non-determinism. While [11] adapts general concepts of abstract
rewrite systems like confluence to the probabilistic setting, the notion of a PTRS was
introduced in [6] and Avincini et al. [2] then enhanced their results and showed how the
interpretation method could be adapted to prove PAST of a given PTRS. We will use
their work and definitions regarding PTRSs, but instead of PAST, we want to prove AST
automatically. The reason for that is that the dependency pair framework relies on the
compositionality of the property that we want to analyze to modularize the termination
proof. It is well known that while AST is compositional, PAST is not. We will also adapt
the interpretation method of [2] and enhance it to prove AST for a PTRS.
This thesis develops the first technique to prove AST for PTRSs using dependency pairs
automatically. For this, we adapt the dependency pair framework to the probabilistic
setting. We will restrict our attention to innermost evaluation, which means that we only
allow rewrite steps performed at an innermost position of a term. For the termination
analysis of non-probabilistic TRSs, specific techniques exist for both innermost and
arbitrary evaluation. We adapt the DP framework for innermost termination to prove
innermost almost sure-termination of a given PTRS automatically. This adaption includes
an entirely new definition of probabilistic dependency pairs and probabilistic chains.
Furthermore, we adapt the most important processors to our new probabilistic framework,
including the reduction pair processor, the dependency graph processor, and the usable
rules processor. In addition to those three processors from the non-probabilistic framework,
we introduce two new processors specifically designed for our new definition of probabilistic
dependency pairs. We prove their soundness and completeness for all five processors, except
the usable rules processor. The usable rules processor is only sound and not complete in
the way we present it, but there exists a complete variant that requires further definitions
that we omit for readability. In future work, we expect that our new DP framework can
not only be used to prove AST, but it may also be possible to advance the framework
further so that it can disprove AST for a given PTRS as well. Since the DP framework is
a very powerful tool in the non-probabilistic setting, the goal is to achieve the same for
the probabilistic setting. We are currently implementing this framework in the Automated
Program Verification Environment (AProVE) and will further evaluate its applicability in
the future.
Regarding the structure of this thesis, we start with the basic notation and definitions
regarding term rewriting in Chapter 2. This also includes a first approach to prove
termination using a direct application of polynomial interpretations. Then we introduce
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the dependency pair framework for TRSs in Chapter 3. Here, we first define the notion of
a dependency pair and a chain and then prove the chain criterion which explains how we
start our framework. At the end of this chapter, we introduce the three most important
processors we will adapt to the probabilistic setting and give an example of how this
framework works. In Chapter 4, we present PTRSs and introduce all required notions
and notations. After some new results regarding evaluation strategies, we present a novel
way to infer AST using polynomial interpretations directly. Finally, in Chapter 5 we
define the probabilistic dependency pair framework, including an entirely new definition
of dependency pairs and chains, prove the chain criterion for this new type of chain,
create the five processors that we already mentioned above, prove their soundness and
completeness, and again give an example how this framework works. After that, we
compare the non-probabilistic dependency pair framework with our new probabilistic
variant in Chapter 6. We conclude in Chapter 7. In every chapter, we introduce a new
type of rewrite system and prove certain witness theorems that show what kind of rewrite
sequences we have to analyze to prove termination or AST. Furthermore, in every chapter,
we show how we can automatically prove termination or AST using an application of
polynomial interpretations. The proof structure for those reoccurring theorems is the same
in every chapter. However, the details get more and more complicated in later chapters.
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2 Term Rewriting

This chapter introduces the basic notions and notations of term rewriting. In Section 2.1,
we define the syntax and semantics of the objects we want to work with. In term rewriting,
one works with terms as the main object. A term rewriting system is then a set of rewrite
rules describing how we can rewrite one term into another. Several different evaluation
strategies exist for applying a rewrite rule to a term. After introducing and comparing
some of the most important ones, we restrict our attention to innermost evaluation for the
rest of this thesis. See e.g., [3] for a complete introduction to term rewriting in general. In
Section 2.2, we present a first automatic approach to prove innermost termination of a
given term rewriting system using so-called polynomial interpretations.

2.1 Syntax, Semantic and Evaluation Strategies
We start with the most basic definition of an abstract rewrite system. This is simply a set
together with a binary relation.
Definition 2.1.1 (Abstract Rewrite System). Let A be a non-empty set. A rewrite relation
is a binary relation → ⊆ A × A. We often write “a1 → a2” instead of “(a1, a2) ∈ →” and
say that → acts on A. The pair (A, →) is an abstract rewrite system (ARS). A (potentially
infinite) sequence of elements a0, a1, a2, . . . such that ai → ai+1 for all i is called a rewrite
sequence and will be denoted as

a0 → a1 → a2 → . . .

We will only work with abstract rewrite systems acting on terms for this and the next
chapter. Once we introduce probabilistic term rewriting and the probabilistic DP framework
in Chapter 4 and Chapter 5, we also introduce other kinds of abstract rewrite systems
that act on distributions or certain sets. Next, we define a signature from which we can
build a term.
Definition 2.1.2 (Signature). A signature Σ = ⊎

n∈N Σn is a union of pairwise disjoint
finite sets. An element f ∈ Σn is called a function symbol of arity n. The elements of Σ0
are called constants. We will always assume that Σ is finite and that Σ0 ̸= ∅.
Example 2.1.3 (Signature). An example for a signature that we use throughout this whole
chapter is Σplus = ⊎

n∈N Σn with Σ0 := {O}, Σ1 := {s}, Σ2 := {plus} and Σn := ∅ for all
n ≥ 3.

We can now define how to construct a term from a given signature.
Definition 2.1.4 (Term). Let Σ be a signature and V be a non-empty, countable set of
variables with V ∩ Σ = ∅. The set of terms T (Σ, V) over a signature Σ and a set of
variables V for this signature is the smallest set with
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2. Term Rewriting

• V ⊆ T (Σ, V),

• If f ∈ Σn and t1, . . . , tn ∈ T (Σ, V) then f(t1, . . . , tn) ∈ T (Σ, V).

For any term t, let V(t) be the set of variables occurring in t, which is recursively defined
by

• If t = x ∈ V is a variable, then V(t) = {x},

• If t = f(t1, . . . , tn) with f ∈ Σn and t1, . . . , tn ∈ T (Σ, V), then V(t) = ⋃
1≤i≤n V(ti).

A term t is called a ground term if we have V(t) = ∅. We often write T (Σ) instead of
T (Σ,∅) for the set of ground terms.
Example 2.1.5 (Term). Let Σplus be the signature from Example 2.1.3 and let {x, y} ⊆
V. Then we have t1 := O ∈ T (Σplus, V), t2 := s(x) ∈ T (Σplus, V), and t3 :=
plus(s(y), s(s(O))) ∈ T (Σplus, V). In this case, only t1 is a ground term, as the other
two contain variables.
Definition 2.1.6 (Subterm). Let t, q ∈ T (Σ, V) be two terms. We say that q is a subterm
of t (denoted by q ⊴ t) iff q = t or t = f(t1, . . . , tn) and q ⊴ ti for some 1 ≤ i ≤ n. We
call q a proper subterm (denoted by q ◁ t) iff q ⊴ t and q ̸= t.
Example 2.1.7 (Subterm). Consider the terms from Example 2.1.5. Here, we have t1 ◁ t3
and no other subterm relation.

One of the essential definitions in term rewriting is a substitution. This is a function that
instantiates the occurring variables with a fresh term that may also contain variables
again.
Definition 2.1.8 (Substitution). A substitution is a function σ : V → T (Σ, V) with
σ(x) = x for all but finitely many x ∈ V . Therefore, σ can be identified with the finite set
{x/σ(x) | x ∈ V , σ(x) ̸= x}. We often write xσ instead of σ(x). Substitutions can also
be applied to terms: If t = f(t1, . . . , tn) ∈ T (Σ, V) then tσ := f(t1σ, . . . , tnσ). The set
of all substitutions for a given signature Σ and a given set of variables V is denoted by
Sub (Σ, V). A substitution σ that maps every variable to a ground term will be called a
ground substitution. Note that a ground substitution is technically not a substitution
since we do not have σ(x) = x for all but finitely many x ∈ V if the variable set is infinite.
However, we will always only be interested in a finite amount of variable instantiations for
such a substitution so that we can disregard every other instantiation and view it as a
valid substitution.
A term s ∈ T (Σ, V) matches a term t ∈ T (Σ, V) if there exists a substitution σ such
that sσ = t. Two terms s, t ∈ T (Σ, V) are unifiable if there exists a substitution σ such
that sσ = tσ. Such a substitution σ is called a unifier. A most general unifier (mgu) is a
unifier σ such that for every other unifier σ′ there exists a substitution δ with σ′ = δσ. It
is a well-known fact that for two unifiable terms, there always exists a mgu, and one can
compute a mgu in polynomial time.
Example 2.1.9 (Substitution). Consider the terms from Example 2.1.5 and let σ =
{x/s(O), y/plus(x, x)} ∈ Sub (Σplus, V). Then t1σ = O, t2σ = s(s(O)) and t3σ =
plus(s(plus(x, x)), s(s(O))).
Two terms that are unifiable would be plus(s(x), y) and plus(s(s(O)), s(x)). Here, the most
general unifier is {x/s(O), y/s(s(O))}.

6



2.1. Syntax, Semantic and Evaluation Strategies

Instead of only variables, we are also interested in changing a whole subterm into a new
one. To address this subterm, we define the set of all positions inside a term.
Definition 2.1.10 (Position). For a term t ∈ T (Σ, V), the set of positions Occ(t) is defined
to be the smallest subset of N∗ satisfying

• ε ∈ Occ(t),

• If t = f(t1, . . . , tn) then for all 1 ≤ i ≤ n and all π ∈ Occ(ti) we have i.π ∈ Occ(t).

The position ε is called the root position of the term t and the symbol at this position is
called the root symbol, denoted by root(t).
The prefix order

π ≤ τ :⇔ there exists χ ∈ N∗ such that π.χ = τ

is a partial order on N∗. We will always refer to this prefix order when talking about the
order of positions. We say that two positions π, τ ∈ N∗ are orthogonal (denoted by π⊥τ)
iff they are not comparable in this prefix order, i.e., π ̸≤ τ and τ ̸≤ π.
If π ∈ Occ(t) then t|π denotes the subterm at position π, i.e.,

• t|ε = t,

• If t = f(t1, . . . , tn) and π = i.π′ then t|π = ti|π′ .

Furthermore, if r ∈ T (Σ, V) and π ∈ Occ(t) then t[r]π denotes the term that results from
replacing the subterm t|π with the new term r, i.e., we have:

• t[r]ε = r,

• If t = f(t1, . . . , tn) and π = i.π′ then t[r]π = ti[r]π′ .

Example 2.1.11 (Position). Again consider the terms from Example 2.1.5. We have

Occ(t3) = {ε, 1, 2, 1.1, 2.1, 2.1.1}.

Furthermore, t3|2 = s(s(O)), and t3[y]2 = plus(s(y), y), and t3[s(O)]1.1 =
plus(s(s(O)), s(s(O))).

The following lemma states some important and useful properties for working with positions
and subterms
Lemma 2.1.12. Let s, t, r ∈ T (Σ, V) be terms and let π, τ ∈ N∗.

1. Occ(t) is closed under prefixes

2. If π.τ ∈ Occ(t), then t|π.τ = (t|π)|τ

3. If π ∈ Occ(s) and τ ∈ Occ(t), then (s[t]π)|π.τ = t|τ and (s[t]π)[r]π.τ = s[t[r]τ ]π

4. If π.τ ∈ Occ(s), then (s[t]π.τ )|π = (s|π)[t]τ and (s[t]π.τ )[r]π = s[r]τ

5. If π, τ ∈ Occ(s) and π⊥τ , then (s[t]π)|τ = s|τ and (s[t]π)[r]τ = (s[r]τ )[t]π

7



2. Term Rewriting

If we represent terms as a tree, these properties are pretty intuitive. But one can also
prove everything using the formal definition of positions. Instead of changing a term at
a specific position, we can also mark a specific position with a fresh symbol □, called a
hole, where we can insert a term. Such a term C ∈ T (Σ ⊎ {□}, V) with a hole is called a
Context.
Definition 2.1.13 (Context). A term C ∈ T (Σ ⊎ {□}, V) is called a context if there is
exactly one occurrence of □ inside of C. If C|π = □, then C[t] is a shorthand for C[t]π
Example 2.1.14 (Context). An example of a context over the signature Σplus would be
C := plus(□, s(O)). Here, we have C[s(O)] = plus(s(O), s(O)).

Finally, we come to the notion of a term rewriting system.
Definition 2.1.15 (Term Rewriting System). For ℓ, r ∈ T (Σ, V), ℓ → r is called a rewrite
rule if V(r) ⊆ V(ℓ) and ℓ ̸∈ V . A term rewriting system (TRS) R is a finite set of rewrite
rules.
The TRS R induces a rewrite relation →R ⊆ T (Σ, V) × T (Σ, V) via

s →R t :⇔ s|π = ℓσ and t = s[rσ]π,

for a position π ∈ Occ(s), a rule ℓ → r ∈ R, and a substitution σ ∈ Sub (Σ, V). A
subterm s|π that is matched by the left-hand side of a rule is called a redex (for “reducible
expression”).
Example 2.1.16 (Term Rewrite System). Consider the TRS Rplus consisting of the
following two rewrite rules over the signature Σplus and a set of variables with {x, y} ⊆ V :

plus(O, y) → y (2.1)
plus(s(x), y) → s(plus(x, y)) (2.2)

This TRS simulates the addition of two natural numbers. Here, numbers are represented
as terms using the zero function O and the successor function s. For example, the number
2 is represented by s(s(O)). If we want to calculate “2 + 1” with this TRS, we would
start with the term plus(s(s(O)), s(O)). The left-hand side of Rule (2.2) matches the term
plus(s(s(O)), s(O)) using the substitution σ = {x/s(O), y/s(O)}. Hence, we can rewrite
on the root position ε so that

plus(s(s(O)), s(O)) →Rplus s(plus(s(O), s(O))).

Then, the left-hand side of Rule (2.2) matches the subterm at position 1 using the
substitution σ = {x/O, y/s(O)}. Hence, we can rewrite:

s(plus(s(O), s(O))) →Rplus s(s(plus(O, s(O)))).

Finally, the left-hand side of (2.1) matches the term just obtained at position 1.1. Thus,
we have

s(s(plus(O, s(O)))) →Rplus s(s(s(O))).
In the end, we result with the term s(s(s(O))) that cannot be evaluated any further and
represents the number 3, which is exactly what we wanted to compute.

We cannot apply any further rules to the term s(s(s(O))) in our previous example. Such a
term is called a normal form. This notion is not restricted to TRS but can be used for
arbitrary ARS.

8



2.1. Syntax, Semantic and Evaluation Strategies

Definition 2.1.17 (Normal Form). Let (A, →) be a ARS and let a ∈ A. We call a a normal
form (w.r.t. →) iff there is no a′ ∈ A with a → a′. An element b ∈ A is a normal form of
a iff b is a normal form and a →∗ b. Here, →∗ denotes the transitive and reflexive closure
of →. An element a is normalizing iff there exists a normal form b of a. An element a
is strongly normalizing iff every rewrite sequence a → . . . that starts with a will reach
a normal form and is therefore finite. By NF→ ⊆ A we will denote the set of all normal
forms w.r.t. →.

For a TRS R, we will also say that a term is a normal form w.r.t. R (instead of →R), and
write NFR for NF→R . Lastly, we come to the property we are mainly interested in, namely
termination.
Definition 2.1.18 (Termination). Let R be a TRS. We call it terminating if there is no
infinite rewrite sequence

t0 →R t1 →R t2 →R . . .

In other words, a TRS is terminating iff we always reach a normal form within a finite
number of steps, which means that every term is strongly normalizing. Currently, the
definition of term rewriting allows to apply rewrite steps at every possible position. An
important restriction to this kind of full rewriting is so called innermost rewriting. Here,
one can only rewrite at an innermost possible position.
Definition 2.1.19 (Innermost Rewriting and Termination). Let R be a TRS and let
s, t ∈ T (Σ, V). We say that a rewrite step s →R t is an innermost rewrite step (denoted
s i→R t) if all proper subterms of the redex ℓσ are in normal form w.r.t. R.
We call R innermost terminating if there is no infinite innermost rewrite sequence

t0
i→R t1

i→R t2
i→R . . .

Note that a term is in normal form w.r.t. i→R iff it is in normal form w.r.t. →R. Hence,
our notation NFR is still valid for innermost rewriting. One can further restrict the rewrite
relation, e.g., by only allowing to rewrite the leftmost innermost redex. This is called
leftmost innermost rewriting and we can again define leftmost innermost termination. The
next two theorems state the relations between these three types of evaluation strategies.
Theorem 2.1.20 (Innermost Termination vs. Leftmost Innermost Termination, [22]). A
TRS R is innermost terminating iff R is leftmost innermost terminating.

Proof. Every infinite leftmost innermost rewrite sequence is also an infinite innermost
rewrite sequence. For the proof of the nontrivial direction, we refer to [22]. ■

Theorem 2.1.21 (Innermost Termination vs. Full Termination). If a TRS R is terminating,
it is also innermost terminating. On the other side, there exists TRSs that are innermost
terminating but not terminating.

Proof. Every infinite innermost rewrite sequence is also an infinite rewrite sequence. A
counterexample of the other direction can be seen in Example 2.1.22. ■

Example 2.1.22 (Innermost Termination vs. Full Termination, [16]). Consider the TRS
R consisting of the following two rewrite rules over the signature Σ = Σ0 ⊎ Σ1 with
Σ0 = {a, b} and Σ1 = {f}:

f(a) → f(a) (2.3)
a → b (2.4)

9



2. Term Rewriting

Here, R is innermost terminating as we have to rewrite the proper subterm a before we
can use rule (2.3). In contrast to that, R is not terminating as we have the infinite rewrite
sequence f(a) →R f(a) →R . . . that will never reach a normal form.

As the previous example shows, there is no equivalence between innermost and full
termination. Still, there are specific syntactical properties of the TRS that guarantee
that these two notions are equivalent [16]. For the rest of this thesis, we will restrict our
attention to innermost evaluation.
Next, we see that we can restrict ourselves to specific rewrite sequences for innermost
termination analysis. First of all, we can restrict the structure of the first term t0 in a
sequence to be the left-hand side of a rewrite rule with possibly instantiated variables such
that every proper subterm is in normal form w.r.t. R.
Theorem 2.1.23 (Witness Theorem for TRS). Let R be a TRS. If R is not innermost
terminating then there exists an infinite innermost rewrite sequence t0

i→R t1
i→R t2

i→R . . .
such that t0 = ℓσ for some rule ℓ → r ∈ R and some substitution σ ∈ Sub (Σ, V), such
that every proper subterm of ℓσ is in normal form w.r.t. R.

Proof. We will prove the contraposition, namely that if every innermost rewrite sequence
t0

i→R t1
i→R t2

i→R . . . is finite where t0 = ℓσ for some rule ℓ → r ∈ R and some
substitution σ ∈ Sub (Σ, V) and every proper subterm of t0 is in normal form w.r.t. R,
then R is innermost terminating. We prove this by structural induction over the start
term t0.
If t0 is in normal form w.r.t. R, then obviously, every innermost rewrite sequence that
starts with this term is finite. If t0 = ℓσ for some rule ℓ → r ∈ R and some substitution
σ ∈ Sub (Σ, V) such that every proper subterm of ℓσ is in normal form w.r.t. R, then we
know by our assumption that every innermost rewrite sequence that starts with this term
is finite.
Now we regard the induction step, and assume that t0 = f(q1, . . . , qk). Due to the innermost
evaluation strategy, we can only rewrite at the root position if every proper subterm is in
normal form. Hence, we first prove that every rewrite sequence t0

¬εi−→R t1
¬εi−→R t2

¬εi−→R . . .
is finite, where ¬εi−→R denotes the restriction of i→R that prohibits rewrite steps at the root
position. By the induction hypothesis, we know that every innermost rewrite sequence
that starts with qi for some 1 ≤ i ≤ k is finite. If there exists an infinite rewrite
sequence t0

¬εi−→R t1
¬εi−→R t2

¬εi−→R . . ., then we have to rewrite infinitely often below
a position 1 ≤ j ≤ k. But this would mean that we can find an infinite innermost
rewrite sequence starting with qj , which is not possible. Therefore, every rewrite sequence
t0

¬εi−→R t1
¬εi−→R t2

¬εi−→R . . . must be finite.
Next, we show that also every innermost rewrite sequence t0

i→R t1
i→R t2

i→R . . . is finite.
By our previous paragraph, we know that there is some N ∈ N such that t0

i→R . . . i→R tN

and tN is in normal form w.r.t. ¬εi−→R. Now, tN is either also in normal form w.r.t. R,
which means that the whole innermost rewrite sequence is finite. Or we have tN = ℓσ
for some rule ℓ → r ∈ R and some substitution σ ∈ Sub (Σ, V) such that every proper
subterm of ℓσ is in normal form w.r.t. R. By our assumption, we then know that an
innermost rewrite sequence that starts with tN is finite, and this means that our whole
rewrite sequence

t0
i→R . . . i→R tN

i→R . . .

must be finite. ■
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2.2. Direct Application of Polynomial Interpretations

The second theorem states that it suffices to only regard sequences of ground terms. This
does not generally hold, as shown in Example 2.1.24, but we can extend the signature Σ
with a fresh constant ⊥ and a fresh unary function symbol h so that innermost termination
of R over the signature Σ is equivalent to ground innermost termination of R over the
signature Σ ⊎ {⊥, h}.
Example 2.1.24 (Innermost Ground Termination, [12]). Consider the TRS R consisting
of the following two rewrite rules over the signature Σ = Σ0 ⊎ Σ1 with Σ0 = {a} and
Σ1 = {f}:

f(f(x)) → f(f(x)) (2.5)
f(a) → a (2.6)

Here, R is ground innermost terminating as the only possible ground terms have the form
fn(a) and thus, we have to rewrite the proper subterm f(a) before we can actually use
rule (2.5). In comparison to that, R is not innermost terminating as we have the infinite
innermost rewrite sequence f(f(x)) i→R f(f(x)) i→R . . . that will never reach a normal
form.
Theorem 2.1.25 (Ground Terms Suffice for TRSs, [12]). Let R be a TRS over the signature
Σ. Let ⊥ be a fresh constant, and h be a fresh unary function symbol. Then R is innermost
terminating over the signature Σ iff R is ground innermost terminating over the signature
Σ ⊎ {⊥, h}. We say that a TRS is ground innermost terminating iff every innermost
rewrite sequence of ground terms is finite.

Proof. The theorem follows directly from the following equivalence. Let t, t′ ∈ T (Σ, V)
where the term t has the variables x1, . . . , xm. Then we have t i→R t′ iff tσ i→R t′σ, where
σ(xi) = hi(⊥) for all 1 ≤ i ≤ m (i.e., both tσ and t′σ are ground terms). The two new
fresh function symbols are needed to create arbitrarily many different ground terms in
order to handle non-linear rewrite rules. By induction, we can then prove that a term t
with variables x1, . . . , xm starts an infinite innermost rewrite sequence iff the ground term
tσ does. ■

For the rest of this thesis, we will always assume that we have two such fresh symbols
that do not occur in the rules of the TRS.

2.2 Direct Application of Polynomial Interpretations
We end this chapter with a first automatic approach to prove termination of a given TRS.
Up to now, we are only working with syntactical objects (terms) that have no real meaning.
We use Σ-algebras to give them a semantic.
Definition 2.2.1 (Σ-Interpretation, Σ-Algebra). Let Σ be a signature, and V be a set of
variables. A Σ-interpretation is a triple A = (A, α, β). Here, A is a non-empty set, called
the carrier set of A. Moreover, we have α = (αf)f∈Σ with αf : An → A for f ∈ Σn. The
function αf is the meaning of the function symbol f under the interpretation A. Lastly,
β : V → A is the variable assignment. For every Σ-interpretation A we get a function
A : T (Σ, V) → A by:

A(x) = β(x) for all x ∈ V
A(f(t1, . . . , tn)) = αf (A(t1), . . . ,A(tn)) for all f ∈ Σn, t1, . . . , tn ∈ T (Σ, V)

We call A(t) the interpretation of the term t under A. A Σ-interpretation without variable
assignment (A, α) is called a Σ-algebra.

11



2. Term Rewriting

Termination only regards the syntactical rewrite relation of a TRS. Thus, we do not need to
talk about the semantics of a term. However, using specific Σ-algebras is sometimes helpful
to prove termination. One important type of such algebras is a polynomial interpretation.
Polynomial interpretations are a classical technique to prove termination of TRSs [23, 24].
Definition 2.2.2 (Polynomial Interpretation). A polynomial interpretation Pol is a Σ-
algebra with carrier set R≥0 which maps every function symbol f ∈ Σ to a polynomial
fPol ∈ R≥0[V]. It is monotonic if x > y implies fPol(. . . , x, . . .) > fPol(. . . , y, . . .) for
all f ∈ Σ. It is multilinear if every fPol is of the following form with cV ∈ R≥0 for all
V ⊆ {x1, . . . , xn}:

fPol(x1, . . . , xn) =
∑

V ⊆{x1,...,xn}
cV ·

∏
x∈V

x

Again, for t ∈ T (Σ, V), we write Pol(t) for the interpretation of t under the Σ-algebra Pol.
For an inequality containing variables, we say that it holds iff it is true for all instantiations
of the variables. So Pol(s) > Pol(t) holds for two terms s, t ∈ T (Σ, V), if this inequality
is true for all instantiations of the occurring variables by numbers from R≥0.

To prove termination automatically, one has to find a mapping to monotonic polynomials
with natural numbers as coefficients such that for every rewrite rule, the left-hand side is
strictly greater than the right-hand side. This can then be automatized by searching for
the coefficients using an SMT solver. Note that this approach can also be used to prove
termination w.r.t. an arbitrary evaluation strategy.
Theorem 2.2.3 (Proving Innermost Termination Using Polynomial Interpretations). Let
R be a TRS, and let Pol : T (Σ, V) → N[V ] be a natural polynomial interpretation which
is monotonic. Suppose that the following condition is satisfied:

(1) For every ℓ → r ∈ R we have Pol(ℓ) > Pol(r).

Then R is innermost terminating.

Proof. By Theorem 2.1.25, we only have to regard ground terms. We start off by showing
that the condition (1) of the theorem extends to rewrite steps instead of just rules:

(a) If s, t ∈ T (Σ) with s i→R t, then we have Pol(s) > Pol(t).

So let s, t ∈ T (Σ) with s i→R t. Then there exist a rule ℓ → r ∈ R with Pol(ℓ) > Pol(r)
(by (1)), a ground substitution σ ∈ Sub (Σ, V), and a position π such that s|π = ℓσ,
t = s[rσ]π, and every proper subterm of ℓσ is in normal form w.r.t. R.
We perform induction on π. So in the induction base, let π = ε. Hence, we have s = ℓσ
and t = rσ. By assumption we have Pol(ℓ) > Pol(r). As these inequations hold for all
instantiations of the occurring variables, we have

Pol(s) = Pol(ℓσ) > Pol(rσ) = Pol(t).

In the induction step, we have π = i.π′, s = f(s1, . . . , si, . . . , sn) and si
i→R ti. Then by

the induction hypothesis we have Pol(si) > Pol(ti). For t = f(s1, . . . , ti, . . . , sn) we obtain
Pol(s) = Pol(f(s1, . . . , si, . . . , sn))

= fPol(Pol(s1), . . . , Pol(si), . . . , Pol(sn))
> fPol(Pol(s1), . . . , Pol(ti), . . . , Pol(sn))

(by monotonicity of fPol and Pol(si) > Pol(ti))
= Pol(f(s1, . . . , ti, . . . , sn))
= Pol(t).

12



2.2. Direct Application of Polynomial Interpretations

Now, assume that R is not innermost terminating. Then there exists an infinite innermost
rewrite sequence

t0
i→R t1

i→R t2
i→R . . .

But this would mean that

Pol(t0) > Pol(t1) > Pol(t2) > . . .

is an infinite descending sequence of natural numbers since all the occurring terms are
ground terms, which is a contradiction. Hence, R must be innermost terminating. ■

Example 2.2.4. Consider the TRS Rplus from Example 2.1.16. A polynomial interpretation
that satisfies the condition of Theorem 2.2.3 for every rule of Rplus maps s(x) to x + 1,
plus(x, y) to 2x + y + 1, and O to 0. Now, we have

Pol(plus(O, y)) > Pol(y)
⇔ 2 · 0 + y + 1 > y
⇔ y + 1 > y

and
Pol(plus(s(x), y)) > Pol(s(plus(x, y)))

⇔ 2 · (x + 1) + y + 1 > (2x + y + 1) + 1
⇔ 2x + y + 3 > 2x + y + 2

We also give another example that shows how to deal with data structures in TRSs and
how to prove innermost termination for a TRS that contains data structures.
Example 2.2.5 (Termination with Data Structures). Consider the signature Σ =
{O, s, len, cons, nil}, a variable set with {x, y} ⊆ V, and the following TRS Rlen that
computes the length of a given list:

len(nil) → O (2.7)
len(cons(x, y)) → s(len(y)) (2.8)

Here, lists are represented by the two constructor symbols nil ∈ Σ0 for the empty list and
cons ∈ Σ2, which prepends an element in front of another list. We can prove termination
with the polynomial interpretation that maps len(x) to x, s(x) to x, cons(x, y) to x + y + 1,
and both nil and O to 0.
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3 DP Framework for TRS

We are interested in the automatic termination analysis of TRS and have already introduced
a way to do this using polynomial interpretations in the previous chapter. Generally, one
can try to automatically find a well-founded order ≻ such that the rewrite relation →R
implies this order ≻ (i.e., s →R t implies s ≻ t). A relation is well-founded iff there is no
infinite descending sequence t0 ≻ t1 ≻ t2 ≻ . . ., which is exactly our desired property. If we
can find such a well-founded order automatically, then we have automatically proven that
our TRS is terminating [26]. However, there are relatively simple examples where we cannot
prove termination automatically using a direct application of polynomial interpretations.
This also includes a lot of TRSs that occur in real-world applications. Another way to
prove termination automatically is to use dependency pairs. The basic idea of dependency
pairs is that a recursive function terminates whenever its arguments “decrease” in every
iteration. Currently, this is one of the best approaches to prove termination in practice.
Example 3.0.1 (TRS which Requires Dependency Pairs). Consider the signature Σdiv =
{O, s, minus, div}, a variable set with {x, y} ⊆ V, and the TRS Rdiv consisting of the
following rewrite rules that computes the integer division of two natural numbers:

minus(x, O) → x (3.1)
minus(s(x), s(y)) → minus(x, y) (3.2)

div(O, s(y)) → O (3.3)
div(s(x), s(y)) → s (div(minus(x, y), s(y))) (3.4)

Here, we cannot prove its termination using a direct application of polynomial
interpretations due to rule (3.4). It is generally hard to use polynomial interpretations
for termination proofs if the right-hand side of a rule is syntactically larger than the
left-hand side. Let us assume for a contradiction that there exists a monotonic polynomial
interpretation Pol such that Pol(ℓ) > Pol(r) for all rules ℓ → r ∈ Rdiv. Then, we also
have

Pol
(
div(s(x), s(y))

)
> Pol

(
s (div(minus(x, y), s(y)))

)
Since Pol is monotonic, we must have Pol(s(x)) ≥ x for all instantiations of x, and hence

Pol
(
div(s(x), s(y))

)
> Pol

(
s (div(minus(x, y), s(y)))

)
≥ Pol

(
div(minus(x, y), s(y))

)
Now, this inequality needs to hold for all instantiations of the variables, so also if we
instantiate y with s(x). In this case, we get

Pol
(
div(s(x), s(s(x)))

)
> Pol

(
div(minus(x, s(x)), s(s(x)))

)
We have Pol(minus(x, s(x))) ≥ Pol(s(x)) and thus by the monotonicity of Pol we get

Pol
(
div(minus(x, s(x)), s(s(x)))

)
≥ Pol

(
div(s(x), s(s(x)))

)
15
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But this means that

Pol
(
div(s(x), s(s(x)))

)
> Pol

(
div(s(x), s(s(x)))

)
which is a contradiction.

In the rest of this chapter, we introduce the dependency pair framework, how it works,
and its main components. We start by precisely defining the notion of dependency pairs,
DP problems and chains in Section 3.1. Then, in Section 3.2 we prove the main connection
between a TRS R and its DP problem (DP(R), R), which is the so called chain criterion.
We explain the core idea behind the framework that is based on divide-and-conquer in
Section 3.3. It recursively creates smaller subproblems using so-called DP processors until
we solve all of them. Ultimately, we introduce the most important processors for this
framework and show a final example of how the processors and the framework work in
total.

3.1 Dependency Pairs and Chains
In addition to the rewrite rules of a TRS, we introduce a second type of rewrite rule, namely
dependency pairs. First, we divide the signature into defined symbols and constructor
symbols, and then extend it with a new set of tuple symbols. A TRS’s defined symbols
represent functions that can be evaluated, the constructor symbols represent the used
data structures, and the tuple symbols represent a particular function call of some defined
symbol. The tuple symbols are used to compare the arguments of two different function
calls.
Definition 3.1.1 (Defined Symbols). Let R be a TRS over the signature Σ. We
decompose Σ = ΣC ⊎ ΣD such that f ∈ ΣD iff f(ℓ1, . . . , ℓn) → r ∈ R for some terms
ℓ1, . . . , ℓn, r ∈ T (Σ, V). The symbols f ∈ ΣC are called constructors and the symbols
f ∈ ΣD are called defined symbols. For every defined symbol, we introduce a fresh tuple
symbol f# of the same arity. The set of all tuple symbols is defined as Σ#. For any
term r = f(r1, . . . , rn) with defined root symbol f , let r# denote the term f#(r1, . . . , rn).
For every term r = f#(t1, . . . , tk) with tuple root symbol f#, let r♭ denote the term
f(t1, . . . , tk).
Example 3.1.2 (Defined Symbols). For the signature Σdiv and the TRS Rdiv from
Example 3.0.1, we get ΣD = {minus, div}, ΣC = {s, O} and thus

Σ ⊎ Σ# = {minus#, div#, minus, div, s, O}

To prove termination of a TRS, we have to compare the arguments of the left-hand side
with the arguments of every defined symbol on the right-hand side for every rewrite rule
in R. To do so, we use dependency pairs.
Definition 3.1.3 (Dependency Pair, [14]). Let R be a TRS. If ℓ → r ∈ R and t ⊴ r is a
subterm with defined root symbol, then ℓ# → t# is a dependency pair of R. The set of all
dependency pairs is denoted by DP(R).
Example 3.1.4 (Dependency Pairs for Rdiv). For the TRS Rdiv from Example 3.0.1, we
get the following three dependency pairs

minus#(s(x), s(y)) → minus#(x, y) (3.5)
div#(s(x), s(y)) → minus#(x, y) (3.6)
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3.1. Dependency Pairs and Chains

div#(s(x), s(y)) → div#(minus(x, y), s(y)) (3.7)

The first dependency pair results from rule (3.2). The other two results from the two
different defined symbols in the right-hand side of (3.4).

Generally speaking, a dependency pair is a rewrite rule of the form ℓ# → r# with
ℓ, r ∈ T (Σ, V). Hence, a set of dependency pairs D also induces a rewrite relation
→D ⊆ T

(
Σ ⊎ Σ#, V

)
× T

(
Σ ⊎ Σ#, V

)
, just like a TRS via

s →D t :⇔ s|π = ℓ#σ and t = s[r#σ]π,

for a position π ∈ Occ(s), a dependency pair ℓ# → r# ∈ D, and a substitution
σ ∈ Sub (Σ, V).
Now, we have two different types of objects that we can use for our termination analysis:
dependency pairs and rewrite rules. We will work with both of them simultaneously. To
be precise, we have a pair (D, R) consisting of a set of dependency pairs D and a TRS
R. Such a pair will be called a DP problem. We also have to define the notion of rewrite
sequences we are interested in when dealing with DP problems. For a TRS R on its own,
we looked at i→R-rewrite sequences. Now, we want to work with (D, R)-chains. As we
are dealing with innermost evaluation, we will work with innermost (D, R)-chains as well.
These chains work with a specific type of terms, namely dependency terms.
Definition 3.1.5 (Dependency Term). Let Σ = ΣD ⊎ΣC be a signature divided into defined
and constructor symbols. By T # (Σ), we denote the set of all ground terms t ∈ T (Σ ⊎ Σ#)
of the form

t = f#(t1, . . . , tn)

such that ti ∈ T (Σ) for all 1 ≤ i ≤ n and f ∈ ΣD. A term t ∈ T # (Σ) is called a
dependency term.

Note that if we rewrite a dependency term with a dependency pair or a rewrite rule, we
again result in a dependency term.
Definition 3.1.6 (Innermost Chain, [14]). Let (D, R) be a DP problem. A (possibly
infinite) sequence t0, t1, t2, . . . of dependency terms (i.e., ti ∈ T # (Σ) for all i) is an
innermost (D, R)-chain iff we have ti

i→D,R ◦ i→∗
R ti+1 for all i. Here, i→D,R denotes the

restriction of →D to rewrite steps such that every proper subterm of the used redex is
in normal form w.r.t. R. For a relation E over some set A, E∗ denotes the transitive,
reflexive closure and the composition of two relations E1, E2 over some set A is defined by

E1 ◦ E2 = {(x, z) ∈ A × A | ∃y ∈ A : (x, y) ∈ E1 ∧ (y, z) ∈ E2}

We will also write i→(D,R) instead of i→D,R ◦ i→∗
R. A DP problem (D, R) is innermost

terminating iff there is no infinite innermost (D, R)-chain.

A chain can be seen as a sequence of function calls, where we use the TRS to evaluate
their arguments. In this context, a dependency term is a function call that indicates the
used function by its tuple symbol and stores the corresponding arguments. A dependency
pair is a rewrite step from one function call to another, and the TRS is used to evaluate
their arguments. As you can see, the dependency pairs are the dominating part of our
definition of a chain. We have to use at least one dependency pair and then an arbitrary
number of TRS rules to get to the next term in our sequence.
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Example 3.1.7 (Innermost Chain). Consider Rdiv and DP(Rdiv) from Example 3.0.1 and
Example 3.1.4. An example for an innermost (DP(Rdiv), Rdiv)-chain would be

div#(s(s(s(s(O)))), s(s(O))) (3.8)
i→(D,R)div#(s(s(O)), s(O)) (3.9)
i→(D,R)minus#(s(O), s(s(O))) (3.10)
i→(D,R)minus#(O, O) (3.11)

For the first step, we use the dependency pair (3.7) to get

div#(s(s(s(s(O)))), s(s(O))) i→D,R div#(minus(s(s(s(O))), s(O)), s(s(O)))

Then, we can use the TRS rules (3.1) and (3.2) to completely evaluate the subterm
minus(s(s(s(O))), s(O)) as we have

minus(s(s(s(O))), s(O)) i→∗
R s(s(O))

and finally result with div#(s(s(O)), s(s(O))). For the second step, we used the dependency
pair (3.6) and then no rewrite rule. Finally, we used the dependency pair (3.5) for our
last step, and again no rewrite rules. The final term minus#(O, O) is in normal form w.r.t.

i→(D,R), and thus we cannot extend the chain any further.

Note, we can only apply a i→D,R step at the root position by definition of a dependency
term. Additionally, we are only working with ground terms and only allow rewrite steps if
every proper subterm is in normal form w.r.t. R. Hence, in an innermost (D, R)-chain
t0

i→(D,R) t1
i→(D,R) t2

i→(D,R) . . . for all i we have ti = ℓ#
i σi for some dependency pair

ℓ#
i → r#

i ∈ D that we use in the i-th rewrite step, some ground substitution σi ∈ Sub (Σ, V)
and such that every proper subterm of ℓ#

i σi is in normal form w.r.t. R. Chains can also
be represented as a sequence of dependency pairs s0 → t0, s1 → t1, s2 → t2, . . . such that
there is a ground substitution σ ∈ Sub (Σ, V) with tiσ

i→∗
R si+1σ for all i and every proper

subterm of siσ is in normal form w.r.t. R. Here, we have to assume that the dependency
pairs have renamed variables so that for i ̸= j, the two dependency pairs si → ti and
sj → tj do not share a variable. Note that most of the literature will define (D, R)-chains
in this fashion and not in the more general way we do in this thesis. However, this more
strict definition cannot be generalized to the probabilistic setting, as we will see later on.
Instead, we will define a completely new type of dependency pair and a new type of chain
based on trees in Chapter 5 that will still share this general chain structure.

3.2 Chain Criterion
In this section, we want to establish a connection between the TRS R and the DP problem
(DP(R), R). This connection is given by the following chain criterion. The core idea
behind the chain criterion is that there exists an infinite innermost rewrite sequence for
a TRS R iff there is an infinite innermost sequence of function calls, i.e., an infinite
innermost (DP(R), R)-chain.
Theorem 3.2.1 (Chain Criterion, [1]). .
A TRS R is innermost terminating iff the DP problem (DP(R), R) is innermost
terminating.
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Proof.

complete: Assume that (DP(R), R) is not innermost terminating. Then there exists an infinite
innermost (DP(R), R)-chain

t#
0 (v0) i→(DP(R),R) t#

1 (v1) i→(DP(R),R) t#
2 (v2) i→(DP(R),R) . . .

with v0 being normal forms w.r.t. R and not containing any tuple symbols. Remember
that this means t#

i (vi) i→D,R ◦ i→∗
R t#

i+1(vi+1) for all i ∈ N. To be precise, we have

t#
0 (v0) i→D,R t#

1 (w1) i→∗
R t#

1 (v1) i→D,R t#
2 (w2) i→∗

R t#
2 (v2) i→D,R . . .

Note that a dependency pair f#(v) → g#(w) corresponds to a rewrite rule
f(v) → C[g(w)] ∈ R for some Context C. Therefore, our infinite innermost
(DP(R), R)-chain corresponds to the following infinite innermost rewrite sequence

t0(v0) i→R C1[t1(w1)] i→∗
R C1[t1(v1)] i→R C1[C2[t2(w2)]] i→∗

R C1[C2[t2(v2)]] i→R . . .

Therefore, R is not innermost terminating as well.

sound: Assume that R is not innermost terminating. Then there exists an infinite innermost
rewrite sequence

t0
i→R t1

i→R t2
i→R . . .

By Theorem 2.1.25, we can assume that all occurring terms are ground terms. We
will now inductively define an infinite innermost (DP(R), R)-chain

t′
0

i→(DP(R),R) t′
1

i→(DP(R),R) t′
2

i→(DP(R),R) . . .

Due to a minimality argument, we can find a subterm f0(v0) of t0 such that

– f0(v0) starts an infinite innermost rewrite sequence
– v0 are strongly normalizing terms

We can rewrite the terms v0 using i→R steps until we reach a normal form for all of
them as we would do in our infinite innermost rewrite sequence. Since all of them
are strongly normalizing, this can be done in a finite number of i→R steps.
After this, we result with a term f0(w0), where all of the w0 are in normal form
w.r.t. R and thus we can rewrite with the whole term f0(w0) being the redex. Hence,
we have f0(w0) = f0(u0)σ0

i→R r0σ0 using a rule f0(u0) → r0 ∈ R and ground
substitution σ0 ∈ Sub (Σ, V). Since, f0(v0) starts an infinite rewrite sequence, the
same holds for f0(w0). Additionally, we know that all w0 = u0σ0 are in normal form
w.r.t. R. This, together with a minimality argument, again implies that we can find
a subterm f1(v1) of r0 such that

– f1(v1)σ0 starts an infinite innermost rewrite sequence
– v1σ0 are strongly normalizing terms

Our (DP(R), R)-chain starts with the term t′
0 := f#

0 (w0) and first uses the
dependency pair f#

0 (u0) → f#
1 (v1) ∈ DP(R).

Now, we can apply the same procedure to determine the whole chain. Assume that
we have already defined the chain up to the i-th term. From our previous induction
step, we get a term fi+1(vi+1)σi that starts an infinite innermost rewrite sequence
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and all of the vi+1σi are strongly normalizing terms. Again, we can rewrite the terms
vi+1σi using i→R steps until we reach a normal form for all of them as we would do in
our infinite innermost rewrite sequence. Since all of them are strongly normalizing,
this can be done in a finite number of i→R steps.
After this, we result with a term fi+1(wi+1), where all of the wi+1 are in normal form
w.r.t. R and we can rewrite with the whole term fi+1(wi+1) being the redex. Thus,
we have fi+1(wi+1) = fi+1(ui+1)σi+1

i→R ri+1σi+1 using a rule fi+1(ui+1) → ri+1 ∈ R
and ground substitution σi+1 ∈ Sub (Σ, V). Since, fi+1(vi+1) starts an infinite
rewrite sequence, the same holds for fi+1(wi+1). Additionally, we know that all
wi+1 = ui+1σi+1 are in normal form w.r.t. R. This, together with a minimality
argument, again implies that we can find a subterm fi+2(vi+2) of ri+1 such that

– fi+2(vi+2)σi+1 starts an infinite innermost rewrite sequence
– vi+2σi+1 are strongly normalizing terms

Then, we set t′
i+1 := f#

i+1(wi+1).
We now constructed a sequence t′

0, t′
1, t′

2, . . . and by construction we have t′
i =

f#
i (wi) i→D,R f#

i+1(vi+1σi) i→∗
R f#

i+1(wi+1) = t′
i+1 for all i ∈ N so that

t′
0

i→(DP(R),R) t′
1

i→(DP(R),R) t′
2

i→(DP(R),R) . . .

This is an infinite innermost (DP(R), R)-chain, which shows that (DP(R), R) is
also not innermost terminating. ■

3.3 DP Framework and Processors
Now that we understand the relation between a TRS R and the corresponding DP
problem (DP(R), R), how can we use this for automatizing termination proofs? The
key idea is to use a divide-and-conquer framework that works with these DP problems.
We want to recursively split a DP problem (D, R) into a set of simpler subproblems
{(D1, R1), . . . , (Dk, Rk)} and then solve all of the subproblems individually. For such
a framework, we really need to work with DP problems and not just TRSs or sets of
dependency pairs since:

• Working solely with a TRS R is not powerful enough, and it is relatively hard to
split a TRS into multiple subproblems so that we can deduce the termination of the
main TRS from the termination of the subproblems.

• Working solely with a set of dependency pairs D is not expressive enough as we
cannot represent every possible rewrite sequence with dependency pairs on their
own.

In order to split a DP problem, we use DP processors.
Definition 3.3.1 (DP Processor, [14]). Let D, D1, . . . , Dn be sets of dependency pairs and
let R, R1, . . . , Rn be TRSs. A (innermost) DP processor Proc is of the form

Proc(D, R) = {(D1, R1), . . . , (Dn, Rn)}

A DP processor Proc is sound iff

∀ 1 ≤ i ≤ n : (Di, Ri) is innermost terminating =⇒ (D, R) is innermost terminating
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A DP processor Proc is complete iff

(D, R) is innermost terminating =⇒ ∀ 1 ≤ i ≤ n : (Di, Ri) is innermost terminating

To summarize it, given a TRS R, we start by dividing the signature into defined and
constructor symbols. Then we generate the corresponding DP problem (DP(R), R) and
try to prove that this DP problem is innermost terminating using our divide-and-conquer
framework and the DP processors.
In the following, we will introduce three of the most important processors for the dependency
pair framework. Starting with the dependency graph processor, where we create a kind of
control flow graph of the DP problem to split the set of dependency pairs into subsets such
that every two dependency pairs can rewrite to each other. Then, we introduce a processor
that decreases the number of rewrite rules in our TRS. Here, we remove the rules from the
TRS that cannot be used to evaluate the right-hand side of any dependency pair. This is
called the usable rules processor. In the end, we have the reduction pair processor that
reduces the set of dependency pairs by ordering them using a polynomial interpretation,
similar to the previously introduced direct application of polynomial interpretations. Note
that there are a lot more existing processors that we do not mention in this thesis.

Dependency Graph Processor
The first processor that we want to introduce is the dependency graph processor. The
dependency graph is a kind of control flow graph that shows which right-hand sides of
dependency pairs can be rewritten to the left-hand side of another one. Or in other words,
it shows which function calls can occur after each other.
Definition 3.3.2 (Dependency Graph, [14]). Let (D, R) be a DP problem. The (D, R)-
dependency graph is defined as the graph with node set D and there is an edge from s → t
to v → w iff there exists ground substitutions σ1, σ2 ∈ Sub (Σ, V) such that tσ1

i→∗
R vσ2,

and every proper subterm of sσ1 and vσ2 is in normal form w.r.t. R.

Every innermost (D, R)-chain corresponds to a path through the (D, R)-dependency graph.
On the other side, not every path through the dependency graph corresponds to a chain
since we may use completely different substitutions on different edges in the path, and in
a chain, the used substitution is carried over to the next rewrite step.
Example 3.3.3 ((DP(Rdiv), Rdiv)-Dependency Graph). Let Rdiv be the PTRS from
Example 3.0.1 and DP(Rdiv) be its dependency pairs from Example 3.1.4. The
(DP(Rdiv), Rdiv)-dependency graph has the following form:

minus#(s(x), s(y)) → minus#(x, y)

div#(s(x), s(y)) → minus#(x, y)

div#(s(x), s(y)) → div#(minus(x, y), s(y))
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For the two edges regarding the two bottom nodes, we only have to use appropriate
substitutions to get from the right-hand side of the one dependency pair to the left-hand
side of the other. For the two edges at the top, we have to evaluate the subterm minus(x, y)
using the rewrite rules from Rdiv so that we can get to the left-hand side of the two
dependency pairs (with suitable substitutions).

The key idea for the processor is that we only need to look at the strongly connected
components (SCCs) of the dependency graph in order to find an infinite innermost
(DP(R), R)-chain. An infinite path in the dependency graph must eventually be stuck
inside a single SCC due to the fact that we have only a finite number of dependency pairs,
hence a finite dependency graph.
Theorem 3.3.4 (Dependency Graph Processor, [14]). Let

ProcDG(D, R) = {(D1, R), . . . , (Dn, R)}

where D1, . . . , Dn are the SCCs of the (D, R)-dependency graph. Then ProcDG is sound
and complete.

Proof.

complete: Every innermost (Di, R)-chain is also an innermost (D, R)-chain. Hence, if one of the
(Di, R) is not innermost terminating, then (D, R) is also not innermost terminating.

sound: Assume that (D, R) is not innermost terminating. Then there exists an infinite
innermost (D, R)-chain

t0
i→(D,R) t1

i→(D,R) t2
i→(D,R) . . .

such that for all i ∈ N we have ti = ℓ#
i σi for some dependency pair ℓ#

i → r#
i ∈ D

that we use in the i-th rewrite step, some ground substitution σi ∈ Sub (Σ, V) and
such that every proper subterm of ti is in normal form w.r.t. R.

This chain corresponds to a unique path in the (D, R)-dependency graph. To see
this, let i ∈ N. We use the dependency pair ℓ#

i → r#
i ∈ D in the i-th and the

dependency pair ℓ#
i+1 → r#

i+1 ∈ D in the (i + 1)-th rewrite step. We have to show
that there exists an edge between those two dependency pairs. By definition of our
(D, R)-chain we have ti

i→(D,R) ti+1 (i.e., ti
i→D,R ◦ i→∗

R ti+1) with ti = ℓ#
i σi and

ti+1 = ℓ#
i+1σi+1. To be more precise, we have

ti = ℓ#
i σi

i→D,R r#
i σi

i→∗
R ti+1 = ℓ#

i+1σi+1

Hence, we have r#
i σi

i→∗
R ℓ#

i+1σi+1 and thus there is an edge between ℓ#
i → r#

i and
ℓ#

i+1 → r#
i+1 in the dependency graph.

Since the graph is finite, the path will eventually reach an SCC Di and remain inside
of it. In other words, we can find an N ∈ N such that the corresponding path for
the chain

tN
i→(D,R) tN+1

i→(D,R) tN+2
i→(D,R) . . .

is always inside of Di. This is then an infinite innermost (Di, R)-chain, and thus
(Di, R) is not innermost terminating. ■
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In order to automatize the dependency graph processor, we need to automatically create
the dependency graph. However this is not possible, as deciding whether there exists
substitutions σ1 and σ2 such that tσ1

i→∗
R vσ2 is undecidable in general. Therefore, we

use an abstracted version of the dependency graph. This abstracted dependency graph is
then a supergraph of our dependency graph, which means that we may have even more
paths that do not correspond to some chain. However, this does not interfere with the
soundness nor the completeness of the processor but only with its effectiveness. Next, we
introduce our abstraction to automatically compute whether there is an edge between the
two dependency pairs in the abstracted dependency graph or not.
Note that tσ1 may only reduce to vσ2 for some substitutions σ1, σ2, if either t has a defined
root symbol or if both t and v have the same constructor symbol at the root. All of the
subterms with defined root symbol may be evaluated with our TRS into new terms. Hence,
we have to replace them with fresh variables. If tσ1 reduces to vσ2, then t′ and v′ must be
unifiable, where t′ is the result of this replacement of defined symbols into fresh variables
from t. However, we only need to do this for subterms that are not equal to subterms
of s since every proper subterm of s must be in normal form w.r.t. R by our innermost
evaluation strategy.
Definition 3.3.5 (Connectable Terms, [1]). Let s ∈ T

(
Σ ⊎ Σ#, V

)
be some term. The

function Caps is inductively defined as

Caps(x) = x , for variables x,
Caps(f(t1, . . . , tn)) = y , if f ∈ ΣD and f(t1, . . . , tn) ̸◁ s,
Caps(f(t1, . . . , tn)) = f(Caps(t1), . . . , Caps(tn)) , otherwise.

where y is the next variable in an infinite list of fresh variables.
Two terms t and v are connectable w.r.t. s if Caps(t) and v are unifiable by some mgu σ
such that every proper subterm of sσ and vσ is in normal form w.r.t. R.

Note that Caps(x) is not an actual function since we need to keep track of the fresh
variables that we have already used. However, we can change the definition to a real
function by adding additional arguments. We omit this here for readability. We can now
use this abstraction to create our abstracted dependency graph.
Definition 3.3.6 (Abstracted Dependency Graph, [1]). For a DP problem (D, R) the nodes
of the abstracted (D, R)-dependency graph are the dependency pairs of D and there is an
edge from s → t to v → w iff t and v are connectable w.r.t. s.
Theorem 3.3.7 (Computable Dependency Graph Processor, [1]). Let

ProcCDG(D, R) = {(D1, R), . . . , (Dn, R)}

where D1, . . . , Dn are the SCCs of the abstracted (D, R)-dependency graph. Then ProcCDG

is sound and complete.

Proof. Let us first show that the abstracted dependency graph is a supergraph of the
normal one. So assume that we have an edge between the two dependency pairs s → t
and v → w in the (D, R)-dependency graph. We will show by structural induction on t
that if there exists a substitution σ ∈ Sub (Σ, V) such that every proper subterm of sσ is
in normal form w.r.t. R and tσ i→∗

R u for some term u, then there exists a substitution τ
(whose domain only includes variables that are introduced in the construction of Caps(t))
with Caps(t)στ = u. In particular, if there are substitutions σ1, σ2 such that every proper
subterm of sσ1 and vσ2 is in normal form w.r.t. R and tσ1

i→∗
R vσ2, then there exists a
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substitution τ with Caps(t)σ1τ = vσ2. Hence, Caps(t) and v unify and the mgu µ is such
that every proper subterm of sµ and vµ is in normal form w.r.t. R.
If t equals a subterm of s, then t is in normal form w.r.t. R and hence tσ = u. Moreover,
we have Caps(t) = t and hence Caps(t)σ = tσ = u, so our desired substitution τ is the
empty substitution.
If t is a variable or if t = f(t1, . . . , tn) for a defined symbol f ∈ ΣD such that t is not a
subterm of s, then Caps(t) is a fresh variable. Let τ be the substitution that replaces
Caps(t) by u. Then we get Caps(t)στ = Caps(t)τ = u.
If t = c(t1, . . . , tn) for a constructor symbol c ∈ ΣC or for a tuple symbol c ∈ Σ#, then
Caps(t) = c(Caps(t1), . . . , Caps(tn)). In this case, u has to be of the form c(u1, . . . , un)
and tjσ

i→∗
R uj holds for all 1 ≤ j ≤ n. By our induction hypothesis we get substitutions τj

such that Caps(tj)στj = uj . Since the variables in Caps(tj) are disjoint from the variables
in Caps(ti) for all i ̸= j, we can set τ := τ1 ◦ . . . ◦ τn and get Caps(tj)στ = uj, and hence
Caps(t)στ = u.
Now to the soundness and completeness of the computable dependency graph processor.

complete: Every innermost (Di, R)-chain is also an innermost (D, R)-chain. Hence, if one of the
(Di, R) is not innermost terminating, then (D, R) is also not innermost terminating.

sound: Assume that (D, R) is not innermost terminating. Then there is some infinite
innermost (D, R)-chain. By Theorem 3.3.4, we then know that there is also an
infinite innermost (D′, R)-chain, where D′ is an SCC of the (D, R)-dependency
graph. Since the abstracted dependency graph is a super graph of the normal one,
we can find an SCC Di in the abstracted dependency graph with D′ ⊆ Di. Thus,
we also have an infinite innermost (Di, R)-chain, which means that (Di, R) is not
innermost terminating as well. ■

Example 3.3.8 (Computable Dependency Graph Processor). Let Rdiv be the PTRS from
Example 3.0.1 and DP(Rdiv) be its dependency pairs from Example 3.1.4. The abstracted
(DP(Rdiv), Rdiv)-dependency graph is the same as the (DP(Rdiv), Rdiv)-dependency graph
and has the form:

minus#(s(x), s(y)) → minus#(x, y)

div#(s(x), s(y)) → minus#(x, y)

div#(s(x), s(y)) → div#(minus(x, y), s(y))

The SCCs of this graph are {minus#(s(x), s(y)) → minus#(x, y)} = {(3.5)} and
{div#(s(x), s(y)) → div#(minus(x, y), s(y))} = {(3.7)}. Therefore, we have

ProcCDG(DP(Rdiv), Rdiv) = {
(
{(3.5)}, Rdiv

)
,
(
{(3.7)}, Rdiv

)
}
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Usable Rules Processor
The next processor that we want to introduce is the usable rules processor. This processor
decreases the number of rewrite rules in our DP problem. The way we present the
processor in this thesis is not complete. However, we are able to create a complete usable
rules processor with some modifications to our DP problems that we describe later on.
Remember the structure of a chain. We start with the left-hand side of a dependency pair
s0 → t0 together with a substitution σ such that s0σ is in normal form w.r.t. R. Hence,
the subterms of t0σ that are not in normal form w.r.t. R cannot be completely inside of
the substitution. At least the root defined symbol must be part of t0. Then rewriting with
the TRS follows the same logic. Therefore, the right-hand sides of all dependency pairs
and rewrite rules indicate which rewrite rules can be used in our chain. Those rewrite
rules are called usable rules.
Example 3.3.9 (Usable Rules). Let Rdiv be the PTRS from Example 3.0.1 and DP(Rdiv)
be its dependency pairs from Example 3.1.4. After applying the dependency graph
processor, we result with the DP problems

(
{(3.5)}, Rdiv

)
and

(
{(3.7)}, Rdiv

)
. For the

DP problem
(
{(3.7)}, Rdiv

)
we have the following rewrite rules and dependency pair left:

(3.1) minus(x, 0) → x
(3.2) minus(s(x), s(y)) → minus(x, y)
(3.3) div(0, s(y)) → 0
(3.4) div(s(x), s(y)) → s(div(minus(x, y), s(y)))

(3.7) div#(s(x), s(y)) → div#(minus(x, y), s(y))

The right-hand side of the only dependency pair contains a subterm with minus at the
root. Hence, we can use the rules (3.1) and (3.2) to evaluate this subterm. However, the
defined symbol div does not occur in the right-hand side of the dependency pair nor in the
right-hand side of the two minus-rules. Hence, the rules (3.3) and (3.4) cannot be used to
evaluate the right-hand side of our dependency pair in an innermost chain.

The set UR(D, R) of usable rules is a computable over-approximation of all rewrite rules
that can be used to rewrite the right-hand side of a dependency pair. To create this
approximation, we recursively search for the defined root symbol of a rewrite rule in the
right-hand side of all dependency pairs and rewrite rules, where we have already seen that
they are usable. In this approximation, we exclude every rewrite rule, where the left-hand
side has a redex as a proper subterm. Those rewrite rules can never be applied in an
innermost rewrite step.
Definition 3.3.10 (Usable Rules, [1]). Let (D, R) be a DP problem. For every f ∈ Σ ⊎ Σ#

let Rules(R, f) := {ℓ → r ∈ R | root(ℓ) = f, ℓ has no redex as proper subterm}. For any
term t, the set of all usable rules UR(R, t) is recursively defined as

UR(R, x) = ∅
UR(R, f(t1, . . . , tn)) = Rules(R, f) ∪ ⋃n

i=1 UR(R′, tj) ∪⋃
ℓ→r∈Rules(R,f) UR(R′, r)

where R′ := R \ Rules(R, f). The set of all usable rules for the DP problem (D, R) is
defined by

UR(D, R) :=
⋃

s→t∈D
UR(R, t)

Theorem 3.3.11 (Usable Rules Processor, [1]). Let

ProcUR(D, R) = {(D, UR(D, R))}

Then ProcUR is sound but not complete.
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Proof.

sound: Assume that (D, R) is not innermost terminating. Then there exists an infinite
innermost (D, R)-chain

t0
i→(D,R) t1

i→(D,R) t2
i→(D,R) . . .

Fix some i ∈ N. We have ti
i→(D,R) ti+1 (ti

i→D,R ◦ i→∗
R ti+1) and thus

ti
i→D,R v0

i→R v1
i→R . . . i→R vk = ti+1

for some k ∈ N and some terms v0, . . . , vk−1 ∈ T # (Σ). We will prove by induction
that all of the used rewrite rules are usable. In the end, we know that

ti
i→D,R v0

i→UR(D,R) v1
i→UR(D,R) vk = ti+1

Hence, we also have infinite innermost (D, UR(D, R))-chain

t0
i→(D,UR(D,R)) t1

i→(D,UR(D,R)) t2
i→(D,UR(D,R)) . . .

and thus (D, UR(D, R)) is also not innermost terminating.
Let us assume that in the first rewrite step ti

i→D,R v0 we use the dependency pair
s → t ∈ D and the ground substitution σ ∈ Sub (Σ, V) so that ti = sσ, v0 = tσ,
and every proper subterm of sσ is in normal form w.r.t. R. Additionally, for the
j-th rewrite step vj

i→R vj+1 with the TRS we use the rewrite rule ℓj → rj ∈ R,
the ground substitution σj ∈ Sub (Σ, V), and the position πj so that vj|πj

= ℓjσj,
vj+1 = vj[rjσj], and every proper subterm of ℓjσj is in normal form w.r.t. R.
For the induction base, we consider the rewrite step v0

i→R v1. Here, we have v0 = tσ
and v0|π0 = ℓ0σ0. As we are dealing with innermost rewriting, the root defined
symbol of ℓ0 must be introduced by the term t and cannot be completely inside the
substitution σ. Hence, we get ℓ0 → r0 ∈ UR(R, t) ⊆ UR(D, R).
In the induction step, we consider the rewrite step vj

i→R vj+1. Here, we have
vj = vj−1[rj−1σj−1]πj−1 and vj|πj

= ℓjσj. Again, the defined root symbol of ℓj must
be introduced by a right-hand side of an earlier used TRS rule or by the right-
hand side of the used dependency pair and cannot be completely inside of every
used substitution. Since every earlier used rewrite rule is usable by our induction
hypothesis, we also get ℓ → r ∈ UR(D, R). ■

Example 3.3.12 (Counterexample for Completeness). Consider the signature Σ = {f, a},
a variable set with {x} ⊆ V , a TRS R consisting of the following rule:

a → a (3.12)

and a set of dependency pairs D consisting of the following dependency pair:

f#(a, x) → f#(x, x) (3.13)

Then, the DP problem (D, R) is innermost terminating, since the only dependency pair
(3.13) can not be used. The reason is that the left-hand side, namely f#(a, x), has the
proper subterm a, which is not in normal form w.r.t. R. However, the rule (3.12) is
not usable, since the right-hand side of (3.13) does not contain the subterm a. We
get ProcUR(D, R) = {(D, UR(D, R))} = {(D,∅)}. Now, the DP problem (D,∅) is not
innermost terminating anymore since there exists the following infinite (D,∅)-chain

f(a, a) i→(D,R) f(a, a) i→(D,R) . . .

The reason here is that the proper subterm a is now in normal form w.r.t. the empty TRS.
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The reason that the usable rules processor is not sound is due to the fact that the TRS
R has two different roles in the DP problem (D, R). On the one side, we use the TRS
for rewrite steps i→R. On the other side, we use the TRS for the innermost evaluation
property in the definition of a chain. If we use an additional TRS Q to store the rules
which we have to consider for innermost evaluation, then we can use the usable rules
processor only for the TRS R but keep Q unchanged. This then results in a complete
usable rules processor. In this thesis, we omit this third component for readability.
Example 3.3.13. Let Rdiv be the PTRS from Example 3.0.1 and DP(Rdiv) be its
dependency pairs from Example 3.1.4. After applying the dependency graph processor,
we result with the DP problems

(
{(3.5)}, Rdiv

)
and

(
{(3.7)}, Rdiv

)
. For the DP problem(

{(3.7)}, Rdiv

)
we have the following rewrite rules and dependency pair left:

(3.1) minus(x, 0) → x
(3.2) minus(s(x), s(y)) → minus(x, y)
(3.3) div(0, s(y)) → 0
(3.4) div(s(x), s(y)) → s(div(minus(x, y), s(y)))

(3.7) div#(s(x), s(y)) → div#(minus(x, y), s(y))

And we get UR({(3.7)}, Rdiv) = {(3.1), (3.2)} as described in Example 3.3.9, For the DP
problem

(
{(3.5)}, Rdiv

)
we have the following rewrite rules and dependency pair left:

(3.1) minus(x, 0) → x
(3.2) minus(s(x), s(y)) → minus(x, y)
(3.3) div(0, s(y)) → 0
(3.4) div(s(x), s(y)) → s(div(minus(x, y), s(y)))

(3.5) minus#(s(x), s(y)) → minus#(x, y)

In this case, there is no defined symbol in the right-hand side of our only dependency pair
and thus we have UR({(3.5)}, Rdiv) := ∅.
All in all, we get

ProcUR

(
{(3.5)}, Rdiv

)
= {

(
{(3.5)},∅

)
}

ProcUR

(
{(3.7)}, Rdiv

)
= {

(
{(3.7)}, {(3.1), (3.2)}

)
}

Reduction Pair Processor
The last processor we want to introduce is the reduction pair processor. In the previous
chapter, we introduced a technique to automatically prove innermost termination of a
given TRS R by searching for a natural and monotonic polynomial interpretation Pol
that strictly orders every rewrite rule ℓ → r ∈ R (i.e., Pol(ℓ) > Pol(r)). We now want
to apply the same logic to DP problems (D, R). It turns out that finding a polynomial
interpretation for DP problems has several advantages compared to the direct application
on a TRS. Remember that in the definition of a chain, we need to apply one step with

i→D,R, and then we can use an arbitrary but finite amount of steps with i→R. The steps
with the dependency pairs are the important ones, while the steps with the TRS are
more of an auxiliary tool. Every infinite rewrite sequence must use an infinite amount
of dependency pairs. Hence, it suffices to find a polynomial interpretation Pol such that
all of the dependency pairs are strictly decreasing (i.e., for every ℓ# → r# ∈ D we have
Pol(ℓ#) > Pol(r#)) and all of the TRS rules are non-increasing (i.e., for every ℓ → r ∈ R
we have Pol(ℓ) ≥ Pol(r)). So the first advantage is that we only need a strict decrease
in the comparison of the left-hand side to certain subterms with defined root symbols
in the right-hand side. The second and most important advantage is that we can use
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3. DP Framework for TRS

weakly monotonic interpretations instead of monotonic ones. This means that we do not
require that x > y implies fPol(. . . , x, . . .) > fPol(. . . , y, . . .) for all f ∈ Σ ⊎ Σ# but only
that x ≥ y implies fPol(. . . , x, . . .) ≥ fPol(. . . , y, . . .) for all f ∈ Σ ⊎ Σ#. This means that
we can use polynomials that completely disregard one of its arguments, which was not
possible before. The third advantage is that the symbol f ∈ ΣD and the corresponding
tuple symbol f# are two different objects. The polynomial interpretation can therefore
handle them differently, as you can see in Example 3.3.15. The final advantage is that
we can make this approach modular using our dependency pair framework. Instead of
requiring a strict decrease for all dependency pairs, we can also try to order only a part of
the dependency pairs strictly, while the rest is only non-increasing. We can then remove
the dependency pairs that are strictly decreasing and continue working with a smaller DP
problem. Then, we can try to use another processor (like the dependency graph processor)
before searching for a polynomial interpretation for the reduction pair processor again.
Theorem 3.3.14 (Reduction Pair Processor, [14]). Let (D, R) be a DP problem, and
let Pol : T

(
Σ ⊎ Σ#, V

)
→ N[V] be a natural polynomial interpretation which is weakly

monotonic (i.e., x ≥ y implies fPol(. . . , x, . . .) ≥ fPol(. . . , y, . . .) for all f ∈ Σ ⊎ Σ#).
Suppose that we have D = D≽ ⊎ D≻ such that the following conditions hold.

(1) For every ℓ → r ∈ R we have Pol(ℓ) ≥ Pol(r).

(2) For every ℓ# → r# ∈ D≻, we have Pol(ℓ#) > Pol(r#).

(3) For every ℓ# → r# ∈ D≽, we have Pol(ℓ#) ≥ Pol(r#).

Then
ProcRP(D, R) = {(D≽, R)}

is sound and complete.

Proof. We start off by showing that the conditions (1),(2) and (3) of the theorem extend
to rewrite steps instead of just rules:

(a) If s, t ∈ T # (Σ) with s i→R t using the rule ℓ → r ∈ R with Pol(ℓ) ≥ Pol(r), then
we have Pol(s) ≥ Pol(t).

(b) If s, t ∈ T # (Σ) with s i→D,R t using the dependency pair ℓ# → r# ∈ D with
Pol(ℓ#) ≥ Pol(r#), then we have Pol(s) ≥ Pol(t).

(c) If s, t ∈ T # (Σ) with s i→D,R t using the dependency pair ℓ# → r# ∈ D with
Pol(ℓ#) > Pol(r#), then we have Pol(s) > Pol(t).

(a): In this case, there exist a rule ℓ → r ∈ R with Pol(ℓ) ≥ Pol(r), a ground substitution
σ ∈ Sub (Σ, V), and a position π such that s|π = ℓσ, t = s[rσ]π, and every proper
subterm of ℓσ is in normal form w.r.t. R.
We perform induction on π. So in the induction base, let π = ε. Hence, we have
s = ℓσ and t = rσ. By assumption we have Pol(ℓ) ≥ Pol(r). As these inequations
hold for all instantiations of the occurring variables, we have

Pol(s) = Pol(ℓσ) ≥ Pol(rσ) = Pol(t).
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In the induction step, we have π = i.π′, s = f(s1, . . . , si, . . . , sn) and si →R ti. Then
by the induction hypothesis we have Pol(si) ≥ Pol(ti). For t = f(s1, . . . , ti, . . . , sn)
we obtain

Pol(s) = Pol(f(s1, . . . , si, . . . , sn))
= fPol(Pol(s1), . . . , Pol(si), . . . , Pol(sn))
≥ fPol(Pol(s1), . . . , Pol(ti), . . . , Pol(sn))

(by weak monotonicity of fPol and Pol(si) ≥ Pol(ti))
= Pol(f(s1, . . . , ti, . . . , sn))
= Pol(t).

(b), (c): In the last two cases, there exist a dependency pair ℓ# → r# ∈ R with either
Pol(ℓ#) ≥ Pol(r#) or Pol(ℓ#) > Pol(r#), a ground substitution σ ∈ Sub (Σ, V),
such that s = ℓ#σ, t = r#σ and every proper subterm of ℓ#σ is in normal form w.r.t.
R. As these inequations hold for all instantiations of the occurring variables, we
have

Pol(s) = Pol(ℓ#σ) ≥ Pol(r#σ) = Pol(t).
or

Pol(s) = Pol(ℓ#σ) > Pol(r#σ) = Pol(t).

Now, we can prove the soundness and completeness of this processor.

complete: Every innermost (D≽, R)-chain is also an innermost (D, R)-chain. Hence, if (D≽, R)
is not innermost terminating, then (D, R) is also not innermost terminating.

sound: Assume that (D, R) is not innermost terminating. Then there exists an infinite
innermost (D, R)-chain

t0
i→(D,R) t1

i→(D,R) t2
i→(D,R) . . .

such that for all i ∈ N we have ti = ℓ#
i σi for some dependency pair ℓ#

i → r#
i ∈ D

that we use in the i-th rewrite step, some ground substitution σi ∈ Sub (Σ, V) and
such that every proper subterm of ℓ#

i σi is in normal form w.r.t. R. We will now
show that if we use an infinite number of →D≻ steps in this chain, then it would be
terminating, which is a contradiction to our assumption.
So assume that we use an infinite number of →D≻ steps in this chain. Then

Pol(t0) ≥ Pol(t1) ≥ Pol(t2) ≥ . . .

would contain an infinite number of strict relations > and hence is an infinite
descending sequence of natural numbers (since all of the occurring terms are ground
terms), which is a contradiction.
Hence, we see only a finite number of →D≻ steps, and after N steps for some N ∈ N,
we will only see dependency pairs from D≽ be used. This means that

tN
i→(D,R) tN+1

i→(D,R) tN+2
i→(D,R) . . .

does not use any dependency pairs from D≻ and can also be seen as an infinite
innermost (D≽, R)-chain

tN
i→(D≽,R) tN+1

i→(D≽,R) tN+2
i→(D≽,R) . . .

Thus (D≽, R) is not innermost terminating as well. ■
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Example 3.3.15 (Reduction Pair Processor). Let Rdiv be the PTRS from Example 3.0.1
and DP(Rdiv) be its dependency pairs from Example 3.1.4. After applying the usable
rules processor, we result with the DP problems

(
{(3.5)},∅

)
and

(
{(3.7)}, {(3.1), (3.2)}

)
.

For the DP problem
(
{(3.5)},∅

)
we can use the polynomial interpretation that maps s(x)

to x + 1 and m#(x, y) to x. Note that we can now use polynomial interpretations that
completely disregard some of their arguments, which was not possible before. With this
polynomial interpretation, we have a strict decrease for the only dependency pair so that
we result with

ProcUR

(
{(3.5)},∅

)
= {

(
∅,∅

)
}

For the DP problem
(
{(3.7)}, {(3.1), (3.2)}

)
we can use the polynomial interpretation that

maps O to 0, s(x) to x + 1 and both minus(x, y) and div#(x, y) to x. With this polynomial
interpretation, we again have a strict decrease for the only dependency pair, so that we
result with

ProcUR

(
{(3.7)}, {(3.1), (3.2)}

)
= {

(
∅, {(3.1), (3.2)}

)
}

Example 3.3.16. Again, consider Rdiv and DP(Rdiv) from Example 3.0.1 and Exam-
ple 3.1.4. We are also able to prove termination directly using only the reduction pair
processor. The constraints of the reduction pair processor are satisfied by the polynomial
interpretation which maps O to 1, s(x) to 2x + 1, minus#(x, y) and div#(x, y) to x + 1, and
all other non-constant function symbols to the projection on their first argument. Now,
for the rewrite rules, we have the following inequalities, where we write d for div and m for
minus to ease readability:

Pol(m(x, O)) ≥ Pol(x)
x ≥ x

Pol(d(O, s(y))) ≥ Pol(O)
1 ≥ 1

Pol(m(s(x), s(y))) ≥ Pol(m(x, y))
2x + 1 ≥ x

Pol(d(s(x), s(y))) ≥ Pol(s(d(m(x, y), s(y))))
2x + 1 ≥ 2x + 1

and for the dependency pairs, we have

Pol(m#(s(x), s(y))) > Pol(m#(x, y))
(2x + 1) + 1 > x + 1

2x + 2 > x + 1

Pol(d#(s(x), s(y))) > Pol(m#(x, y))
(2x + 1) + 1 > x + 1

2x + 2 > x + 1

Pol(d#(s(x), s(y))) > Pol(d#(m(x, y), s(y)))
(2x + 1) + 1 > x + 1

2x + 2 > x + 1

The reduction pair processor does not only have advantages compared to the direct
application of polynomial interpretations but is even strictly stronger, as stated by the
following theorem.
Theorem 3.3.17 (RPP Subsumes Direct Application). Let R be a TRS. Suppose that
there is a natural monotonic polynomial interpretation Pol : T (Σ, V) → N[V] such that
for every rule ℓ → r ∈ R we have Pol(ℓ) > Pol(r). Then there is also a weakly-monotonic
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polynomial interpretation Pol ′ : T
(
Σ ⊎ Σ#, V

)
→ N[V] that satisfies the conditions of

the reduction pair processor (Theorem 3.3.14) for the DP problem (DP(R), R) such that
Pol(ℓ#) > Pol(r#) for every dependency pair ℓ# → r# ∈ DP(R).

Proof. The weakly-monotonic polynomial interpretation Pol ′ : T
(
Σ ⊎ Σ#, V

)
→ N[V]

that we are searching is defined by Pol ′(f#) := Pol ′(f) := Pol(f) for all f ∈ ΣD and
Pol ′(f) := Pol(f) for all f ∈ ΣC . Then Pol ′ is monotonic and hence also weakly-monotonic.
For all rewrite rules ℓ → r ∈ R, we have

Pol ′(ℓ) = Pol(ℓ) > Pol(r) = Pol ′(r)

and for all dependency pairs s → t ∈ DP(R) we have

Pol ′(s) = Pol(s♭)
(∗)
> Pol(t♭) = Pol ′(t)

Here, the step (∗) is true since for every dependency pair s → t ∈ DP(R) there is a rewrite
rule ℓ → r ∈ R and a position π ∈ Occ(r) such that ℓ# = s and r|#π = t. Thus we have
s♭ = ℓ and t♭ = r|π. Since r|π is a subterm of r we get

Pol(s♭) = Pol(ℓ) > Pol(r) ≥ Pol(r|π) = Pol(t♭)

where the second step holds by monotonicity of Pol. ■

Example 3.3.18. Consider Rplus from Example 2.1.16. Here, we get the only dependency
pair:

plus#(s(x), y) → plus#(x, y) (3.14)

In Example 2.2.4 we have seen that the polynomial interpretation, which maps s(x) to
x+1, plus(x, y) to 2x+y +1, and O to 0, strictly orders every rewrite rule. The constraints
of the reduction pair processor for the DP problem (DP(Rplus), Rplus) are satisfied by the
polynomial interpretation which maps s(x) to x+1, plus#(x, y) and plus(x, y) to 2x+y +1,
and O to 0. Now, the rewrite rules are all strictly ordered, and for the dependency pair,
we get:

Pol(plus#(s(x), y)) > Pol(plus#(x, y))
2(x + 1) + y + 1 > 2x + y + 1

2x + y + 3 > 2x + y + 1

Thus, we can also use the dependency pair framework to prove innermost termination for
this TRS.
Example 3.3.19 (Termination with Data Structures Cont.). Consider Rlen from Exam-
ple 2.2.5. Here, we get the only dependency pair:

len#(cons(x, y)) → len#(y) (3.15)

We can apply the reduction pair processor to the DP problem (DP(Rlen), Rlen) with the
polynomial interpretation that maps len(x) to x, s(x) to x, cons(x, y) to y + 1, and both nil
and O to 0. Now, the only dependency pair is strictly ordered. Hence, (DP(Rlen), Rlen)
is innermost terminating and thus Rlen as well.
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3. DP Framework for TRS

Final Automatic Innermost Termination Proof
Finally, we present the final, completely automatic, innermost termination proof for our
TRS Rdiv in the following figure.

Rdiv

Chain Criterion

(DP(Rdiv), Rdiv)

Dep. Graph

({(3.5)}, Rdiv) ({(3.7)}, Rdiv)

Usable Rules Usable Rules

({(3.5)},∅) ({(3.7)}, {(3.1), (3.2)})

Red. Pair Red. Pair

(∅,∅) (∅, {(3.1), (3.2)})

In. Terminating In. Terminating

Figure 3.1: Automatic Innermost Termination Proof for Rdiv
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4 Probabilistic Term Rewriting

In the previous two chapters, we recapitulated the most important facts about automatic
termination analysis of term rewriting systems, including one of the most powerful
approaches, namely the dependency pair framework. Research in the field of term
rewriting has been going on for decades. Another very prominent research area is
probabilistic programming. In a probabilistic program, we have not only the possibility of
deterministic or non-deterministic computation steps but also the possibility to perform
a specific computation step only with a certain probability. We again want to prove
termination automatically. The notion of termination can be interpreted in multiple ways
for probabilistic programs. In this thesis, we focus our attention on almost-sure termination.
In this chapter, we introduce the notion of a probabilistic term rewriting system (PTRS).
We start with the basic definition and notations in Section 4.1. Instead of terms, we are
now rewriting multi-distributions. In Section 4.2, we then view a rewrite sequence of
multi-distributions as a tree and create a new characterization of almost-sure termination
for a PTRS. Later, this new characterization is needed for some of the proofs, and we will
even define the probabilistic version of a chain using trees in the next chapter. At the end
of this chapter, we invent an automatic approach to prove almost-sure termination for a
given probabilistic term rewriting system using polynomial interpretations in Section 4.3.
Starting with Section 4.2, all of the presented results are new and our own contribution, if
not mentioned otherwise.

4.1 Syntax, Semantics, and Evaluation Strategies

In this section, we recapitulate the notion of probabilistic term rewriting systems, which
were introduced in [2, 11, 6]. While a term rewriting system is used to rewrite terms, a
probabilistic TRS rewrites multi-distributions.
Definition 4.1.1 (Multi-Distribution). A multi-distribution on a non-empty set A is a
countable multiset µ of pairs (p : a), where 0 < p ≤ 1 is a probability and a ∈ A
is an element, such that ∑

(p:a)∈µ p = 1. The set of all multi-distributions on A is
denoted by Dist(A). The support of a multi-distribution µ is defined as the multiset
Supp(µ) := {a | (p : a) ∈ µ for some p}. The set of finitely supported multi-distributions
is FDist(A) := {µ | µ ∈ Dist(A), Supp(µ) is finite}. If Supp(µ) does not contain any
multiple occurrences of any a ∈ A (i.e., if it is a set instead of a multiset), then µ is a
distribution (and not just a multi-distribution). Every multi-distribution µ induces a
mapping from A to [0, 1], which is also denoted by µ: µ(a) = ∑

(p:a)∈µ p.

Again, we start with the simplest definition of a probabilistic abstract rewrite system.
The only difference compared to an ARS is that we now have multi-distributions on the
right-hand side of the rewrite relation.
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Definition 4.1.2 (Probabilistic Abstract Rewrite System). Let A be a non-empty set. A
probabilistic rewrite relation is a subset → ⊆ A × Dist(A). We often write “a → µ” instead
of “(a, µ) ∈ →”. The pair A := (A, →) is a probabilistic abstract rewrite system (PARS).

Now, the definition of a probabilistic TRS is nearly the same as for a TRS as well. In this
case, we have finitely supported multi-distributions on the right-hand side of the rewrite
rules.
Definition 4.1.3 (Probabilistic Term Rewrite System). Let Σ be a signature and V a set
of variables. A probabilistic term rewrite rule is a pair ℓ → µ ∈ T (Σ, V) × FDist(T (Σ, V))
such that V(r) ⊆ V(ℓ) for any r ∈ Supp(µ) and ℓ ̸∈ V. A probabilistic term rewriting
system (PTRS) is a finite set R of probabilistic term rewrite rules.
Similar to a TRS, the PTRS R induces a probabilistic rewrite relation →R ⊆ T (Σ, V) ×
FDist(T (Σ, V)) via

s →R {p1 : t1, . . . , pk : tk} :⇔ s|π = ℓσ and tj = s[rjσ]π for all 1 ≤ j ≤ k,

for a position π ∈ Occ(s), a rule ℓ → {p1 : r1, . . . , pk : rk} ∈ R, and a substitution
σ ∈ Sub (Σ, V). A subterm s|π that is matched by the left-hand side of a rule is once again
called a redex. We call s →R µ an innermost rewrite step (denoted s i→R µ) iff every
proper subterm of the used redex ℓσ is in normal form w.r.t. R.

Analogous to the non-probabilistic setting, a term is in normal form w.r.t. i→R iff it is in
normal form w.r.t. →R. Hence, it suffices to speak about normal forms w.r.t. R for both
cases again.
Example 4.1.4 (PTRS). Consider the signature Σ := {O, s, rd} and a set of variables with
x ∈ V . A PTRS Rrw is given by the following two probabilistic rewrite rules:

rd(s(x)) → {1
2 : rd(x), 1

2 : rd(s(s(x)))} (4.1)
rd(O) → {1 : O}. (4.2)

This PTRS corresponds to a fair random walk on the natural numbers that stops at 0. In
the first rule, we have a chance of 1

2 to decrease the number of s occurrences by one and a
chance of 1

2 to increase it by one.

A PARS can either be interpreted as a rewrite relation between elements with a certain
probability or as a rewrite relation between multi-distributions of elements to track all
possible rewrite sequences at once up to non-determinism. When considering the probability
of termination for a PTRS, we have to consider every possible rewrite sequence with its
probability on its own, and thus we use the second option. We can describe rewriting with
PARSs in two different ways. On the one hand, a pair (a, µ) ∈ A × Dist(A) describes a
single rewrite step, which we denote as a → µ. On the other hand, we can describe multiple
rewrite steps on a single multi-distribution as a pair (µ1, µ2) ∈ Dist(A) × Dist(A), denoted
µ1 ⇒ µ2. For any 0 < p ≤ 1 and any µ ∈ Dist(A), let p · µ := {(p · q : a) | (q : a) ∈ µ}.
Definition 4.1.5 (Lifting). Let (A, →) be a PARS. The lifting ⇒ ⊆ Dist(A) × Dist(A) of
→ ⊆ A × Dist(A) is the smallest relation that satisfies the following:

• If a ∈ A is in normal form w.r.t. →, then {1 : a}⇒ {1 : a},

• If a → µ then {1 : a}⇒ µ,

• If for all 1 ≤ i ≤ k we have µi ⇒ νi, 0 < pi ≤ 1 and ∑
1≤i≤k pi = 1, then⋃

1≤i≤k pi · µi ⇒
⋃

1≤i≤k pi · νi.
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A finite ⇒-rewrite sequence µ is a finite family µ = (µk)k∈N for some N ∈ N of multi-
distributions such that µk ⇒ µk+1 for all 1 ≤ k ≤ N . An infinite ⇒-rewrite sequence µ is
an infinite countable family µ = (µk)k∈N of multi-distributions such that µk ⇒ µk+1 for all
k ∈ N.

In order to ease readability, we will write for the rest of this thesis n ∈ N for the term
sn(O) := s(. . . (s(︸ ︷︷ ︸

n-times.

O ) . . .).

Example 4.1.6. Consider the PTRS Rrw from Example 4.1.4 and let ⇒Rrw be the lifting
of →Rrw . Then we obtain the following rewrite sequence.

{1 : rd(1)}
⇒Rrw {1

2 : rd(2), 1
2 : rd(0)}

⇒Rrw {1
4 : rd(3), 1

4 : rd(1), 1
2 : 0}

⇒Rrw {1
8 : rd(4), 1

8 : rd(2), 1
8 : rd(2), 1

8 : rd(0), 1
2 : 0}

It is important to distinguish

{1
8 : rd(4), 1

8 : rd(2), 1
8 : rd(2), 1

8 : rd(0), 1
2 : 0}

from
{1

8 : rd(4), 1
4 : rd(2), 1

8 : rd(0), 1
2 : 0}

because in the former multi-distribution, the two occurrences of (1
8 : rd(2)) could be

rewritten differently if the PTRS had two different rules that apply to rd(2).

In the non-probabilistic case, we have a precise understanding of what it means for a
program (or TRS) to terminate. In the probabilistic setting, however, it is not so clear how
we should understand the notion of termination. The simplest idea would be to translate
the definition of termination directly into the probabilistic setting.
Definition 4.1.7 (Sure Termination). Let R be a PTRS. We call it surely terminating iff
there is no infinite i

⇒R-rewrite sequence (µk)k∈N such that for all i ∈ N, the support of
the multi-distribution µi contains at least one term that is not in normal form w.r.t. R.

However, this kind of termination seems too strict for probabilistic programs. For example,
the PTRS Rrw from Example 4.1.4 is not surely terminating as the rewrite sequence
indicated in Example 4.1.6 can be infinitely prolonged, and it is easy to see that for all
i ∈ N the multi-distribution µi contains at least one term that is not in normal form w.r.t.
Rrw. In fact, sure termination of a PTRS does not depend on the probabilities but just
on the possible rewrite steps. Hence, we can transform a PTRS into a non-probabilistic
version and analyze the termination of the resulting TRS using our existing dependency
pair framework for TRSs.
Definition 4.1.8 (Non-Probabilistic Transformation for PTRSs). Let R be a PTRS. The
non-probabilistic transformation np(R) is the TRS defined by

np(R) := {ℓ → rj | ℓ → {p1 : r1, . . . , pk : rk} ∈ R, 1 ≤ j ≤ k}

Here, we transform every probabilistic rewrite rule ℓ → {p1 : r1, . . . , pk : rk} of a PTRS
R into k individual non-probabilistic rewrite rules ℓ → rj. It is easy to see that a PTRS
R is surely terminating iff np(R) is terminating. Hence, we can simply apply our non-
probabilistic dependency pair framework on np(R) to prove sure termination for a given
PTRS R.
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Back to the PTRS Rrw, one can see that the probability of termination increases over
time. In fact, one can even prove that in the limit, the probability of termination is 1.
This notion of termination is called almost-sure termination. In order to express this, we
have to determine the probability for normal forms in a multi-distribution.
Definition 4.1.9 (NFR and |µ|R). Let R be a PTRS. Remember that NFR ⊆ T (Σ, V)
denotes the set of all normal forms w.r.t. R. If µ ∈ FDist(T (Σ, V)), then let |µ|R ∈ [0, 1]
be defined as |µ|R = ∑

(p:t)∈µ,t∈NFR p.
Example 4.1.10. Consider the multi-distribution

µ = {1
8 : rd(4), 1

8 : rd(2), 1
8 : rd(2), 1

8 : 0, 1
2 : 0}

which results from the multi-distribution in Example 4.1.6 by replacing rd(0) with 0. Then
|µ|Rrw = 1

8 + 1
2 = 5

8 .

The following definition defines the probability for convergence (i.e., for “termination”) of
a ⇒R-rewrite sequence.
Definition 4.1.11 (Convergence Probability). Let R be a PTRS and (µk)k∈N be an infinite
⇒R-rewrite sequence. Note that for every normal form t we have µk(t) ≤ µk+1(t) ≤ 1 for
every k ∈ N, i.e., lim

k→∞
µk(t) exists. Furthermore, |µk|R ≤ |µk+1|R ≤ 1 for every k ∈ N, so

the same argument proves the existence of lim
k→∞

|µk|R. We say that (µk)k∈N converges with
probability q ∈ [0, 1] if lim

k→∞
|µk|R = q. We will also write |µ∞|R for lim

k→∞
|µk|R.

Definition 4.1.12 (Almost-Sure Termination). Let R be a PTRS. We call it almost-surely
terminating (AST) iff every ⇒R-rewrite sequence converges with probability one, i.e., for
every infinite ⇒R-rewrite sequence (µk)k∈N we have |µ∞|R = lim

k→∞
|µk|R = 1.

This definition is equivalent to the definitions of AST in the other papers on probabilistic
term rewriting. E.g. Avanzini et. al. [2] use sub-distributions instead of multi-distributions
and remove pairs once the corresponding term is in normal form w.r.t. R. They then
say that a PTRS is AST iff for every infinite ⇒R-rewrite sequence (µk)k∈N we have
lim

k→∞
||µk|| = 0. Here, for a sub-distribution µ the value of ||µ|| is simply the sum over

all occurring probabilities (i.e., ||µ|| = ∑
(p:t)∈µ p). As they are removing normal forms

from their distributions, this essentially means that the probability for terms not in
normal form tends to 0. Using the notations from this thesis, this can be described by
lim

k→∞
1 − |µk|R = 0 and this is equivalent to our notion of almost-sure termination, which

requires lim
k→∞

|µk|R = 1. The connection to Bournez et. al. [6] is also described in [2].

There are also other types of termination (e.g., positive almost-sure termination) that are
important as well. In this thesis, we will restrict our attention to AST. It remains to be
shown whether the results of this thesis can be applied to other kinds of termination as
well. Remember that we restricted ourselves to innermost evaluations for this thesis. We
can reformulate all of our new definitions with respect to innermost evaluation as well.
Definition 4.1.13 (Innermost Termination, Innermost AST). Let R be a PTRS and
let i
⇒R be the lifting of i→R. We call it innermost surely terminating iff there is no

infinite i⇒R-rewrite sequence (µk)k∈N such that for all i ∈ N, the support of the multi-
distribution µi contains at least one term that is not in normal form w.r.t. R. We call
it innermost almost-surely terminating (innermost AST) iff every infinite i⇒R-rewrite
sequence converges with probability one, i.e., for every infinite i⇒R-rewrite sequence
(µk)k∈N we have |µ∞|R = lim

k→∞
|µk|R = 1.
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At the end of this section, we will once again have a short look at the connection between
the different evaluation strategies. We can define leftmost innermost evaluation analogous
to the non-probabilistic setting. It turns out that we have no equivalence between leftmost
innermost evaluation and innermost evaluation w.r.t. AST. Only the trivial direction holds.
Theorem 4.1.14 (Leftmost Innermost AST vs. Innermost AST). If a PTRS R is innermost
AST, then it is also leftmost innermost AST. On the other hand, there exists a PTRS that
is leftmost innermost AST but not innermost AST.

Proof. Every leftmost innermost rewrite sequence is also an innermost rewrite sequence.
For a counterexample to the other direction, see Example 4.1.15. ■

Example 4.1.15 (Leftmost Innermost AST vs. Innermost AST). Consider the PTRS
R consisting of the following rewrite rules over the signature Σ = Σ0 ⊎ Σ2 with
Σ0 = {a, b, c1, c2, d1, d2} and Σ2 = {f}.

f(c1, d1) → {1 : f(a, b)} (4.3)
f(c2, d2) → {1 : f(a, b)} (4.4)

b → {1
2 : d1,

1
2 : d2} (4.5)

a → {1 : c1} (4.6)
a → {1 : c2} (4.7)

(4.8)

Here, R is not innermost AST as we have the following innermost rewrite sequence that
converges with probability 0:

{1 : f(a, b)}
i⇒R {1

2 : f(a, d1), 1
2 : f(a, d2)}

i
⇒R {1

2 : f(c1, d1), 1
2 : f(c2, d2)}

i⇒R {1
2 : f(a, b), 1

2 : f(a, b)}
i⇒R . . .

In contrast, R is leftmost innermost AST because we have to rewrite a before we can
rewrite b. Thus, we can either rewrite a to c1 or c2.

{1 : f(a, b)}
i⇒R {1 : f(c1, b)}
i
⇒R {1

2 : f(c1, d1), 1
2 : f(c1, d2)}

i⇒R {1
2 : f(a, b), 1

2 : f(c1, d2)}

Now we have a normal form with a certain probability after a fixed finite number of steps,
and one can prove that every such rewrite sequence will converge with probability 1.

Whether the syntactic properties we mentioned in Chapter 2, which guarantee that
innermost termination and full termination are equal, hold for probabilistic term rewriting
and almost-sure termination remains an open question that we plan to address in the
future.
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4.2 Computation Trees
Next, we introduce a new way to describe a i

⇒R-rewrite sequence using trees.
Example 4.2.1 (Rewrite Sequence Tree). Again, consider the PTRS Rrw from Exam-
ple 4.1.4 and the finite i

⇒Rrw-rewrite sequence µ0
i
⇒Rrw µ1

i
⇒Rrw µ2

i
⇒Rrw µ3 from

Example 4.1.6. We can represent this sequence as the following directed, labeled tree.

1 : rd(1) ⊆ µ0

1
2 : rd(2) 1

2 : rd(0) ⊆ µ1

1
4 : rd(3) 1

4 : rd(1) 1
2 : 0 ⊆ µ2

1
8 : rd(4) 1

8 : rd(2) 1
8 : rd(2) 1

8 : rd(0) ⊆ µ3

Figure 4.1: Tree Representation of the rewrite sequence from Example 4.1.6

The edges of the tree represent the used rewrite steps with i→R, and the label of the nodes
represent the pairs (p : t) in our multi-distributions. There is one major difference between
the i⇒R-rewrite sequence and its tree representation. In the rewrite sequence, we would
keep track of all normal forms, while in the tree, we turn normal forms into leaves and
omit them in the next layer. Therefore, the nodes of the i-th layer of the tree represent a
subset of µi that is only missing normal forms. For our example, the third layer of the
tree is only a subset of µ3 that is missing the pair (1

2 : 0), which is a leaf in the previous
layer, since the term 0 is in normal form w.r.t. Rrw.

In the rest of this section, we first introduce the general structure we want to work with,
namely rewrite sequence trees, and their most important properties. Then we restrict the
set of all rewrite sequence trees to those that represent i⇒R-rewrite sequences for a given
R and call them R-computation trees. In the end, we use the tree representation of a
rewrite sequence to prove our witness theorem for PTRS. For the rest of this section, let
R be an arbitrary PTRS.
Definition 4.2.2 (Rewrite Sequence Tree). A rewrite sequence tree (RST) is a directed,
labeled tree T = (V T, ET, LT) with

• V T is a possibly infinite, non-empty set of vertices.

• ET ⊆ V T × V T is the set of directed edges.

• LT : V T → (0, 1] × T (Σ, V) labels every vertex by a probability and a term.

such that the following properties are satisfied:

(1.) GT = (V T, ET) is a finitely branching, directed tree. Let LeafT be the set of all
leaves in GT and let rT be the root node of GT.

(2.) For all x ∈ V T with LT(x) = (px : tx) and xET ̸= ∅ we have∑
y∈xET,LT(y)=(py :ty)

py = px
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Here, by xET := {y | (x, y) ∈ ET} we denote the set of all direct successors of x.

(3.) LT(r) = (1 : t) for some t ∈ T (Σ, V).

For a node x ∈ V T with LT(x) = (p : A), we will also write pT
x for p and AT

x for A. If the
RST is clear from the context, we may omit it in the notations for readability (e.g., we
write V for V T). For a node x ∈ V , we write d(x) for the depth of x, that is, the number
of edges in the path from the root to x.

Next, we introduce two important constructions regarding RSTs. First, we create induced
sub RSTs. These are the RSTs that result when only looking at a certain subset of nodes.
Definition 4.2.3 (Induced Sub Rewrite Sequence Trees). Let T = (V, E, L) be an RST.
Let W ⊆ V be non-empty, weakly connected and for all x ∈ W we have xE ∩ W = ∅ or
xE ∩ W = xE. The property of being non-empty and weakly connected ensures that the
resulting graph GT[W ] = (W, E ∩ (W ×W )) is a tree again. The last property regarding the
direct successors of a node ensures that the sum of probabilities for the direct successors of
a node x is equal to the probability for the node x itself. We define the sub RST T[W ] by

T[W ] := (W, E ∩ (W × W ), LW )

Let w ∈ W be the root of GT[W ]. To ensure that the root of our induced sub RST has
the probability 1 again, we use the labeling (LW )(x) = ( pTx

pTw
: tTx) for all nodes x ∈ W . If

the original root of T is still existent (i.e., rT ∈ W ), then we call the induced sub RST
grounded.
Example 4.2.4 (Induced Sub Rewrite Sequence Tree). The following RST T2 is an induced
sub RST of T1 from Example 4.2.1.

1 : rd(2)

1
2 : rd(3) 1

2 : rd(1)

Figure 4.2: T2 - Induced Sub RST of T1

T2 is not grounded since it does not contain the root from our original tree T1. Instead,
we start in T2 with the left successor of the root in T1.
Lemma 4.2.5. Let T = (V, E, L) be an RST and let W ⊆ V be satisfying the conditions
of Definition 4.2.3. Then T[W ] = (V ′, E ′, L′) is an RST again.

Proof. We have to show that T[W ] = (V ′, E ′, L′) = (W, E ∩ (W × W ), LW ) satisfies the
conditions of Definition 4.2.2. Since W is non-empty and weakly connected, we know that
the graph GT[W ] = (W, E ∩ (W × W )) is a finitely branching, directed tree again. Let
w ∈ W be the root of GT[W ]. For all x ∈ W with xE ′ ̸= ∅ we have xE ′ = xE and thus∑

y∈xE′
pT[W ]

y =
∑

y∈xE′

pTy
pTw

=
∑

y∈xE

pTy
pTw

= 1
pTw

·
∑

y∈xE

pT
y = 1

pTw
· pT

x = pTx
pTw

= pT[W ]
x

Finally, for the root w ∈ W , we have pT[W ]
w = pTw

pTw
= 1 so that all of the conditions of an

RST are satisfied. ■

The second construction is the extension of an RST. Here, we exchange leaves of an
existing TRS for new RSTs.
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Definition 4.2.6 (Extension of Rewrite Sequence Trees). Let T = (V, E, L), T′ =
(V ′, E ′, L′) be RSTs with V ∩ V ′ = ∅, and let x ∈ LeafT such that tTx = tT

′

rT
′ (i.e.,

the term of node x in T is equal to the term of the root of T′). Then, we define the
extension of T w.r.t. the leaf x and the RST T′ (denoted as Ext(T, x,T′)) by

Ext(T, x,T′) := (VExt, EExt, LExt)
with

VExt := V ∪ (V ′ \ {rT′})
EExt := E ∪ (E ′ \ {(rT′

, y) | y ∈ rT
′
E ′})

∪ {(x, y) | y ∈ rT
′
E ′}

And for all z ∈ VExt we define

LExt(z) =
(pT

z , tTz ) , z ∈ V,

(pT
x · pT′

z , tT
′

z ) , z ∈ V ′.

T

a1

a2 px : tx

T′

1 : tx

b2 b3

Ext(T, x,T′)
a1

a2 px : tx

b2 b3

Example 4.2.7. Consider the RST T1 from Example 4.2.1 and the RST T2 from
Example 4.2.4. We can use T2 to extend T1 in a leaf x that is labeled by (1

8 : rd(2)). Then
Ext(T, x,T′) has the form:

1 : rd(1) ⊆ µ0

1
2 : rd(2) 1

2 : rd(0) ⊆ µ1

1
4 : rd(3) 1

4 : rd(1) 1
2 : 0 ⊆ µ2

1
8 : rd(4) 1

8 : rd(2) 1
8 : rd(2) 1

8 : rd(0) ⊆ µ3

1
16 : rd(3) 1

16 : rd(1) ⊆ µ4

Figure 4.3: Ext(T1, x,T2)

Ext(T1, x,T2) can be seen as a tree representation for a partial extension of our rewrite
sequence, as we have set ( 1

16 : rd(3)) ∈ µ4 and ( 1
16 : rd(3)) ∈ µ4, but we have not yet

decided how to rewrite the other pairs in µ3.

Instead of extending a single leaf, we can also extend multiple leaves simultaneously.
Definition 4.2.8 (Family Extension of Rewrite Sequence Trees). Let T = (V, E, L) be
an RST, H ⊆ LeafT, and let (Tx)x∈H be a family of RSTs such that Tx = (Vx, Ex, Lx),
tTx = tTx

rTx for all x ∈ H and all occurring RSTs have disjoint node sets. Additionally, let
Ext(T, x,Tx) = (V ′

x, E ′
x, L′

x). Then we define the family extension of T w.r.t. the family
(Tx)x∈H (denoted as FamExt(T, (Tx)x∈H)) by

FamExt(T, (Tx)x∈H) := ⋃
x∈H Ext(T, x,Tx)

:= (⋃
x∈H V ′

x,
⋃

x∈H E ′
x,

⋃
x∈H L′

x)
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Here, the labeling ⋃
x∈H L′

x is defined such that
(⋃

x∈H L′
x

)
|V ′

x
= L′

x for all x ∈ H.

Lemma 4.2.9. Let T = (V, E, L), T′ = (V ′, E ′, L′) be RSTs with V ∩ V ′ = ∅, and let
x ∈ LeafT such that tTx = tT

′

rT
′ . Then Ext(T, x,T′) is an RST. Furthermore, if we have

H ⊆ LeafT, and (Tx)x∈H is a family of RSTs such that Tx = (V x, Ex, Lx), tTx = tTx

rTx for
all x ∈ H and with pairwise disjoint node sets. Then FamExt(T, (Tx)x∈H) is an RST as
well.

Proof. We show that Ext(T, x,T′) = (VExt, FExt, LExt) satisfies the conditions of
Definition 4.2.2. We exchange the leaf x with the tree T′. Since both T and T′ are
finitely branching, directed trees, we know that Ext(T, x,T′) must be a finitely branching,
directed tree as well. For the second property let y ∈ VExt with yEExt ̸= ∅. If we have
y = x, then xEExt = rT

′
E ′ ⊆ V ′ so that∑

z∈xEExt

pExt(T,x,T′)
z =

∑
z∈rT

′ E′

pT
x · pT′

z = pT
x ·

∑
z∈rT

′ E′

pT′

z = pT
x · pT′

rT
′ = pT

x · 1 = pT
x = pExt(T,x,T′)

x

If we have y ∈ V with y ̸= x, then also yEExt ⊆ V so that∑
z∈yEExt

pExt(T,x,T′)
z =

∑
z∈yE

pT
z = pT

y = pExt(T,x,T′)
y

If we have y ∈ V ′, then also yEExt ⊆ V ′ so that∑
z∈yEExt

pExt(T,x,T′)
z =

∑
z∈yE′

pT
x · pT′

z = pT
x ·

∑
z∈yEExt

pT′

z = pT
x · pT′

y = pExt(T,x,T′)
y

Finally, we have rExt(T,x,T′) = rT ∈ V and thus p
Ext(T,x,T′)
rExt(T,x,T′) = pT

rT = 1.
For a family extension, the arguments are completely analogous. We just have to distinguish
the origin of the nodes for our case distinction. ■

For an RST, we are mostly interested in the probabilities stored in the leaves of the tree.
This corresponds to the convergence probability of a rewrite sequence if we assume that all
of the leaves represent normal forms, which is the case if the rewrite sequence is completely
evaluated.
Definition 4.2.10 (Convergence Notations). Let T be an RST and H ⊆ Leaf. Let
x0, x1, x2, . . . be an arbitrary enumeration of H. Then we define |T|H ∈ [0, 1] by:

|T|H :=


∑
v∈H pv , if |H| finite,

limi→∞
∑

v∈(xk)k≤i
pv , otherwise.

If we have |T|H = c we say that T converges w.r.t. H with probability c. If H = Leaf we
simply say that T converges with probability c.

Note that the value of |T|Leaf does not depend on the enumeration but just on the RST T
due to the following lemma.
Lemma 4.2.11. Let T be an RST, H ⊆ Leaf be infinite, and let x0, x1, x2, . . . be an
arbitrary enumeration of H. Then ∑

v∈(xk)k≤i
pv is strictly increasing for i → ∞ and

bounded from above by 1. Hence, the sum ∑
v∈(xk)k≤i

pv is absolutely convergent for i → ∞,
i.e., limi→∞

∑
v∈(xk)k≤i

pv exists and is therefore not dependent on the enumeration.

41



4. Probabilistic Term Rewriting

Proof. It suffices, to proof this for H = Leaf. Let x0, x1, x2, . . . be an arbitrary enumeration
of Leaf. Since 0 < px ≤ 1 for all x ∈ V we know that the sum is strictly increasing. To
see that it is bounded by 1 from above, note that for every finite RST T′ = (V ′, E ′, L′) we
have |T′|Leaf = 1.
We prove this by induction over the height of T′. In the induction base, we have an RST
that only consists of the root r. Here, we have |T′|Leaf = ∑

x∈Leaf px = pr = 1 by definition
of an RST. For the induction step, let T′ be an RST of height h + 1. For k ∈ N let
D(k) := {x ∈ V ′ | d(x) = k} denote the set of all nodes at depth k. Note that

∑
x∈D(h+1)∩Leaf

px +
∑

x∈D(h)∩Leaf
px =

∑
x∈D(h)

px

since ∑
x∈D(h) px

= ∑
x∈D(h)∩Leaf px + ∑

x∈D(h)∧xE ̸=∅ px

= ∑
x∈D(h)∩Leaf px + ∑

x∈D(h)∧xE ̸=∅
∑

y∈xE py

= ∑
x∈D(h)∩Leaf px + ∑

x∈D(h+1) px

= ∑
x∈D(h)∩Leaf px + ∑

x∈D(h+1)∩Leaf px

The reason for the last step is that T′ has height h + 1, i.e., D(h + 1) ⊆ Leaf. Thus, we
can simply remove the nodes on the (h + 1)-th depth of the tree and result in an RST
T′′ := T′[V ′ \ D(h + 1)] of height h with |T′|Leaf = |T′′|Leaf . By our induction hypothesis,
we get |T′′|Leaf = 1, and this ends the proof.
Now assuming that there is an RST T′ with |T′|Leaf > 1, then there is an N ∈ N
such that ∑

v∈(xk)k≤N
pv > 1. This is a finite sum of finitely many leaves. Let

dmax := max{d(x1), . . . , d(xN)}. Then ⋃
0≤h≤dmax D(h) satisfies the conditions from

Definition 4.2.3 and T′′ := T′[⋃0≤h≤dmax D(h)] is a finite induced sub RST with |T′′|Leaf > 1,
which is a contradiction. ■

While for every finite RST T we have |T|Leaf = 1, this does not hold for infinite RSTs in
general. If you compare RSTs with i⇒R-rewrite sequences, then every surely terminating
rewrite sequence can be represented by a finite RST. Every infinite rewrite sequence that is
AST can be represented by an infinite RST T with |T|Leaf = 1. And every infinite rewrite
sequence that is not AST can be represented by an infinite RST T with |T|Leaf < 1.
Next, we investigate how the convergence ratio of an RST is impacted by our constructions.
Lemma 4.2.12. Let T = (V, E, L) and T′ = (V ′, E ′, L′) be RSTs with V ∩ V ′ = ∅, and let
x ∈ LeafT such that tTx = tT

′

rT
′ . Then we have

| Ext(T, x,T′)|Leaf = |T|Leaf − pT
x + pT

x · |T′|Leaf .

Furthermore, if we have H ⊆ LeafT, and (Tx)x∈H is a family of RSTs such that
Tx = (Vx, Ex, Lx), tTx = tTx

rTx for all x ∈ H and with pairwise disjoint node sets. Then, we
have

| FamExt(T, (Tx)x∈H)|Leaf = |T|Leaf − |T|H +
∑
x∈H

pT
x · |Tx|Leaf .

Proof. Let T = (V, E, L) and T′ = (V ′, E ′, L′). Note that we replace a leaf, namely x,
with the tree T′. If we remove x from the set of all leaves, then we decrease the value of
|T|Leaf by pT

x . By definition of the new labeling LExt(T,x,T′) we have pExt(T,x,T′)
z = pT

x · pT′
z for
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all z ∈ V ′. Therefore, the probability of leaves in the newly added part is
∑

z∈V ′∧z∈LeafExt(T,x,T′) pExt(T,x,T′)
z

= ∑
z∈LeafT′ pExt(T,x,T′)

z

= ∑
z∈LeafT′ pT

x · pT′
z

= pT
x · ∑

z∈LeafT′ pT′
z

= pT
x · |T′|Leaf

All in all, we get | Ext(T, x,T′)|Leaf = |T|Leaf − pT
x + pT

x · |T′|Leaf .
Now we consider the second part of the lemma. Let us first assume that |H| = k ∈ N.
Then we can apply the previous statement k times using induction to get our desired
result. If |H| is infinite, then we use an arbitrary enumeration (xn)n∈N of H. First, note
that limi→∞

∑
x∈(xn)n≤i

pT
x · |Tx|Leaf exists, as the sequence ∑

x∈(xn)n≤i
pT

x · |Tx|Leaf is strictly
increasing for i → ∞ and bounded from above by 1 because∑

x∈(xn)n≤i

pT
x · |Tx|Leaf ≤

∑
x∈(xn)n≤i

pT
x · 1 =

∑
x∈(xn)n≤i

pT
x ≤ |T|Leaf ≤ 1

Next, let FE := FamExt(T, (Tx)x∈H) be the whole family extension and let FEi :=
FamExt(T, (Tx)x∈(xn)n≤i

) be the family extension after performing the first i extension
steps. We want to show that

|FE|Leaf = lim
i→∞

|FEi|Leaf (4.9)

To see this, note that
LeafFE = lim

i→∞
LeafFEi (4.10)

and for all i ∈ N all of the nodes that are contained in LeafFEi have the same probability
in FE as in FEi, i.e.,

pFE
z = pFEi

z (4.11)

for all z ∈ LeafFEi and all i ∈ N. Thus we have

limi→∞ |FEi|Leaf
= limi→∞

∑
x∈LeafFEi pFEi

x

= limi→∞
∑

x∈LeafFEi pFE
x (by 4.11)

= ∑
x∈LeafFE pFE

x (by 4.10)
= |FE|Leaf

Finally, we get

|FE|Leaf
= limi→∞ |FEi|Leaf (by 4.9)
= limi→∞

(
|T|Leaf − ∑

x∈(xn)n≤i
px + ∑

x∈(xn)n≤i
px · |Tx|Leaf

)
= |T|Leaf − limi→∞

∑
x∈(xn)n≤i

px + limi→∞
∑

x∈(xn)n≤i
px · |Tx|Leaf

= |T|Leaf − |T|H + ∑
x∈H px · |Tx|Leaf

■

Corollary 4.2.13 (Little Extension Lemma). Let T = (V, E, L) and T′ = (V ′, E ′, L′)
be RSTs with V ∩ V ′ = ∅, and let x ∈ LeafT such that tTx = tT

′

rT
′ . Then we have

| Ext(T, x,T′)|Leaf ≤ |T|Leaf . Moreover, |T|Leaf = | Ext(T, x,T′)|Leaf iff |T′|Leaf = 1.
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Proof. We have

| Ext(T, x,T′)|Leaf = |T|Leaf − pT
x + pT

x · |T′|Leaf ≤ |T|Leaf − pT
x + pT

x · 1 = |T|Leaf

with equality iff |T′|Leaf = 1. ■

Corollary 4.2.14 (Full Extension Lemma). Let T be an RST, let H ⊆ LeafT, and (Tx)x∈H

be a family of RSTs such that Tx = (Vx, Ex, Lx), tTx = tTx

rTx for all x ∈ H and with
pairwise disjoint node sets. Then we have | FamExt(T, (Tx)x∈Leaf)|Leaf ≤ |T|Leaf . Moreover,
|T|Leaf = | FamExt(T, (Tx)x∈Leaf)|Leaf iff |Tx|Leaf = 1 for all x ∈ H.

Proof. We have
| FamExt(T, (Tx)x∈H)|Leaf

= |T|Leaf − |T|H + ∑
x∈H pT

x · |Tx|Leaf
≤ |T|Leaf − |T|H + ∑

x∈H pT
x · 1

= |T|Leaf − |T|H + ∑
x∈H pT

x

= |T|Leaf − |T|H + |T|H
= |T|Leaf

with equality iff |Tx|Leaf = 1 for all x ∈ H. ■

Lemma 4.2.15. Let T be an RST. Then we have |T|Leaf = 1 iff for all induced sub RSTs
T′ we have |T′|Leaf = 1.

Proof. Let T = (V, E, L) be an RST. If every induced sub RST T′ converges with
probability 1, then we know that also the induced sub RST T[V ] = T converges with
probability 1. For the other direction, assume that |T|Leaf = 1 and let T′ be an arbitrary
induced sub RST of T. Then there exists a set W with T′ = T[W ] satisfying the conditions
of Definition 4.2.3. Let w ∈ W be the root of T[W ] and let Tw be the induced sub RST
that starts with w and contains every (not necessarily direct) successor of w. To be precise,
let wE∗ := {y ∈ V | (z, y) ∈ E∗} be the set of all (not necessarily direct) successor of
w, including w itself. Here, by E∗, we denote the transitive and reflexive closure of E.
Then we have Tw := T[wE∗]. wE∗ satisfies the conditions of Definition 4.2.3 since it is
non-empty, weakly connected, and it contains every direct successor for each contained
node. Note that we must have |Tw|Leaf = 1. The reason is that if we had |Tw|Leaf < 1, then

|T|Leaf
= ∑

x∈LeafT pT
x

= ∑
x∈LeafT \wE∗ pT

x + ∑
x∈Leaf ∩wE∗ pT

x

= ∑
x∈LeafT \wE∗ pT

x + ∑
x∈LeafTw pT

x

= ∑
x∈LeafT \wE∗ pT

x + ∑
x∈LeafTw pT

w · pTx
pTw

= ∑
x∈LeafT \wE∗ pT

x + ∑
x∈LeafTw pT

w · pTw
x

= ∑
x∈LeafT \wE∗ pT

x + pT
w · ∑

x∈LeafTw pTw
x

= ∑
x∈LeafT \wE∗ pT

x + pT
w · |Tw|Leaf

<
∑

x∈LeafT \wE∗ pT
x + pT

w · 1
= ∑

x∈LeafT \wE∗ pT
x + pT

w

= ∑
x∈LeafT \wE+ pT

x

= ∑
x∈LeafT[V \wE+] pT[V \wE+]

x

= |T[V \ wE+]|Leaf
≤ 1

which is a contradiction to |T|Leaf = 1. Here, T[V \ wE+] is the grounded induced sub
RST of T, where we remove everything below w. As always, E+ denotes the transitive
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closure of E, and hence wE+ is the set of all (not necessarily direct) successors of w.
Again, V \ wE+ is non-empty, weakly connected, and we remove either all successors of a
node or none, so it satisfies the conditions of Definition 4.2.3.
Since Tw is a family extension of T′, we get 1 = |Tw|Leaf ≤ |T′|Leaf ≤ 1 by the full extension
lemma (Corollary 4.2.14) so that |T′|Leaf = 1. ■

Now we analyze the connection between i
⇒R-rewrite sequences and RSTs. Note that there

are RSTs, that do not represent any i
⇒R-rewrite sequence. The reason for that is that the

definition of an RST does not depend on any PTRS R. In fact, we have no restriction
regarding the occurring terms in the labeling. Therefore, we introduce a refined version of
an RST, namely an innermost R-Computation Tree.
Definition 4.2.16 (Innermost R-Computation Tree). Let T = (V, E, L) be a RTS. We call
T an innermost R-Computation Tree iff the following condition hold:

(a) For every x ∈ V with xE = {y1, . . . , yk} ≠ ∅ we have tx
i→R {py1

px
: ty1 , . . . ,

pyk

px
: tyk

}

All of our constructions do not change the terms in the label of the nodes, and also,
the ratio of py to px remains the same for every node x and successor y. Hence, the
constructions also work for innermost R-computation trees and not just RSTs.
Corollary 4.2.17. Induces sub RSTs, extensions, and family extensions of innermost
R-computation trees are innermost R-computation trees again.

Proof. It is straightforward to see that all of the properties of Definition 4.2.16 hold since
they hold for all of the initial innermost R-computation trees. ■

We can now redefine innermost almost-sure termination PTRSs in terms of innermost
computation trees.
Definition 4.2.18 (Innermost AST (2)). We call R innermost almost-surely terminating
(innermost AST) iff every innermost R-computation tree converges with probability one,
i.e., for every innermost R-computation tree T we have |T|Leaf = 1.

Next, we show that both of our definitions for innermost AST are equivalent. Before we
do this, we prove that if a PTRS is not innermost AST, then there is also an infinite i⇒R-
rewrite sequence (µk)k∈N with a single start term (i.e., µ0 = {1 : t} for some t ∈ T (Σ, V))
that converges with probability < 1. This is the reason why we only defined R-computation
trees and not R-computation forests.
Lemma 4.2.19. Suppose that there exists an infinite i⇒R-rewrite sequence (µk)k∈N that
converges with probability < 1. Then there is also an infinite i⇒R-rewrite sequence (µ′

k)k∈N
with a single start term (i.e., µ′

0 = {1 : t} for some t ∈ T (Σ, V)) that converges with
probability < 1.

Proof. Let (µk)k∈N be an i⇒R-rewrite sequence that converges with probability < 1.
Suppose that we have µ0 = {p1 : t1, . . . , pk : tk}. Let {1 : ti}k∈N denote the infinite
i⇒R-rewrite sequence that uses the same rules as µ does on the term ti for every 1 ≤ i ≤ k.

Assume for a contradiction that for every 1 ≤ i ≤ k the i
⇒R-rewrite sequence {1 : ti}k∈N
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converges with probability 1. Then we would have

|µ∞|R = limk→∞
∑

(p:t)∈µk∧t∈NFR p
= limk→∞

∑
1≤i≤k pi · ∑

(p:t)∈{1:ti}k∧t∈NFR p
= ∑

1≤i≤k pi · limk→∞
∑

(p:t)∈{1:ti}k∧t∈NFR p
= ∑

1≤i≤k pi · |{1 : ti}∞|R
= ∑

1≤i≤k pi · 1
= ∑

1≤i≤k pi

= 1

which is a contradiction to our assumption that we have |µ∞|R < 1. Therefore, we have at
least one 1 ≤ i ≤ k such that {1 : ti}k∈N converges with probability < 1. ■

Lemma 4.2.20. There exists an infinite i
⇒R-rewrite sequence (µk)k∈N with |(µk)k∈N|R < 1

iff there exists an innermost R-computation tree T with |T|Leaf < 1.

Proof.

“⇒” Assume that there exists a i⇒R-rewrite sequence (µk)k∈N that converges with
probability < 1. By Lemma 4.2.19 we may assume that we have µ0 = {1 : tr}
for some term tr ∈ T (Σ, V).
We will now create the corresponding tree representation for this rewrite sequence.
This is the construction we applied to the rewrite sequence in Example 4.1.6 to get
the tree representation in Example 4.2.1. To do so, we recursively define an innermost
R-computation tree Ti = (Vi, Ei, Li) for every i ∈ N. During this construction, we
will have for every (p : t) ∈ µi a (unique) corresponding leaf x(p:t) in Ti labeled
Li(x(p:t)) = (p : t). Additionally, Ti+1 will be an extension of Ti for every i ∈ N.
We start with a single root V0 = {r}, an empty set of edges E0 = ∅ and the labeling
L(r) := (1 : tr). Here, the properties are clearly satisfied.
Suppose we have already defined the innermost R-computation tree Ti for some
i ∈ N. We partition µi into the multisets µi = ZNF ⊎ Zrew. Here, ZNF contains all
pairs (p : t), were the term t is in normal form w.r.t. R, and Zrew contains all pairs
(p : t), were the term t is not in normal form w.r.t. R.
For each (p : t) ∈ ZNF, we have a (unique) leaf x(p:t) in Ti labeled Li(x(p:t)) = (p : t),
by our induction hypothesis. Since t is in normal form w.r.t. R, we get (p : t) ∈ µi+1.
For our leaf in Ti, we do nothing as normal forms remain leaves in an innermost
R-computation tree.
For each (p : t) ∈ Zrew, we again have a (unique) leaf
x(p:t) in Ti labeled Li(x(p:t)) = (p : t), by our induction
hypothesis. Since t is not in normal form w.r.t. R,
we can find a {p1 : t1, . . . , pk : tk} ∈ FDist(T (Σ, V))
such that {p · p1 : t1, . . . , p · pk : tk} ⊆ µk+1 and
t i→R {p1 : t1, . . . , pk : tk}. Let Tx(p:t) be the innermost
R-computation tree depicted on the right.

Tx(p:t)

1 : t

p1 : t1 . . . pk : tk

We set Ti+1 := FamExt(Ti, (Tx(p:t))(p:t)∈Zrew). Here, we assume w.l.o.g. that every
occurring tree has a pairwise disjoint node-set. It remains to show that our induction
hypothesis is again satisfied for i + 1. Let (p : t) ∈ µi+1. If t is in normal
form w.r.t. R and the pair was already contained in µi, then by our induction
hypothesis, there is a (unique) leaf x(p:t) in Ti labeled Li(x(p:t)) = (p : t). This
leaf is also a leaf in Ti+1 = FamExt(Ti, (Tx(p:t))(p:t)∈Zrew) so that our property
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holds in this case. Otherwise, there exists a (unique) pair (p′ : t′) ∈ µi such
that t′ i→R {p1 : t1, . . . , pk : tk}, {p′ · p1 : t1, . . . , p′ · pk : tk} ⊆ µk+1, p = p′ · pj, and
t = tj for some 1 ≤ j ≤ k. This means that there exists a (unique) leaf x(p′,t′) in Ti

labeled Li(x(p′,t′)) = (p′ : t′) by our induction hypothesis. Now let yj be the j-th
successor of x(p′,t′) in Tx(p′,t′) . We have

pTi+1
yj

= p
FamExt(Ti,(Tx(p,t) )(p,t)∈Zrew )
yj = p

Tx(p′,t′)
yj = pTi

x(p′,t′)
· p

Tx(p′,t′)
yj = p′ · pj = p

and
tTi+1
yj

= t
FamExt(Ti,(Tx(p,t) )(p,t)∈Zrew )
yj = t

Tx(p′,t′)
yj = tj = t

and hence our property is again satisfied.
In the end, we set T := limi→∞ Ti. This is an innermost R-computation tree again.
First of all, T is a directed tree again. Every other property of an innermost R-
computation tree is a local property regarding the nodes of the tree. Since every Ti

is an innermost R-computation tree, and since after the i-th iteration of our creation,
we do not change the nodes with a depth of less than i anymore, we know that T
must be an innermost R-computation tree as well. Furthermore, note that we have
|T|Leaf = |µ∞|R, since

|T|Leaf = lim
i→∞

∑
x∈LeafTi ,tx∈NFR

px = lim
i→∞

∑
(p:t)∈µi,t∈NFR

p = lim
i→∞

|µi|R = |µ∞|R

Hence, we have |T|Leaf = |µ∞|R < 1.

“⇐” Assume that there exists an innermost R-rewrite sequence T = (V, E, L) that
converges with probability < 1. W.l.o.G. we may assume that the following condition
holds:

for every leaf x ∈ Leaf, the corresponding term tx is in normal form w.r.t. R.
(4.12)

If there exists a leaf x ∈ Leaf such that the corresponding term tx is not in normal
form w.r.t. R, then we can use arbitrary rewrite steps to completely evaluate it, and
this can not increase the convergence probability of our tree T. Let H ⊆ Leaf be the
set of leaves, where the corresponding term tx is not in normal form w.r.t. R. For
each x, let Tx be an arbitrary innermost R-computation tree that satisfies (4.12).
The family extension FamExt(T, (Tx)x∈H) now also satisfies (4.12) and due to the
full extension lemma, we have | FamExt(T, (Tx)x∈H)|Leaf ≤ |T|Leaf < 1.
We will now inductively construct an infinite i⇒R-rewrite sequence (µk)k∈N such that
|µ∞|R = |T|Leaf < 1. During this construction, we will have for every leaf x(p:t) in
T[D(i)] that is labeled L(x(p:t)) = (p : t) a (unique) pair (p : t) ∈ µi. Here, for every
k ∈ N we define D(k) := {x ∈ W | d(x) ≤ k} to be the set of all nodes in W that
have a depth less or equal to k.
In the induction base, we have D(0) = {r} and LT(r) = (1 : tr) for some tr ∈ T (Σ, V).
Hence, we start our rewrite sequence with µ0 = {1 : tr} and our property is satisfied.
For the inductive step, assume that we have already defined the finite rewrite sequence
(µk)k≤i such that for every leaf x(p:t) in T[D(i)] that is labeled L(x(p:t)) = (p : t)
there is a (unique) pair (p : t) ∈ µi. We now define the (i + 1)-th step for the rewrite
sequence, i.e., we define µi+1. If x ∈ LeafT[D(i)] is also a leaf in T, then tx is in normal
form w.r.t. R and we keep the pair (px, tx) ∈ µi+1 in the next multi-distribution of
our rewrite sequence. If x ∈ LeafT[D(i)] is not a leaf in T, then tx is not in normal
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form w.r.t. R, as T satisfies (4.12). Since the edges of the tree, together with the
labeling, represent valid i→R steps, we have

tx
i→R {py1

px
: ty1 , . . . ,

pyk

px
: tyk

}

with xE = {y1, . . . , yk}. We now set (py1 : ty1) ∈ µi+1 for all 1 ≤ j ≤ k.
It remains to show that our induction hypothesis is still satisfied for µi+1. Let
x(p:t) ∈ LeafT[D(i+1)] be a leaf in T[D(i + 1)] that is labeled L(x(p:t)) = (p : t). If x(p:t)

was already a leaf inside the previous tree (i.e., x(p:t) ∈ LeafT[D(i)]), then we can find
a (unique) pair (p : t) ∈ µi by our induction hypothesis. Since T satisfies (4.12) we
know that t must be in normal form w.r.t. R and hence we also get (p : t) ∈ µi+1.
Otherwise, the node x was not contained in D(i). Let z be the predecessor of x in
T. Since T is an innermost R-computation tree, we have

tz
i→R {py1

pz
: ty1 , . . . ,

pyk

pz
: tyk

}

with zE = {y1, . . . , yk} and x = yj for some 1 ≤ j ≤ k. By our induction hypothesis,
we find a (unique) pair (pz, tz) ∈ µi and by construction, we have (py1 : ty1) ∈ µi+1
for all 1 ≤ j ≤ k. Hence, our induction hypothesis is again satisfied.
In the end, we have (µk)k∈N as an infinite i

⇒R-rewrite sequence, such that

|µ∞|R = lim
i→∞

|µi|R = lim
i→∞

∑
(p:t)∈µi,t∈NFR

p = lim
i→∞

∑
x∈LeafT[D(i)],tx∈NFR

px = |T|Leaf

and thus |µ∞|R = |T|Leaf < 1. ■

Finally, we prove our witness theorem for PTRS. This will be done in terms of innermost
R-computation trees.
Theorem 4.2.21 (Witness Theorem for PTRS). If R is not innermost AST then there
exists an innermost R-computation tree T that converges with probability < 1 and starts
with (1 : t) such that t = ℓσ for some rule ℓ → r ∈ R and some substitution σ ∈ Sub (Σ, V),
and every proper subterm of ℓσ is in normal form w.r.t. R.

We split the proof of this theorem into several smaller parts. In the non-probabilistic
setting, we are able to prove such a witness theorem using a minimality argument. This is
not possible anymore for PTRS, as such a minimality argument does not talk about the
occurring probabilities so that the minimal term that starts a i

⇒R-rewrite sequence that
is not AST does not have to be the left-hand side of a rewrite rule.
In the non-probabilistic setting, we know that for a given term t ∈ T (Σ, V) and a
terminating TRS, there can only be a finite number of different rewrite sequences that
start with t. This is due to the fact that our TRS only has finitely many rules and
that every term only has finitely many positions where we can apply a rewrite rule. A
similar statement holds for PTRSs and almost-sure termination. Here, for a given term
t ∈ T (Σ, V), and every 0 < ε ≤ 1, we can find a natural Nt such that for all i⇒R-rewrite
sequences (µk)k∈N that start with (1 : t), we have |µNt |R > 1 − ε. This means that the
natural number Nt is the same for all i

⇒R-rewrite sequences that start with {1 : t}.
Lemma 4.2.22. Let t ∈ T (Σ, V). Assume that every i⇒R-rewrite sequence (µk)k∈N that
starts with µ0 = {1 : t} converges with probability 1. Then for every 0 < ε ≤ 1 there is a
natural number N ∈ N such that |µN |R > 1 − ε holds for all such i

⇒R-rewrite sequences.
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Proof. Let t ∈ T (Σ, V). Assume that every i⇒R-rewrite sequence (µk)k∈N that starts with
µ0 = {1 : t} converges with probability 1. Let ε > 0. We assume for a contradiction that
for every natural number N ∈ N we can find a i⇒R-rewrite sequence (µ(N)

k )k∈N that starts
with µ

(N)
0 = {1 : t} such that |µ(N)

N |R ≤ 1 − ε. Then, we can construct a i⇒R-rewrite
sequence (µ′

k)k∈N that starts with µ′
0 = {1 : t} such that |µ′

N |R ≤ 1 − ε for all N ∈ N, and
hence we have |µ′

∞| ≤ 1 − ε, which is a contradiction to our assumption that it converges
with probability 1.
We inductively construct an infinite tree T that is finitely branching such that every
path through this tree represents a valid i⇒R-rewrite sequence that starts with (1 : t).
Additionally, we will construct it in a way such that every node inside this tree represents
a multi-distribution ν that satisfies |ν|R ≤ 1 − ε. Let µ0 = {1 : t} be the root of T . Here,
we must have |{1 : t}|R ≤ 1 − ε by our assumption that |µ(0)

0 |R ≤ 1 − ε and µ
(0)
0 = {1 : t}.

In the induction step, assume that we have already constructed the tree up to the i-th
depth. For each node ν in the i-th depth, let Zν be the set of all possible distributions ν ′

such that ν
i⇒R ν ′. Note that Zν is finite, as there are only finitely many different rules

that we can apply with finite support, ν itself has only finite support, and there are only
finitely many positions for each term in the support of ν that we can use for the rewrite
step. We add every distribution ν ′ ∈ Zν with |ν ′|R ≤ 1 − ε to the i + 1-th depth of our
tree and add an edge from ν to ν ′.
Note that for all N ∈ N the N -th depth of the tree is non-empty due to our assumption
that for every natural number N ∈ N there exists a i⇒R-rewrite sequence that starts with
µ

(N)
0 = {1 : t}k∈N such that |µ(N)

N |R ≤ 1 − ε. This implies |µ(N)
n |R ≤ 1 − ε for every n < N ,

which means our tree has a path of length N for every N ∈ N.
Now we have an infinite tree that is finitely branching, which means that the tree has an
infinite path by König’s Lemma. This path represents our desired i

⇒R-rewrite sequence
that does not converge with probability 1, which is a contradiction. ■

In terms of computation trees, this means that for a given term t ∈ T (Σ, V), and every
0 < ε ≤ 1, we can find a depth Nt ∈ N such that for all innermost R-computation trees T
that start with (1 : t), we have ∑

x∈Leaf,d(x)≤Nt
> 1 − ε.

Lemma 4.2.23. Let t ∈ T (Σ, V). Assume that every innermost R-computation tree T
that starts with µ0 = (1 : t) converges with probability 1. Then for every 0 < ε ≤ 1 there is
a natural number Nt ∈ N such that ∑

x∈LeafT,dT(x)≤Nt
> 1 − ε holds for all such innermost

R-computation trees T.

Proof. Assume for a contradiction that there exists an innermost R-computation tree Tk

that starts with µ0 = (1 : t) and such that ∑
x∈LeafT,dT(x)≤k ≤ 1 − ε for every k ∈ N. For

every k ∈ N, we can create a i⇒R-rewrite sequence (µ(k)
i )i∈N that starts with (1 : t) such

that |µ(k)
k |R ≤ 1 − ε. Here, we use the construction from the proof of Lemma 4.2.20. But

this would mean that there exists a i⇒R-rewrite sequence (µ(k)
i )i∈N that starts with (1 : t)

such that |µ(k)
k |R ≤ 1 − ε for every k ∈ N and this is a contradiction to Lemma 4.2.22. ■

We can now use this fact for our proof of the witness theorem.

Proof of Theorem 4.2.21. We will prove the contraposition. This proof follows the same
structure as the proof for Theorem 2.1.23. In this case, we talk about computation
trees instead of rewrite sequences, and the inductive step is a lot harder compared to
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Theorem 2.1.23 due to the fact that we are not talking about the existence or absence of
an infinite path but about the value of the convergence probability in the limit.
Assume that every innermost R-computation tree T that starts with (1 : t) such that
t = ℓσ for some rule ℓ → r ∈ R, some substitution σ ∈ Sub (Σ, V), and where every proper
subterm of ℓσ is in normal form w.r.t. R, converges with probability 1. We now prove
that then also every innermost R-computation tree T that starts with (1 : t) for some
arbitrary t ∈ T (Σ, V) converges with probability 1, and thus R is innermost AST. This
will be proven by structural induction over the term t.
If t is in normal form, then obviously every innermost R-computation tree T that starts
with (1 : t) converges with probability 1. If t = ℓσ for some rule ℓ → r ∈ R and some
substitution σ ∈ Sub (Σ, V) such that every proper subterm of ℓσ is in normal form w.r.t.
R, then we know by our assumption that every innermost R-computation tree T that
starts with (1 : t) converges with probability 1.
Now we regard the induction step, and assume that t = f(q1, . . . , qn). Here, our induction
hypothesis is that every innermost R-computation tree T that starts with (1 : qi) for some
1 ≤ i ≤ n converges with probability 1. Due to the innermost evaluation strategy, we
can only rewrite at the root position if every proper subterm is in normal form w.r.t. R.
Hence, we will first prove that every innermost R-computation tree T that starts with
(1 : t) converges with probability 1 assuming that we do not perform rewrite steps at the
root position and then allow arbitrary rewrite steps in a second step. To be precise, we
first show that every ¬εi−→R-computation tree T that starts with (1 : t) converges with
probability 1. Here, an ¬εi−→R-computation tree is an innermost R-computation tree, where
every node, together with its successors and the labeling, represents a rewrite step with
¬εi−→R. Remember that ¬εi−→R denotes the restriction of i→R that prohibits rewrite steps at
the root position.
Note that if we rewrite a term qi to {p1 : qi,1, . . . , pk : qi,k}, then we get a distribution
{p1 : f(q1, . . . , qi,1, . . . , qn), . . . , pk : f(q1, . . . , qi,k, . . . , qn)}. Now, the terms qj with j ̸= i
occur multiple times in this distribution, and we may use different rules to rewrite
them. Hence, the order in which we rewrite the different qi matters and cannot be
arbitrarily chosen (as seen in Example 4.1.15). Again, the main difference to the proof
of Theorem 2.1.23 is that we are working with almost-sure termination instead of sure
termination. We now have to estimate the probability of termination instead of proving
the non-existence of an infinite path. All in all, we have the following steps for the proof
of the induction step:

1) We show that every ¬εi−→R-computation tree T that starts with (1 : t) converges with
probability 1. In order to do this, we will

1.1) Cut T at a specific point to get TC

1.2) Partition the leaves LeafTC = ZLeaf ⊎ Z1 ⊎ . . . ⊎ Zn

1.3) Prove that the sum of probabilities in Zi for each 1 ≤ i ≤ k is small enough. In
order to do this, we

1.3.1) Transform TC into T
(i)
C

1.3.2) Introduce the general idea of Split(T(i)
C , i)

1.3.3) Create Split(T(i)
C , i)

2) Then, we additionally allow rewrite steps at the root position and show that every
R-computation tree T that starts with (1 : t) converges with probability 1.

50



4.2. Computation Trees

1) Every ¬εi−→R-computation tree T converges with probability 1.
Assume for a contradiction that there exists a ¬εi−→R-computation tree T = (V, E, L) that
starts with (1 : f(q1, . . . , qn)) and converges with probability < 1. We now prove that for
every 0 < δ < 1 we can find an H ∈ N such that ∑

x∈LeafT,d(x)≤H > 1 − δ, which means
that |T|Leaf = limk→∞

∑
x∈LeafT,d(x)≤k = 1, which is our desired contradiction.

Let 0 < δ < 1. We define an additional function pif : V \ Leaf → {1, . . . , n}, called the
position indicator function, that maps every inner node x ∈ V \ Leaf to i ∈ {1, . . . , n}
iff the labeling together with the edge relation represents a rewrite step below position i.
The position pif(x) is called the position indicator for the inner node x.
We will illustrate the ideas throughout this proof using the following Rrw-computation
tree F for the PTRS Rrw from Example 4.1.4, that does not use rewrite steps at the root
position. Here, f is some arbitrary symbol of arity 2.

1 : f(rd(2), rd(2))

1
2 : f(rd(2), rd(3)) 1

2 : f(rd(2), rd(1))

1
4 : f(rd(3), rd(3))

1
4 : f(rd(1), rd(3))

1
4 : f(rd(2), rd(2))

1
4 : f(rd(2), rd(0))

. . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.4: Example tree F. The used redex for every rewrite step is highlighted in green.

2

1 2

2 2 1 2

. . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.5: Example tree F again, but nodes are replaced by their corresponding position
indicator.

In Figure 4.4 one can see the actual computation tree and in Figure 4.5, we have the same
tree, but we write the corresponding position indicator instead of the labeling for every
node.

1.1) Cut the computation tree at a specific point to get TC

The first idea is to cut the edges of T at specific points so that we result in a finite, grounded
induced sub RST TC of some height H. By our induction hypothesis, we know that every
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4. Probabilistic Term Rewriting

rewrite sequence that starts with {1 : qi} for some 1 ≤ i ≤ n converges with probability 1.
Thus, by Lemma 4.2.23 we can find an Ni ∈ N such that ∑

x∈LeafT,dT(x)≤Ni
> 1 − α with

α := δ
n

for all innermost R-computation trees T that start with (1 : qi), for all 1 ≤ i ≤ n.
We will cut the tree T after the (N1 + 1)-th node with position indicator 1 on every path.
Next, we proceed with this cut tree and repeat the same construction for every 2 ≤ i ≤ n.
This results in a finite, grounded, induced sub RST TC = (VC, EC, L|VC ) of some height H,
since every number from {1, . . . , n} can only occur finitely often as the position indicator
in a path.

In Figure 4.6 one can see the idea of this cut. The tree
FC results from F from Figures 4.4 and 4.5 after the
cut and if we assume for simplicity that N1 = 1 and
N2 = 1. Note that the values N1 and N2 are not the
correct values for this tree, but they are just used to
visualize the construction.

2

1 2

2 2

Figure 4.6: FC

1.2) Partition the leaves LeafTC = ZLeaf ⊎ Z1 ⊎ . . . ⊎ Zn

For all 1 ≤ i ≤ n we define Zi := {x ∈ LeafTC | pif(x) = i} to be the set of all leaves
that have a position indicator of i. Furthermore, let ZLeaf := {x ∈ LeafTC | x ∈ LeafT} be
the set of all leaves that are also leaves in T. Note that a leaf x in our cut tree TC must
either have a position indicator pif(x) = i for some 1 ≤ i ≤ n and hence x ∈ Zi, or x has
no position indicator, which means that x was already a leaf in T and hence x ∈ ZLeaf .
Therefore, we have

LeafTC = ZLeaf ⊎ Z1 ⊎ . . . ⊎ Zn (4.13)

Since every node x ∈ ZLeaf has a depth that is less or equal to H and is a leaf in T, we
have ZLeaf ⊆ {x ∈ LeafT | d(x) ≤ H}, where the subset relation may be a proper one, as
we may cut before reaching a leaf of depth at most H. Therefore, we have

∑
x∈LeafT ∧ d(x)≤H

px ≥
∑

x∈ZLeaf

px (4.14)

Furthermore, we have |TC|Leaf = ∑
x∈LeafTC px = 1, since the tree TC is finite. All in all, we

get ∑
x∈LeafT,d(x)≤H px

≥ ∑
x∈ZLeaf px

(by (4.14))
= 1 − ∑

x∈LeafTC \ZLeaf
px

(as ∑
x∈LeafTC px = 1 and ZLeaf ⊆ LeafTC )

= 1 − ∑
x∈

⋃
1≤i≤n

Zi
px

(as LeafTC \ZLeaf = ⋃
1≤i≤n Zi)

= 1 − ∑
1≤i≤n

∑
x∈Zi

px

(as the Zi are all pairwise disjoint)

If we are able to show that ∑
x∈Zi

px < α (4.15)
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holds for each 1 ≤ i ≤ n, then we would get

1 − ∑
1≤i≤n

∑
x∈Zi

px

> 1 − ∑
1≤i≤n α

(by (4.15))
= 1 − n · α
= 1 − n · δ

n

= 1 − δ,

And thus ∑
x∈LeafT,d(x)≤H px > 1 − δ, which is what we wanted to show. Hence, it remains

to prove ∑
x∈Zi

px < α.

1.3) Prove that the sum of probability for each Zi is small enough
Fix some 1 ≤ i ≤ n. We now want to show that ∑

x∈Zi
px < α (4.15) holds. Remember

that Zi only contains nodes x ∈ VC with pif(x) = i and where the path from the root to
x contains (Ni + 1)-th times the position indicator i.

1.3.1) Transform TC into T
(i)
C

We start by transforming TC into T
(i)
C . Let T

(i)
C = (VC, EC, L

(i)
C ) be the RST with labeling

L
(i)
C (x) = (pT

x , tTx |i) for all x ∈ VC. This means that we have the same tree structure and
the same probabilities but only use the subterm at position i for every node.

1 : f(rd(2), rd(2))

1
2 : f(rd(2), rd(3)) 1

2 : f(rd(2), rd(1))

1
4 : f(rd(3), rd(3) 1

4 : f(rd(1), rd(3))

Figure 4.7: FC with the real labeling again.

1 : rd(2)

1
2 : rd(3) 1

2 : rd(1)

1
4 : rd(3) 1

4 : rd(3)

Figure 4.8: F
(2)
C with adjusted labeling.

As you can see in Figure 4.8, the tree T
(i)
C does not have to be an innermost R-computation

tree anymore. At every node with position indicator j ̸= i, the subterm at position i stays
the same. This means that we have certain nodes that split the same term into multiple
ones with a certain probability, and afterward, we can apply different rules to the different
copies.
If we assume for simplicity that every node in T

(i)
C has the position indicator i, which

means that we only rewrite at a position below i, then T
(i)
C is a R-computation tree that
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starts with (1 : qi). Hence, we have ∑
x∈LeafT,dT(x)≤Ni

px > 1 − α (4.16)

by definition of Ni. Furthermore, we have LeafT
(i)
C = LeafTC = ZLeaf ⊎ Zi, so that∑

x∈Zi

px = 1 −
∑

x∈ZLeaf

px = 1 −
∑

x∈LeafT,dT(x)≤Ni

px < 1 − (1 − α) = α

However, if we have multiple different position indicators as in Figure 4.6, then T
(i)
C is not

a R-computation tree that starts with (1 : qi), but we can transform it into multiple ones
with a certain probability.

1.3.2) Introduce the general idea of Split(T(i)
C , i)

In order to show (4.15) in the general case, we use a double counting argument. Instead
of directly counting the probabilities for every node x ∈ Zi, we create a set Split(T(i)

C , i)
containing pairs (pT , T ) of a probability pT ∈ (0, 1] and an innermost R-computation tree
T that start with (1 : qi). Additionally, T will only contain nodes that have the position
indicator i. Then we count the probability for all those trees multiplied by their probability
for the nodes in Zi.
In order to create the set Split(T(i)

C , i), we will iteratively remove the nodes with a position
indicator j ̸= i from our tree and then split the tree into multiple ones.

2
1

1

1
2

2

1
2

2

1
4

2

1
4

1
2

1
2

1
2

1
2

Figure 4.9: The tree F
(2)
C with the probabilities of the nodes (blue) and the probabilities

for the edges (red), implicitly defined by the used rewrite rules.

2
1

1 2

1
2

1
2 :

2

1
2

2
(a) T1

2
1

1 2

1
2

1
2 :

2 2

1
2

(b) T2

Figure 4.10: The set Split(F(2)
C , 2) = {(1

2 , T1), (1
2 , T2)}.

In Figure 4.9 you can see the example tree after the cut from before. This time, we added
the precise probabilities to the nodes and edges. In order to compute ∑

x∈L2 px for this
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tree, we want to extract the possible innermost R-computation trees that only contain
nodes with a position indicator 2 and their corresponding probabilities. In Figure 4.10 one
can then see the trees and their probabilities from Split(FC, 2). For the node with position
indicator 1, we have a rewrite step that takes place at a position orthogonal to 2. Hence,
this rewrite step is not of any importance for the subterm below position 2, and we can
either directly move to the left or right successor. If we do such a split of the tree, we
need to extract the probability for this rewrite step out of the tree.
Now to the formal construction of Split(T(i)

C , i). We want to have the following properties:

(1.) ∑
(pT ,T )∈Split(T(i)

C ,i) pT = 1. This means that the sum of the probabilities for all possible
innermost R-computation trees in Split(T(i)

C , i) is one.

(2.) For every (pT , T ) ∈ Split(T(i)
C , i), we have ∑

x∈Zi
p(T,x) < α, where

p(T,x) =
pT

x if x ∈ V T ,

0 otherwise.

This means that for each tree in Split(T(i)
C , i) the probability for all nodes inside of

Zi is strictly smaller than α.

(3.) For all x ∈ VC we have pTC
x = ∑

(pT ,T )∈Split(T(i)
C ,i) pT · p(T,x) This means that the

probability for node x in our cut tree TC is equal to the sum over all trees T that
contain x, where we multiply the probability of the tree T by the probability of node
x in T .

If all of these properties are satisfied, then we have∑
x∈Zi

pTC
x

= ∑
x∈Zi

∑
(pT ,T )∈Split(T(i)

C ,i) pT · p(T,x)

(by 3.)
= ∑

(pT ,T )∈Split(T(i)
C ,i)

∑
x∈Zi

pT · p(T,x)

= ∑
(pT ,T )∈Split(T(i)

C ,i) pT · ∑
x∈Zi

p(T,x)

<
∑

(pT ,T )∈Split(T(i)
C ,i) pT · α

(by 2.)
= α · ∑

(pT ,T )∈Split(T(i)
C ,i) pT

(by 1.)
= α · 1
= α

so that (4.15) is satisfied and this would end the proof. It remains to construct Split(T(i)
C , i).

1.3.3) Create Split(T(i)
C , i)

We will now recursively remove all nodes with a position indicator j ̸= i and construct a
set M that satisfies the following properties.

(a) ∑
(pT ,T )∈M pT = 1.

(b) T is an RST for all (pT , T ) ∈ M .

(c) For all x ∈ VC with pif(x) = i we have pTC
x = ∑

(pT ,T )∈M pT · p(T,x).
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We start with M := {(1,T
(i)
C )}. Here, we clearly have all of the three properties satisfied.

Now, assuming that there is still a tree t ∈ M that contains a node v ∈ V t with a position
indicator j ̸= i that is not a leaf in t. We will now split t into multiple trees that do not
contain v anymore but move directly to one of its successors.
First, assume that v is not the root of t. Let vEt = {w1, . . . , wm} be the direct successors
of v in t and let z be the predecessor of v in t. Instead of one tree t with the edges
(z, v), (v, w1), . . . , (v, wm), we split the tree into m different trees t1, . . . , tm such that for
every 1 ≤ h ≤ m the tree th contains a direct edge from z to wh. In addition to that, the
unreachable nodes get removed, and we also have to adjust the probabilities of all (not
necessarily direct) successors of wh (including wh itself) in th.

z

v

w1 . . . wm

⇝

z

v

w1 . . . wm

. . .

z

v

w1 . . . wm

Figure 4.11: Splitting node v to create m-different trees, where we directly move to one of
its successors

To be precise, we set th := (V th , Eth , Lth), with

V th := (V t \ v(Et)∗) ∪ wh(Et)∗

Eth := (E \ (v(Et)∗ × v(Et)∗)) ∪ {(z, wh)} ∪ (E ∩ (wh(Et)∗ × wh(Et)∗))

Furthermore, let ph := ptwh

ptv
. Then, the labeling is defined by

Lth(x) =
( 1

ph
· pt

x, ttx) x ∈ wh(Et)∗,

(pt
x, ttx) otherwise.

Note, that ∑
1≤h≤m

ph =
∑

1≤h≤m

ptwh

ptv
= 1

ptv
·

∑
1≤h≤m

pt
wh

= 1
ptv

· pt
v = 1 (4.17)

since t is an RST by induction hypothesis.
If v is the root of t, then we do the same construction, but we have no predecessor z of
v and directly start with the node wh as the new root. Hence, we have to use the edge
relation

Eth := (E ∩ (wh(Et)∗ × wh(Et)∗))

and the rest stays the same.
In the end, we set

M ′ := M \ {(pt, t)} ∪ {(pt · p1, t1), . . . , (pt · pm, tm)}

This construction is exactly what we are doing in Figure 4.9 and Figure 4.10 for the only
node with position indicator 1. It remains to prove that our induction hypothesis is still
satisfied for M ′.
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(a) We have
∑

(pT ,T )∈M ′ pT

= ∑
(pT ,T )∈M\{(pt,t)} pT + ∑

(pT ,T )∈{(pt·p1,t1),...,(pt·pm,tm)} pT

= ∑
(pT ,T )∈M\{(pt,t)} pT + ∑

1≤j≤m pt · pj

= ∑
(pT ,T )∈M\{(pt,t)} pT + pt · ∑

1≤j≤m pj

= ∑
(pT ,T )∈M\{(pt,t)} pT + pt · 1 (by (4.17))

= ∑
(pT ,T )∈M\{(pt,t)} pT + pt

= ∑
(pT ,T )∈M pT

IH= 1

(b) Let 1 ≤ h ≤ m. We have to prove that th is an RST. We constructed th by skipping
the node v in t and directly moving from z to wh (or starting with wh if v was the
root node). Hence, (V th , Eth) is still a finitely branching, directed tree. Let x ∈ V th

with xEth ̸= ∅. If x ∈ wh(Et)∗, then xEth = xEt and thus

∑
y∈xEth

pth
y =

∑
y∈xEth

1
ph

· pt
y = 1

ph

·
∑

y∈xEth

pt
y = 1

ph

·
∑

y∈xEt

pt
y = 1

ph

· pt
x = pth

x

If v was not the root and x = z, then zEth = (zEt \ {v}) ∪ {wh} and thus

∑
y∈zEth

pth
y =

∑
y∈(zEt\{v})∪{wh}

pth
y =

∑
y∈(zEt\{v})

pth
y + pth

wh
=

∑
y∈(zEt\{v})

pt
y + 1

ph

· pt
wh

=
∑

y∈(zEt\{v})
pt

y + ptv
ptwh

· pt
wh

=
∑

y∈(zEt\{v})
pt

y + pt
v =

∑
y∈zEt

pt
y = pt

z

Otherwise, we have x ∈ V t \ (v(Et)∗ ∪ {z}). This means pth
y = pt

y for all y ∈ xEth

and xEth = xEt, and thus
∑

y∈xEth

pth
y =

∑
y∈xEth

pt
y =

∑
y∈xEt

pt
y = pt

x = pth
x

For the last property, note that if v is not the root in t, then the root and its labeling
did not change, so that we have pth

rth
= pt

rt = 1. If v was the root, then wh is the new
root with

pth
wh

= 1
ph

· pt
wh

= ptv
ptwh

· pt
wh

= 1
ptwh

· pt
wh

= 1

(c) Let x ∈ V with pif(x) = i. If we have x ̸∈ V t, then also x ̸∈ V th for all 1 ≤ h ≤ m
and thus ∑

(pT ,T )∈M ′ pT · p(T,x)
= ∑

(pT ,T )∈M\{(pt,t)}∪{(pt·p1,t1),...,(pt·pm,tm)} pT · p(T,x)
= ∑

(pT ,T )∈M\{(pt,t)} pT · p(T,x) + ∑
(pT ,T )∈{(pt·p1,t1),...,(pt·pm,tm)} pT · p(T,x)

= ∑
(pT ,T )∈M\{(pt,t)} pT · p(T,x) + ∑

(pT ,T )∈{(pt·p1,t1),...,(pt·pm,tm)} pT · 0
= ∑

(pT ,T )∈M\{(pt,t)} pT · p(T,x)
= ∑

(pT ,T )∈M\{(pt,t)} pT · p(T,x) + pt · 0
= ∑

(pT ,T )∈M\{(pt,t)} pT · p(T,x) + pt · p(t,x)
= ∑

(pT ,T )∈M pT · p(T,x)
IH= pTC

x
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If we have x ∈ V t and x ̸∈ v(Et)∗, then x ∈ V th for all 1 ≤ h ≤ m and pt
x = pth

x , and
hence ∑

(pT ,T )∈M ′ pT · p(T,x)
= ∑

(pT ,T )∈M\{(pt,t)}∪{(pt·p1,t1),...,(pt·pm,tm)} pT · p(T,x)
= ∑

(pT ,T )∈M\{(pT ,T )} pT · p(T,x) + ∑
(pT ,T )∈{(pt·p1,t1),...,(pt·pm,tm)} pT · p(T,x)

= ∑
(pT ,T )∈M\{(pT ,T )} pT · p(T,x) + ∑

1≤h≤m pt · ph · pth
x

= ∑
(pT ,T )∈M\{(pT ,T )} pT · p(T,x) + ∑

1≤h≤m pt · ph · pt
x

= ∑
(pT ,T )∈M\{(pT ,T )} pT · p(T,x) + pt · pt

x · ∑
1≤h≤m ph

= ∑
(pT ,T )∈M\{(pT ,T )} pT · p(T,x) + pt · pt

x · 1
= ∑

(pT ,T )∈M pT · p(T,x)
IH= pTC

x

Otherwise we have x ∈ V t and x ∈ v(Et)∗. This means that we have x ∈ V th and
x ∈ wh(Et)∗ for some 1 ≤ h ≤ m and x ̸∈ V tg for all g ̸= h. Furthermore, we have
pth

x = 1
ph

· pt
x, and hence
∑

(pT ,T )∈M ′ pT · p(T,x)
= ∑

(pT ,T )∈M\{(pt,t)}∪{(pt·p1,t1),...,(pt·pm,tm)} pT · p(T,x)
= ∑

(pT ,T )∈M\{(pT ,T )} pT · p(T,x) + ∑
(pT ,T )∈{(pt·p1,t1),...,(pt·pm,tm)} pT · p(T,x)

= ∑
(pT ,T )∈M\{(pT ,T )} pT · p(T,x) + pt · ph · pth

x

= ∑
(pT ,T )∈M\{(pT ,T )} pT · p(T,x) + pt · ph · 1

ph
· pt

x

= ∑
(pT ,T )∈M\{(pT ,T )} pT · p(T,x) + pt · pt

x

= ∑
(pT ,T )∈M pT · p(T,x)

IH= pTC
x

In the end, we result with a set M that satisfies (a), (b) and (c), and for every (pT , T ) ∈ M ,
and all inner nodes x ∈ V T \ LeafT , we have pif(x) = i. Then M is our desired set and
we define Split(T(i)

C , i) := M . It remains to prove that Split(T(i)
C , i) satisfies the conditions

(1.), (2.) and (3.). Properties (1.) and (3.) are satisfied due to our induction hypothesis
in the end.
To see that (2.) holds, let (pT , T ) ∈ Split(T(i)

C , i). By our induction hypothesis from the
last step, we know that T is an RST. We only have to show that for every x ∈ V T with
xET = {y1, . . . , yk} ̸= ∅ we have tT

x
i→R {pT

y1
pT

x
: tT

y1 , . . . ,
pT

yk

pT
x

: tT
yk

}. So let x ∈ V T with
xET = {y1, . . . , yk} ≠ ∅. In our construction, we only removed nodes with a position
indicator j ̸= i. Let xET

(i)
C = {z1, . . . , zk}. Since pif(x) = i, we know that

t
T

(i)
C

x
i→R {p

T
(i)
C

z1

p
T

(i)
C

x

: t
T

(i)
C

z1 , . . . ,
p
T

(i)
C

zk

p
T

(i)
C

x

: t
T

(i)
C

zk }

If we can show that p
T

(i)
C

zh

p
T

(i)
C

x

= pT
yh

pT
x

and t
T

(i)
C

zh = tT
yh

holds for every 1 ≤ h ≤ k, then we are done.

Let zh = a1, . . . , ad = yh be the path from zh to yh in T
(i)
C . Every node a2, . . . , ad−1 got

removed in our construction so all of them must have a position indicator of j ̸= i. But
this means that we have never used a rewrite step below position i, so that t

T
(i)
C

zh = tT
yh

.
Furthermore, we extracted all the probabilities for nodes with position indicator j ̸= i out

of the tree, so that p
T

(i)
C

zh

p
T

(i)
C

x

= pT
yh

pT
x

and this ends the proof for this part.
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2) We additionally allow rewrite steps at the root position
Now, we additionally allow rewrite steps at the root position. Again, assume for a
contradiction that there exists an innermost R-computation tree T = (V, E, L) that starts
with (1 : f(q1, . . . , qn)) and converges with probability < 1. We again prove that for every
0 < δ < 1 we can find an H ∈ N such that ∑

x∈LeafT,d(x)≤H > 1 − δ, which means that
|T|Leaf = limk→∞

∑
x∈LeafT,d(x)≤k = 1, which is our desired contradiction.

Let 0 < δ < 1. We start by doing the same construction as above to create a grounded
induced sub R-computation tree TC, where the labeling does not represent any rewrite
steps at the root position such that |TC|ZLeaf > 1 − α with α := 1 − 2

√
1 − δ. For each

leaf x ∈ ZLeaf , every proper subterm of tx is in normal form w.r.t. R. Let us look at
the induced sub computation tree Tx of T that starts at x (i.e., Tx = T[xE∗]). Since
every proper subterm of tx is in normal form w.r.t. R, we know by the prerequisite of
Theorem 4.2.21 that |Tx|Leaf = 1. Let dx(y) be the depth of the node y in the tree Tx.
Moreover, let Dx(k) := {y ∈ V Tx | dx(y) ≤ k} be the set of nodes in Tx that have a depth
of at most k. Since |Tx|Leaf = 1 and | ◦ |Leaf is monotone w.r.t. the depth of the tree Tx,
we can find an Nx ∈ N such that |Tx[Dx(Nx)]|Leaf > 1 − α.
Note that ZLeaf is finite and thus Nmax = max{Nx | x ∈ ZLeaf} exists. Now, we finally
have ∑

x∈LeafT,dT(x)≤H+Nmax pT
x

≥ ∑
x∈ZLeaf

∑
y∈LeafTx ∧ dx(y)≤Nmax pT

y

= ∑
x∈ZLeaf

∑
y∈LeafTx ∧ dx(y)≤Nmax pT

x · pTx
y

= ∑
x∈ZLeaf pT

x · ∑
y∈LeafTx ∧ dx(y)≤Nmax pTx

y

≥ ∑
x∈ZLeaf pT

x · ∑
y∈LeafTx ∧ dx(y)≤Nx

pTx
y

>
∑

x∈ZLeaf pT
x · (1 − α)

= (1 − α) · ∑
x∈ZLeaf pT

x

> (1 − α) · (1 − α)
= (1 − α)2

= 1 − δ

The first inequality holds since every leaf in Tx with a depth of at most Nmax (in Tx) for
some x ∈ ZLeaf must also be a leaf in T with a depth of at most H + Nmax, since x is at a
depth of at most H. The last inequality holds since

(1 − α)2 = 1 − δ ⇔ 1 − α = 2
√

1 − δ ⇔ α = 1 − 2
√

1 − δ. ■

Furthermore, we have the same statement regarding ground innermost AST as we had in
the non-probabilistic setting with ground innermost termination.
Theorem 4.2.24 (Ground Terms Suffice for PTRSs). Let R be a PTRS over the signature
Σ. Let ⊥ be a fresh constant, and h be a fresh unary function symbol. Then R is innermost
AST over the signature Σ iff R is ground innermost AST over the signature Σ ⊎ {⊥, h}.

Proof. Remember that we have the following equivalence for non-probabilistic TRSs.
Let t, t′ ∈ T (Σ, V) where the term t has the variables x1, . . . , xm. Then we have
t i→R t′ iff we have tσ i→R t′σ, where σ(xi) = hi(⊥) for all 1 ≤ i ≤ m (i.e., both
tσ and t′σ are ground terms). This equivalence can be extended to PTRSs as follows:
Let µ, µ′ ∈ FDist(T (Σ, V)) where the terms in the support of µ contain the variables
x1, . . . , xm. Then we have µ

i⇒R µ′ iff we have µσ
i⇒R µ′σ. Here, by µσ we denote

the multi-distribution µσ := {p1 : t1σ, . . . , pk : tkσ}. By induction, we can then prove
that a finitely supported multi-distribution µ with variables x1, . . . , xm starts an infinite
innermost rewrite sequence that is not innermost AST iff the multi-distribution µσ, which
only contains ground terms, does. ■
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4. Probabilistic Term Rewriting

4.3 Direct Application of Polynomial Interpretations
We end this chapter by introducing an automatic approach to analyzing innermost AST for
a given PTRS. This approach adapts the approach of Theorem 2.2.3 to the probabilistic
setting, i.e., it uses a direct application of polynomial interpretations to prove innermost
AST. To do so, we have to restrict our polynomial interpretations to be multilinear so
that they are concave. The property of being concave is needed to lift the inequations of
just rewrite rules to arbitrary rewrite steps. The idea for this comes from [2], where they
use polynomial interpretations to prove PAST for a given PTRS. Again, even though we
restrict our attention to innermost AST, this theorem also works for AST in general.
Theorem 4.3.1 (Proving Innermost AST with Polynomial Interpretations). Let R be
a PTRS and let Pol : T (Σ, V) → N[V] be a natural, monotonic, and multilinear
polynomial interpretation. Suppose that the following conditions hold for every rule
ℓ → {p1 : r1, . . . , pk : rk} ∈ R:

(1) There exists an 1 ≤ j ≤ k with Pol(ℓ) > Pol(rj),

(2) Pol(ℓ) ≥ ∑
1≤j≤k pj · Pol(rj).

Then R is innermost AST.

Proof. By Theorem 4.2.24, it is enough to prove the desired result for ground terms. Note
that if t ∈ T (Σ) then Pol(t) ∈ N. The main idea for this proof comes from [27]. For this
proof, we will work with i⇒R-rewrite sequences again instead of innermost R-computation
trees. The core steps of this proof are the following:

1. We extend the conditions to rewrite steps instead of just rules

2. We create a rewrite sequence µ≤N for any N ∈ N

3. We prove that |µ≤N
∞ |R ≥ pN for any N ∈ N

4. We prove that |µ≤N
∞ |R = 1 for any N ∈ N

5. Finally, we prove that |µ∞|R = 1

Here, p > 0 is the minimal probability that occurs in the rules of R. As R has only finitely
many rules and all occurring multi-distributions have finite support, this minimum is well
defined.

1. We extend the conditions to rewrite steps instead of just rules
We first show that the conditions (1) and (2) of the theorem also hold for rewrite steps
instead of just rules. Let s ∈ T (Σ) and {p1 : t1, . . . , pk : tk} ∈ FDist(T (Σ)) with
s i→R {p1 : r1, . . . , pk : rk}. We want to show that:

(a) There exists a 1 ≤ j ≤ k with Pol(s) > Pol(tj),

(b) We have Pol(s) ≥ ∑
1≤j≤k pj · Pol(tj).

By definition of the rewrite relation, there exist a rule ℓ → {p1 : r1, . . . , pk : rk} ∈ R,
a substitution σ ∈ Sub (Σ, V), and a position π of s such that s|π = ℓσ, every proper
subterm of ℓσ is in normal form w.r.t. R, and tj = s[rjσ]π for all 1 ≤ j ≤ k.
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4.3. Direct Application of Polynomial Interpretations

(a) We perform induction on π. So in the induction base, let π = ε. Hence, we have
s = ℓσ and tj = rjσ for all 1 ≤ j ≤ k. By requirement (1), there is a 1 ≤ j ≤ k with
Pol(ℓ) > Pol(rj). As these inequalities hold for all instantiations of the occurring
variables, for tj = rjσ, we have

Pol(s) = Pol(ℓσ) > Pol(rjσ) = Pol(tj).

In the induction step, we have π = i.π′, s = f(s1, . . . , si, . . . , sn), si →R {p1 :
ri,1, . . . , pk : ri,k}, and tj = f(s1, . . . , ti,j, . . . , sn) with ti,j = s[rjσ]π′ for all 1 ≤ j ≤ k.
Then by the induction hypothesis there is a 1 ≤ j ≤ k with Pol(si) > Pol(ti,j). For
tj = f(s1, . . . , ti,j, . . . , sn) we obtain

Pol(s) = Pol(f(s1, . . . , si, . . . , sn))
= fPol(Pol(s1), . . . , Pol(si), . . . , Pol(sn))
> fPol(Pol(s1), . . . , Pol(ti,j), . . . , Pol(sn))

(by monotonicity of fPol and Pol(si) > Pol(ti,j))
= Pol(f(s1, . . . , ti,j, . . . , sn))
= Pol(tj).

(b) We again perform induction on π. So in the induction base π = ε we again have s = ℓσ
and tj = rjσ for all 1 ≤ j ≤ k. Then by (2), we know that Pol(ℓ) ≥ ∑

1≤j≤k pj ·Pol(rj),
This inequality holds for all instantiations of the occurring variables. Thus, we obtain

Pol(s) = Pol(ℓσ) ≥
∑

1≤j≤k

pj · Pol(rjσ) =
∑

1≤j≤k

pj · Pol(tj).

In the induction step, we have π = i.π′, s = f(s1, . . . , si, . . . , sn), si →R {p1 :
ri,1, . . . , pk : ri,k}, and tj = f(s1, . . . , ti,j, . . . , sn) with ti,j = s[rjσ]π′ for all 1 ≤ j ≤ k.
Then by the induction hypothesis we have Pol(si) ≥ ∑

1≤j≤k pj · Pol(ti,j). And thus

Pol(s) = Pol(f(s1, . . . , si, . . . , sn))
= fPol(Pol(s1), . . . , Pol(si), . . . , Pol(sn))
≥ fPol(Pol(s1), . . . ,

∑
1≤j≤k pj · Pol(ti,j), . . . , Pol(sn))

(by monotonicity of fPol and Pol(si) ≥ ∑
1≤j≤k pj · Pol(ti,j))

≥ ∑
1≤j≤k pi · fPol(Pol(s1), . . . , Pol(ti,j), . . . , Pol(sn)),

(as fPol is componentwise concave due to multilinearity)
= ∑

1≤j≤k pj · Pol(f(s1, . . . , ti,j, . . . , sn))
= ∑

1≤j≤k pj · Pol(tj)

where the step regarding the concavity is due to Jensen’s inequality, as fPol is a
componentwise concave function due to multilinearity.

2. We create a rewrite sequence µ≤N for any N ∈ N

Due to our restriction to ground terms, we can define the value V (t) of any t ∈ T (Σ).

V : T (Σ) → N, t 7→

Pol(t) + 1, if t ∈ T (Σ) \ NFR

0, if t ∈ NFR

and the value of any µ ∈ FDist(T (Σ))

V : FDist(T (Σ)) → R≥0, µ 7→
∑

(p:t)∈µ

p · V (t)
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4. Probabilistic Term Rewriting

For any i⇒R-rewrite sequence (µk)k∈N where Supp(µ0) ⊆ T (Σ) and any N ∈ N, we now
consider a modified sequence (µ≤N

k )k∈N, where we inductively replace each µi by µ≤N
i

starting from µ0. To obtain µ≤N
i , we replace (p : t) ∈ µi by (p : ⊤) if V (t) > N . Otherwise,

we keep (p : t). Here, ⊤ is a newly introduced symbol with V (⊤) = N + 1. If at least one
term is replaced in a µi, we replace (µk)k>i by a new sequence before proceeding; starting
from µ≤N

i , we use the same rewrite steps as the original i⇒R-rewrite sequence, except
for the new normal forms ⊤, which stay the same. Of course, the result is not a valid
i⇒R-rewrite sequence anymore.

Our goal is to prove that every i
⇒R-rewrite sequence (µk)k∈N where Supp(µ0) only consists

of ground terms converges with probability one, i.e., that |µ∞|R = 1. The proof now
proceeds similarly to [27]. First of all, we prove that |µ≤N

∞ |R = 1 for any N ∈ N, i.e., we
prove that this new kind of sequence converges with probability one. Note that we now
also consider ⊤ ∈ NFR. However, this does not yet prove that |µ∞|R = 1, which we will
show in a second step.

3. We prove that |µ≤N
∞ |R ≥ pN for any N ∈ N

Due to (a), for every ground term s that is not in normal form, there is a rewrite step
s i→R δ such that δ(t) ≥ p and Pol(s) > Pol(t) (and thus, also V (s) > V (t)) for some
t ∈ T (Σ). So for any N ∈ N and any µ0, we have |µ≤N

N |R ≥ pN . The reason is that for
every term in Supp(µ≤N

i ) that is not in normal form, there is always a term in Supp(µ≤N
i+1)

which decreases the value of V by at least 1. So for all terms in Supp(µ≤N
0 ) that are not

in normal form, we reach a normal form in at most N steps with at least probability pN .

4. We prove that |µ≤N
∞ |R = 1 for any N ∈ N

Note that |µ≤N
k |R is bounded and weakly monotonically increasing, so that |µ≤N

∞ |R must
exist and we have |µ≤N

∞ |R ≥ |µ≤N
N |R. Remember, that we write |µ≤N

∞ |R for limk→∞ |µ≤N
k |R

Hence, for any N ∈ N, we have

p⋆
N := inf

(µk)k∈N is a rewrite sequence
(|µ≤N

∞ |R) ≥ pN > 0 (4.18)

We now prove by contradiction that this is enough to ensure p⋆
N = 1. So assume that

p⋆
N < 1. Then we define ε := p⋆

N ·(1−p⋆
N )

2 > 0. By definition of the infimum, p⋆
N + ε is

not a lower bound of |µ≤N
∞ |R for all i

⇒R-rewrite sequences. Hence, there must exist a
i⇒R-rewrite sequence (µk)k∈N such that

p⋆
N ≤ |µ≤N

∞ |R < p⋆
N + ε. (4.19)

By the monotonicity of | · | w.r.t. i
⇒R steps, there must exist a natural number m⋆ ∈ N

such that
|µ≤N

m∗ |R >
p⋆

N

2 . (4.20)
Then we have

|µ≤N
∞ |R = |µ≤N

m∗ |R +
∑

(p:t)∈µ≤N
m∗ ∧t/∈NFR

p · |{1 : t}≤N
∞ |R, (4.21)

where {1 : t}≤N
k denotes the sequence starting with {1 : t}, where the same rules are

applied as for t in (µ≤N
k )k≥m∗ .

Furthermore, we have ∑
(p:t)∈µ≤N

m∗ ∧t/∈NFR

p = 1 − |µ≤N
m∗ |R (4.22)
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4.3. Direct Application of Polynomial Interpretations

So we obtain

p⋆
N + ε

> |µ≤N
∞ |R (by (4.19))

= |µ≤N
m∗ |R +

∑
(p:t)∈µ≤N

m∗ ∧t/∈NFR

p · lim
k→∞

|{1 : t}≤N
k |R︸ ︷︷ ︸

≥ p⋆
N

(by (4.21) and (4.18))

≥ |µ≤N
m∗ |R +

∑
(p:t)∈µ≤N

m∗ ∧t/∈NFR

p · p⋆
N

= |µ≤N
m∗ |R + p⋆

N ·
∑

(p:t)∈µ≤N
m∗ ∧t/∈NFR

p

= |µ≤N
m∗ |R + p⋆

N · (1 − |µ≤N
m∗ |R) (by (4.22))

= p⋆
N + |µ≤N

m∗ |R − p⋆
N · |µ≤N

m∗ |R
= p⋆

N + |µ≤N
m∗ |R · (1 − p⋆

N)
> p⋆

N + (1 − p⋆
N) · p⋆

N

2 (by (4.20))
= p⋆

N + ε,  

a contradiction. So p⋆
N = 1. In particular, this means that for every N ∈ N and every

i
⇒R-rewrite sequence (µk)k∈N that only consists out of ground terms, we have

|µ≤N
∞ |R = lim

k→∞
|µ≤N

k |R = 1. (4.23)

5. We prove that |µ∞|R = 1
Finally, we have to prove that |µ∞|R = limk→∞ |µk|R = 1 holds as well, i.e., that every
i⇒R-rewrite sequence that only consists out of ground terms converges with probability

one. By (b), we have that µ
i⇒R µ′ implies Pol(µ) ≥ Pol(µ′) and therefore, V (µ) ≥ V (µ′).

While our modified sequence (µ≤N
k )k∈N is not a rewrite sequence anymore, we still have

V (µ≤N
i ) ≥ V (µ≤N

i+1) because either this is a valid i
⇒R-step or a term with a larger value is

replaced by a smaller or equal one, i.e., ⊤. Additionally, V (µ≤N
i ) is bounded from below

by 0, so that limk→∞(V (µ≤N
k )) exists and we have

V (µ≤N
0 ) ≥ lim

k→∞
(V (µ≤N

k )) (4.24)

Now we fix N ∈ N and a i⇒R-rewrite sequence (µk)k∈N, and obtain the corresponding
transformed sequence (µ≤N

k )k∈N. Note that by (4.23) we have |µ≤N
∞ |R = 1 = qN + (1 − qN ),

where qN = limk→∞
∑

(p:t)∈µ≤N
k

∧t∈NFR∧t̸=⊤ p. So what is limk→∞(V (µ≤N
k ))? The probabilities

of zero entries (i.e., terms t ∈ NFR \ {⊤} where V (t) = 0) add up to qN , while the entries
⊤ with value V (t) ≥ N + 1 add up to probability 1 − qN . So limk→∞(V (µ≤N

k )) has at least
the value qN · 0 + (1 − qN) · (N + 1) = (1 − qN) · (N + 1). Thus,

V (µ0) ≥ V (µ≤N
0 ) ≥ lim

k→∞
(V (µ≤N

k )) ≥ (1 − qN) · (N + 1),

which implies qN ≥ 1 − V (µ0)
N+1 .

Note that qN is weakly monotonically increasing and bounded from above by 1 for N → ∞.
Hence, q := limN→∞ qN exists and 1 ≥ q ≥ limN→∞(1 − V (µ0)

N+1 ) = 1, i.e., q = 1. Hence,
we obtain |µ∞|R = limk→∞ |µk|R = limN→∞ qN = q = 1. So the PTRS R is innermost
AST. ■
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Example 4.3.2. Consider the PTRS Rrw from Example 4.1.4. A polynomial interpretation
that satisfies (1) and (2) for every rule of Rrw maps s(x) to x + 1, rd(x) to x, and O to 0.
Hence, Rrw is innermost AST.
Example 4.3.3 (Innermost AST with Data Structures). Consider the signature Σ =
{O, s, len, cons, nil}, a variable set with {x, y} ⊆ V, and the following PTRS Rlen that is
probabilistic variant from the TRS in Example 2.2.5:

len(nil) → {1
2 : len(nil), 1

2 : O} (4.25)
len(cons(x, y)) → {1

2 : len(cons(x, y)), 1
2 : s(len(y))} (4.26)

Here, we again have a chance of 1
2 to do the actual rewrite step and a chance of 1

2 to do
nothing.
We can prove innermost AST using the same polynomial interpretation as in Example 2.2.5
that maps len(x) to x, s(x) to x, cons(x, y) to x + y + 1, and both nil and O to 0.
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5 DP Framework for PTRS

This chapter introduces the first automatic approach to prove innermost almost-sure
termination for a given PTRS using dependency pairs. We start by changing our running
example regarding the integer division into a probabilistic version, where a direct application
of polynomial interpretations to prove AST as in Theorem 4.3.1 is once again not possible.
After that, we show why a straightforward adaption of the dependency pairs from the
non-probabilistic setting is not possible. The rest of this chapter is then structured
like Chapter 3. We first define our new notions of probabilistic dependency pairs in
the probabilistic setting in Section 5.1. Instead of dependency pairs, we will work with
dependency tuples. Similar to the R-computation tree of a PTRS R, we then define how
a (P , S)-computation tree for our probabilistic DP problem (P , S) looks like and directly
define our probabilistic notion of a chain using those trees in Section 5.2. We can then prove
the chain criterion for the probabilistic chains in Section 5.3. In the end, in Section 5.4,
we talk about the general structure of the probabilistic dependency pair framework and
adapt the previously introduced processors to the probabilistic setting. In addition to
the three processors from the non-probabilistic setting, we will also introduce two new
processors, namely the usable pairs processor and the not probabilistic processor. The not
probabilistic processor transforms a probabilistic DP problem into a non-probabilistic DP
problem if the probabilities are of a trivial form. Then, we can use our existing framework
for the non-probabilistic setting after this transformation. The usable pairs processor can
be seen as an extension to the dependency graph processor that is needed due to the fact
that we are working with dependency tuples instead of dependency pairs. Hence, this
processor was not needed in the non-probabilistic setting.
Example 5.0.1 (PTRS which Requires Dependency Pairs). Consider the signature
Σ = {O, s, minus, div}, a variable set with {x, y} ⊆ V , and the following PTRS Rdiv:

minus(x, O) → {1
2 : minus(x, O), 1

2 : x} (5.1)
minus(s(x), s(y)) → {1

2 : minus(s(x), s(y)), 1
2 : minus(x, y)} (5.2)

div(O, s(y)) → {1
2 : div(O, s(y)), 1

2 : O} (5.3)
div(s(x), s(y)) → {1

2 : div(s(x), s(y)), 1
2 : s(div(minus(x, y), s(y)))} (5.4)

We now have a chance of 1
2 to do the actual rewrite step and a chance of 1

2 to do nothing (i.e.,
the terms stay the same). We will see that this PTRS is AST using our new probabilistic
DP framework. The reason for this is that the underlying TRS is terminating, and with
every step, we have a certain probability (1

2) to make a step “towards termination” and in
the other case, we do nothing. Similar to the non-probabilistic setting, a direct application
of polynomial interpretations as in Theorem 4.3.1 is not possible. In order to satisfy the
constraints of Theorem 4.3.1, we would need to find a natural, monotonic, and multilinear
polynomial interpretation Pol, such that for every rule ℓ → r ∈ Rdiv there is at least
one term in the support of the right-hand side that has a strictly smaller value than the
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left-hand side. But this is not possible for (5.4):

div(s(x), s(y)) → {1
2 : div(s(x), s(y)), 1

2 : s(div(minus(x, y), s(y)))}

The first term in the support of the right-hand side, namely div(s(x), s(y)), is equal to the
left-hand side, so it has the same polynomial value. Additionally, the second term in the
support of the right-hand side is s(div(minus(x, y), s(y))) and we have seen in Example 3.0.1,
that there is no natural and monotonic polynomial interpretation Pol such that

Pol(div(s(x), s(y))) > Pol(s(div(minus(x, y), s(y))))

Next, we investigate the different possibilities to define the dependency pairs in the
probabilistic setting and what challenges occur. For a term t ∈ T (Σ, V), let SubD(t) :=
{r | r is a (not necessarily proper) subterm of t with defined root symbol} be the set of all
its subterms with defined root symbol. In the non-probabilistic case, for a rule ℓ → r with
SubD(r) = {r1, . . . , rm}, one obtains the m dependency pairs ℓ# → r#

i with 1 ≤ i ≤ m.
Therefore, two natural ideas to define dependency pairs would be as follows.
Definition 5.0.2 (Options for Dependency Pairs). Let R be a PTRS. For any rule
ℓ → {p1 : r1, . . . , pk : rk} ∈ R, we define the set of its dependency pairs as either
A:

{ ℓ# → {p1 : r1, . . . , pi : t#
i , . . . , pk : rk} | ti ∈ SubD(ri) with 1 ≤ i ≤ k }.

Or B:
{ ℓ# → {p1 : t#

1 , . . . , pk : t#
k } | ti ∈ SubD(ri) for all 1 ≤ i ≤ k }.

If SubD(ri) = ∅, then we insert a constructor ⊥ into SubD(ri) that does not occur in the
left-hand side of some rewrite rule in R.

In both these definitions, we replace a term with only a single dependency term in the right-
hand side. The following example shows that this is undesirable. Consider the following
two PTRSs R1 and R2 over the signature {f, g, ⊥}, where f and ⊥ are constructors and
there is the following rule to reduce g:

R1 : g → {1
2 : f(g, g), 1

2 : ⊥}
R2 : g → {1

2 : f(g, g, g), 1
2 : ⊥}

R1 is AST since it corresponds to a fair random walk stopping at 0, where the number of
gs in a term denotes the current position. R2 is not AST as it corresponds to a random
walk stopping at 0, where there is an equal chance of reducing the value by 1 or increasing
the value by 2. For both R1 and R2, both of the definitions of dependency pairs from
above would yield the only dependency pair:

g# → {1
2 : g#, 1

2 : ⊥}.

This dependency pair is clearly AST since it corresponds to a program that flips a coin
until head comes up once and then terminates. So these definitions would not yield a
sound approach for proving AST, as they result in the same dependency pairs for a PTRS
that is AST and a PTRS that is not AST.
One might get the impression that the problem is due to “sibling” terms (since the gs in
our example are at orthogonal positions). However, this is not the case. Consider

R3 : g(x) → {1
2 : g(g(g(x))), 1

2 : ⊥}
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which would result in the following three different dependency pairs.

g#(x) → {1
2 : g#(g(g(x))), 1

2 : ⊥}
g#(x) → {1

2 : g#(g(x)), 1
2 : ⊥}

g#(x) → {1
2 : g#(x), 1

2 : ⊥}

If one considers an innermost evaluation and counts the numbers of gs in a term, R3
corresponds to a random walk where the value is increased by 2 with probability 1

2 and
the value is decreased by 1 with probability 1

2 . However, every infinite innermost chain
with the dependency pairs above would converge with probability 1 since in every step
with a dependency pair, one immediately reaches ⊥ with probability 1

2 . So nested terms
need to be treated in a similar way to sibling terms.
In fact, variant A in Definition 5.0.2 is not only unsound, but it would also be unsuitable
for termination analysis because satisfying the constraints of the reduction pair processor
would be similar to the task of satisfying the constraints for proving AST directly with
polynomial orderings. For instance, the rule (5.4) would yield two dependency pairs,
where one of them is div#(s(x), s(y)) → {1

2 : div#(s(x), s(y)), 1
2 : s(div(minus(x, y), s(y)))}.

Orienting this dependency pair with the reduction pair processor is essentially the same
as orienting the original rule with a polynomial ordering due to the fact that we need
to compare the term div#(s(x), s(y)) with a tuple symbol at the root, with the original
right-hand side s(div(minus(x, y), s(y))) of the rule.
It is also tempting to only regard single terms of a distribution in isolation, i.e., as in Variant
A, which only allows one term on the right-hand side to contain tuple symbols. Then one
might be further tempted to define dependency pairs as in Variant A, but replacing all
terms not containing a tuple symbol by ⊥. But that would even be unsound for PTRSs,
where all terms on the right-hand side only contain a single occurrence of a defined symbol.
This can be seen with the PTRS f(s(x)) → {3

4 : f(s(s(x))), 1
4 : f(x)} which is not AST.

But if one only created the dependency pairs f#(s(x)) → {3
4 : f#(s(s(x))), 1

4 : ⊥} and
f#(s(x)) → {3

4 : ⊥, 1
4 : f#(x)}, and there is no useful definition of chains which does not

converge with probability one in this example.
All of these examples show that when considering dependency pairs for a PTRS, we do
not only have to look at the different occurring defined symbols in the distribution on
the right-hand side on their own, but we need to regard them all together and also take
the number of their occurrences into account. Therefore, instead of dependency pairs,
we have to work with dependency tuples. Here, we couple all of the defined symbols in
the right-hand side of a rule ℓ → r with SubD(r) = {r1, . . . , rm} together and create a
single dependency tuple ℓ# → Comm(r#

1 , . . . , r#
m). This means that we deal with a single

dependency tuple instead of possibly m different dependency pairs. Here, Comm is a fresh
constructor symbol of arity m. Dependency tuples are already used in the analysis of
TRSs, e.g., for automatic complexity analysis [29].
Definition 5.0.3 (Options for Dependency Tuples). Let R be a PTRS. For any rule
ℓ → {p1 : r1, . . . , pk : rk} ∈ R, we define the set of its dependency tuples as C:

{ ℓ# → {p1 : Comm1(t#
1,1, . . . , t#

1,m1), . . . , pk : Commk
(t#

k,1, . . . , t#
k,mk

)}
| SubD(ri) = {ti,1, . . . , ti,mi

} with 1 ≤ i ≤ k }.

The straightforward idea for the definition of chains would be that they result from an
alternation of one step with a dependency tuple and then an arbitrary amount of steps
with R, where the latter would be expressed by the relation i

⇒∗
R. However, then the
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problem would be that in such chains, the distributions introduced by rewrite steps with
dependency tuples are independent of the distributions introduced by the rewrite steps
with R.
Example 5.0.4 (Problem with Dependency Tuples). To illustrate the problem, consider
a signature with ΣD = {f, a, b, c} and ΣC = {O}, and a PTRS Rtup with the rules
f(O) → {1 : f(a)} and a → {1

2 : b, 1
2 : c}, and let there also be further rules for all defined

symbols. Let DT (Rtup) be the set of its dependency tuples defined as in Definition 5.0.3.
The dependency tuple for the f-rule is

f#(O) → {1 : Com2(f#(a), a#)}

and the dependency tuple for the a-rule is

a# → {1
2 : Com1(b#), 1

2 : Com1(c#)}

Consider the rewrite sequence

{1 : f(O)} i⇒Rtup {1 : f(a)} i⇒Rtup {1
2 : f(b), 1

2 : f(c)}

When constructing the corresponding chain, we get

{ 1 : f#(O)}
i⇒DT (Rtup) { 1 : Com2(f#(a), a#)}
i⇒DT (Rtup) { 1

2 : Com2(f#(a), Com1(b#)), 1
2 : Com2(f#(a), Com1(c#))}

i
⇒Rtup { 1

4 : Com2(f#(b), Com1(b#)), 1
4 : Com2(f#(c), Com1(b#)),

1
4 : Com2(f#(b), Com1(c#)), 1

4 : Com2(f#(c), Com1(c#))}

This is undesired since the red terms in the last distribution do not correspond to terms
in the original rewrite sequence. This would also be problematic for the reduction pair
processor later on since these undesired terms are not guaranteed to decrease w.r.t. the
polynomial ordering. So we have to ensure that the other “copies” of the redex are reduced
in the same way when rewriting with a dependency tuple.

5.1 Dependency Pairs
In order to create a sound and complete method for an automatic AST analysis, we have to
adjust the definition of a dependency tuple. We create a new coupled positional dependency
tuple, where we couple a positional dependency tuple together with the original rewrite
rule that was used to create it. A positional dependency tuple is a dependency tuple
where we additionally store the position in the original right-hand side of each subterm
with defined root symbol. This means that we are not only dealing with terms but work
with pairs (t, π) consisting of a term t and a position π. The additionally stored original
rewrite rule is used to solve the problem indicated in Example 5.0.4 so that we can rewrite
every “copy” of the redex in the same way. This then results in a sound chain criterion
since we can mirror every rewrite sequence that was possible with the PTRS R with our
coupled dependency tuples. The positions are used to create a sound chain criterion that
is also complete. Currently, the processors do not use the positions in any way, so they
are really only needed for the completeness of the chain criterion. The right-hand side of
a positional dependency tuple no longer consists purely of terms. Hence, we decided to
use sets instead of Comm-terms to combine them. In the following, we precisely define the
coupled positional dependency tuples and explain how it solves the problem described in
Example 5.0.4.
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Definition 5.1.1 (Defined Symbols). Let R be a PTRS over the signature Σ. Defined
symbols, constructor symbols, tuple symbols and dependency terms are defined as in
Definition 3.1.1 and Definition 3.1.5. Moreover, for every term t ∈ T (Σ, V), we define
the set Sub#

DP os(t) = {(r#, π) | r is a (not necessarily proper) subterm of t at position π
with defined root symbol} that is the set of all subterms with defined root symbol, where
we replaced the root symbol with the corresponding tuple symbol, together with their
corresponding position inside of t.
Example 5.1.2 (Defined Symbols). Consider the PTRS Rdiv from Example 5.0.1. Here,
we have ΣC = {O, s}, ΣD = {div, minus}, and

Sub#
DP os(s(div(minus(x, y), s(y)))) = {

(
div#(minus(x, y), s(y)), 1

)
,
(
minus#(x, y), 1.1

)
}.

In this chapter, we use PARSs that act on sets instead of terms. This means that we are
dealing with sets twice. On the one hand, we use multisets for our distributions. Here,
we have to use a rewrite rule on every term in the support of the distribution that is not
already in normal form. On the other hand, we use ordinary sets inside of our distributions
that we are actually rewriting. To distinguish between those two types of sets, we will
call the first one a distribution multiset and the second one a term representation set. For
distribution multisets, we use typical brackets {◦}, and for term representation sets, we use
⟨{◦}⟩. Whenever we are using sets (or multisets) that neither correspond to a distribution
nor a term (e.g., a set like Sub#

DP os(t)), then we also use the standard notation {◦}.
We will work with sets from Pot(T # (Σ) × N∗). Every standard definition regarding
terms (e.g., substitutions) will be lifted to sets A ∈ Pot(T # (Σ) × N∗) in the obvious way,
where we apply the definition to all terms inside of this set, if not mentioned otherwise.
For example, if we have A ∈ Pot(T # (Σ) × N∗), then for a substitution σ we define
Aσ := σ(A) := {(σ(t), π) | (t, π) ∈ A}.
Now, let us come to the dp transformation that generates the right-hand sides of our
positional dependency tuples. This simply is equal to Sub#

DP os(t) due to the fact that we
are working with sets.
Definition 5.1.3 (Transformation dp). Let t ∈ T (Σ, V). We define dp(t) := Sub#

DP os(t).
Similarly, for any µ = {p1 : r1, . . . , pk : rk} ∈ FDist(T (Σ, V)) , we define

dp(µ) := {p1 : dp(r1), . . . , pk : dp(rk)}
For a rule ℓ → µ = {p1 : r1, . . . , pk : rk} we set

dp(ℓ → µ) = ℓ# → dp(µ)
Example 5.1.4 (Transformation dp). Consider the term t := s(div(minus(x, y), s(y))).
Then we have dp(t) = ⟨{

(
div#(minus(x, y), s(y)), 1

)
,
(
minus#(x, y), 1.1

)
}⟩. And for the rule

minus(x, O) → µ = {1
2 : minus(x, O), 1

2 : x} we have

dp(minus(x, O) → µ) = minus#(x, O) → {1
2 : ⟨{

(
minus#(x, O), ε

)
}⟩, 1

2 : ∅}

Note that the set dp(t) will be used within our computation and has a corresponding
semantic, while the set Sub#

DP os(t) is only a definition. This is the reason why we use the
term representation set notation for dp and the typical set notation for Sub#

DP os(t) even
though they are syntactically the same.
In the non-probabilistic version of a chain, we worked with dependency terms. In the
probabilistic setting, we want to work with well-positioned positional dependency tuple
sets. These are sets that can be seen as a set representation of a term t using only the
subterms with defined root symbol and their position inside of t.
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Definition 5.1.5 (Positional Dependency Tuple Sets and Well-Positioned Sets). Let
PDTS ⊆ Pot(T # (Σ) × N∗) be the set of all finite sets that have the form

t = ⟨{
(
t#
1 , π1

)
, . . . ,

(
t#
n , πn

)
}⟩

such that t#
i ∈ T # (Σ) and πi ∈ N∗ for all i ∈ [1, n].

We call A ∈ PDTS well-positioned iff there exists a ground term t ∈ T (Σ) with A ⊆ dp(t).
The set of all well-positioned positional dependency tuple sets is

PDTSwp := {A ∈ PDTS | A is well-positioned}

Example 5.1.6 (Positional Dependency Tuple Sets). Let Σ = {f, g} and assume that both
f and g are defined symbols. First, consider the two sets

A = ⟨{
(
f(g, g), ε

)
,
(
g#, 1

)
,
(
g#, 2

)
}⟩, A′ = ⟨{

(
f#(g#, g#), ε

)
,
(
g#, 1

)
,
(
g#, 2

)
}⟩

Here, we have A ̸∈ PDTS as f(g, g) ̸∈ T # (Σ) since it does not contain a tuple symbol
at the root and A′ ̸∈ PDTS as f#(g#, g#) ̸∈ T # (Σ) since it contains a tuple symbol at a
non-root position. In contrast, we have

A′′ = ⟨{
(
f#(g, g), ε

)
,
(
g#, 1

)
,
(
g#, 2

)
}⟩ ∈ PDTS

Example 5.1.7 (Well-Positioned Sets). Again, consider the signature Σ = {f, g} from
Example 5.1.6. The set

A = ⟨{
(
f#(g, g), 1

)
,
(
g#, 1.1

)
,
(
g#, 1.2

)
}⟩ ∈ PDTS

is well-positioned, since A ⊆ dp(f(f(g, g), g)). On the other hand, we have

A′ = ⟨{
(
g#, 1

)
,
(
f#(g, g), 1

)
}⟩ ∈ PDTS

not well-positioned as we have two different pairs in A′, namely
(
g#, 1

)
and

(
f#(g, g), 1

)
,

with the same position and it is not possible to have two different subterms at the same
position in a ground term t ∈ T (Σ). Also the set

A′′ = ⟨{
(
f#(g, g), ε

)
,
(
g#, 1

)
,
(
f#(g, g), 2

)
}⟩ ∈ PDTS

is not well-positioned as we have
(
f#(g, g), ε

)
,
(
f#(g, g), 2

)
∈ A and ε.2 = 2 but

f#(g, g)|2 ̸= f(g, g). And this is not possible for well-positioned sets by Lemma 5.1.8.

In Example 5.0.4 we saw that we have to rewrite the “copies” of a term in the same way
as the term itself. The positions in our well-positioned sets indicate what other terms
contain such a copy and where we can find them.
Lemma 5.1.8 (Properties of Well-Positioned Sets). Let A ∈ PDTSwp.

• If we have (t1, π1), (t2, π2) ∈ A such that there is a position χ ∈ N+ with π1.χ = π2,
then we have t1|χ = t♭

2

• For all B ⊆ A we have B ∈ PDTSwp

Proof. Let t ∈ T (Σ) such that A ⊆ dp(t). Then we have

t1|χ
χ ̸=ε= t♭

1|χ
t♭
1=t|π1= (t|π1)|χ = t|π1.χ

π1.χ=π2= t|π2

t|π2 =t♭
2= t♭

2

Additionally, for every B ⊆ A we have B ⊆ A ⊆ dp(t) and thus B ⊆ dp(t), so B is
well-positioned as well. ■
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Positional dependency tuples are still not expressive enough to create our desired
dependency pair framework. We are now able to locate the copies of a term, but we are yet
unable to determine how we should rewrite the copies since our positional dependency tuples
only contain information about the defined symbols and everything below a defined symbol,
but not about the whole original rewrite rule. The idea for building dependency pairs for
the probabilistic setting is to define a new rewrite relation that works with rules operating
on pairs. Instead of having a rule ℓ → {p1 : r1, . . . , pk : rk} from R and its corresponding
positional dependency tuple ℓ# → {p1 : dp(r1), . . . , pk : dp(rk)} separately, we couple them
together and write them as (ℓ#, ℓ) → {p1 : (dp(r1), r1), . . . , pk : (dp(rk), rk)}. This type
of rewriting system is called a probabilistic pair term rewriting system (PPTRS), and
the rules are called coupled positional dependency tuples. For simplicity, we will also call
them (probabilistic) dependency tuples again. Instead of working with a single PTRS for
proving almost-sure termination, our dependency pair framework works on pairs (P , S),
where P is a PPTRS, and S is a PTRS, like in the non-probabilistic setting. We again
call this pair (P , S) a (probabilistic) DP problem. Now, we can give the definition of the
dependency tuples for a given PTRS.
Definition 5.1.9 (Coupled Positional Dependency Tuple). Let R be a PTRS. Then for
every ℓ → µ = {p1 : r1, . . . , pk : rk} ∈ R we define the coupled positional dependency tuple
(or simply dependency tuple) as

DT (ℓ → µ) := (ℓ#, ℓ) → {p1 : (dp(r1), r1), . . . , pk : (dp(rk), rk)}

The set of all coupled positional dependency tuples DT (R) is then defined as

DT (R) := {DT (ℓ → µ) | ℓ → µ ∈ R}.

Example 5.1.10 (Coupled Positional Dependency Tuple). Consider Rdiv from Exam-
ple 5.0.1. Here, we get DT (Rdiv) = {DT ((5.1)), DT ((5.2)), DT ((5.3)), DT ((5.4))} with

DT ((5.1)) =
(
minus#(x, O), minus(x, O)

)
→ { 1

2 :
(

⟨{
(
minus#(x, O), ε

)
}⟩, minus(x, O)

)
,

1
2 :

(
∅, x

)
}

DT ((5.2)) =
(
minus#(s(x), s(y)), minus(s(x), s(y))

)
→ { 1

2 :
(

⟨{
(
minus#(s(x), s(y)), ε

)
}⟩, minus(s(x), s(y))

)
,

1
2 :

(
⟨{

(
minus#(x, y), ε

)
}⟩, minus(x, y)

)
}

DT ((5.3)) =
(
div#(O, s(y)), div(O, s(y))

)
→ { 1

2 :
(

⟨{
(
div#(O, s(y)), ε

)
}⟩, div(O, s(y))

)
,

1
2 :

(
∅, O

)
}

DT ((5.4)) =
(
div#(s(x), s(y)), div(s(x), s(y))

)
→ { 1

2 :
(

⟨{
(
div#(s(x), s(y)), ε

)
}⟩, div(s(x), s(y))

)
,

1
2 :

(
⟨{

(
div#(minus(x, y), s(y)), 1

)
,
(
minus#(x, y), 1.1

)
}⟩,

s(div(minus(x, y), s(y)))
)

}

Next, we will precisely define the notion of a PPTRS and how a PPTRS P rewrites sets
in PDTSwp w.r.t. S. Additionally, we also have to define how the PTRS S rewrites sets in
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PDTSwp, as this will be different from the ordinary rewrite relation of a PTRS for terms.
Beforehand, we look at our example from before and show what we are trying to archive
with this new PPTRS.
Example 5.1.11 (Resolving the Problem with Dependency Tuples). Consider the PTRS
Rtup from Example 5.0.4 and the rewrite sequence

{1 : f(s)} i⇒Rtup {1 : f(a)} i⇒Rtup {1
2 : f(b), 1

2 : f(c)}

again. The coupled positional dependency tuple for the f-rule is

(f#(s), f(s)) → {1 :
(

⟨{
(
f#(a), ε

)
,
(
a#, 1

)
}⟩, f(a)

)
}

and the coupled positional dependency tuple for the a-rule is

(a#, a) → {1
2 :

(
⟨{

(
b#, ε

)
}⟩, b

)
, 1

2 :
(

⟨{
(
c#, ε

)
}⟩, c)

)
}

With these two dependency tuples, we get the following rewrite sequence:

{ 1 : ⟨{
(
f#(s), ε

)
}⟩}

i__DT (Rtup),Rtup
{ 1 : ⟨{

(
f#(a), ε

)
,
(
a#, 1

)
}⟩}

i__DT (Rtup),Rtup
{ 1

2 : ⟨{
(
f#(b), ε

)
,
(
b#, 1

)
}⟩, 1

2 : ⟨{
(
f#(c), ε

)
,
(
c#, 1

)
}⟩}

In the second step, we are able to simultaneously rewrite the a# together with its copy
inside of f#(a). The additional positions are used to detect the “copies” of a term so that
we can rewrite them in the same way as the term itself. When rewriting the term a# in
the second rewrite step, the corresponding position 1 indicates that the pair

(
f#(a), ε

)
contains a copy of a, since ε < 1. The two positions also indicate, where this copy is,
namely at the position 1 of f#(a), since ε.1 = 1. We can then use the original rewrite rule
that is contained in our coupled positional dependency tuple on the term f#(a) in order to
rewrite the a accordingly. All in all, using this new rewrite relation, we have no undesired
terms in our final distribution and can completely mirror the original rewrite sequence.
Definition 5.1.12 (Pair Rewriting, PPTRS). A set of rules P of the form

(ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)}

is called a probabilistic pair term rewriting system (PPTRS) iff the projection to the second
component P2 = {ℓ → {p1 : r1, . . . , pk : rk} | (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈
P} is a PTRS, and we have Cj ⊆ dp(rj) for all 1 ≤ j ≤ k. We denote the projection to
the PTRS rules as proj2(P) := P2. Finally, let S be a PTRS.
The rewrite relation of a PPTRS operates on sets A ∈ PDTSwp. A well-positioned set A
rewrites with the PPTRS P to {p1 : B1, . . . , pk : Bk} w.r.t. S (denoted i_P,S) iff there is a
dependency tuple (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ P, a pair (t, π) ∈ A, called
the main rewrite pair, and a ground substitution σ ∈ Sub (Σ, V) such that t = ℓ#σ, and
every proper subterm of ℓ#σ is in normal form w.r.t. S. Then, the following conditions
hold for all 1 ≤ j ≤ k:

• Let
Mrew := ⟨{(a, τ) ∈ A | τ < π}⟩
M⊥ := ⟨{(a, τ) ∈ A | τ⊥π}⟩
M< := ⟨{(a, τ) ∈ A | π < τ}⟩

Note that we have
A = ⟨{(t, π)}⟩ ⊎ Mrew ⊎ M⊥ ⊎ M<,
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• The main rewrite pair ⟨{(t, π)}⟩ gets replaced by M+
j := ⟨{(r′σ, π.π′) | (r′, π′) ∈ Cj}⟩.

• For all (a, τ) ∈ Mrew there exists a χa ∈ N+ such that τ.χa = π. Since A is well-
positioned, we get a|χa = t♭ = ℓσ by Lemma 5.1.8. Then we can rewrite a to a[rjσ]χa

using the substitution σ, the position χa and the rewrite rule ℓ → rj , since all proper
subterms of ℓσ are in normal form w.r.t. S.

• Finally, we have two possibilities: If we have ℓ → {p1 : r1, . . . , pk : rk} ∈ S, then

Bj := M+
j ⊎ ⟨{(a[rjσ]χa , τ) | (a, τ) ∈ Mrew}⟩ ⊎ M⊥.

otherwise, if the rule is not in S, then

Bj := M+
j ⊎ M⊥.

The last property essentially means that if the second component of a dependency tuple is
not contained in the PTRS S, then we are not allowed to use it. So the second components
that are not contained in S are completely useless, and we could remove them. We keep
them here for readability so that we do not have to deal with a third type of rewrite rule,
where the second component is deleted.
The rewrite relation of a PPTRS is based on the rewrite relation of a PTRS on terms,
as we are rewriting well-positioned sets that represent terms. Let us shortly explain the
different sets that occur in this definition. Assume that we perform a rewrite step using
the dependency tuple (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)}, main rewrite pair (t, π),
and ground substitution σ ∈ Sub (Σ, V).

• M+
j is the set that results from applying the positional dependency tuple ℓ# →

{p1 : C1, . . . , pk : Ck} to the main rewrite pair (t, π) ∈ A. Here, we append the new
position inside of Cj to the existing position π.

• Mrew is the set of all pairs (a, τ) that needs to be rewritten as well, indicated by
the additional position. The set ⟨{(a[rjσ]χa , τ) | (a, τ) ∈ Mrew}⟩ then contains the
correctly rewritten terms, where we applied the rule ℓ → rj at the correct position
and using the same substitution σ ∈ Sub (Σ, V). We omit this set if the rule
ℓ → {p1 : r1, . . . , pk : rk} is not in S. This means that only our additional PTRS S
indicates whether we are allowed to apply ordinary rewrite rules or not.

• M⊥ contains all (a, τ) that have a position orthogonal to π and therefore stay the
same.

• M< contains all (a, τ) that have a position below π. This set will be removed so that
our resulting set is well-positioned again. Note that a♭ must be in normal form w.r.t.
S as we are dealing with innermost evaluation, so we are only removing normal
forms w.r.t. S in this way.

Example 5.1.13 (Rewriting with i_P,S). Consider the following PTRS S over the signature
Σ = ΣD = {f, g, a, b, c}:

S : f(a) → {1 : g(b)}

The dependency tuple for this rule has the form:

P : (f#(a), f(a)) → {1 :
(

⟨{
(
g#(b), ε

)
,
(
b#, 1

)
}⟩, g(b)

)
}
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Consider the well-positioned set

A := ⟨{
(
c#(f(a), f(a)), ε

)
,
(
f#(a), 2

)
,
(
f#(a), 1

)
,
(
a#, 1.1

)
}⟩

A is well-positioned, since A ⊆ dp
(
c(f(a), f(a))

)
. Let us take a closer look at the following

rewrite step:

A i_P,S {1 : A′} = {1 : ⟨{
(
c#(g(b), f(a)), ε

)
,
(
f#(a), 2

)
,
(
g#(b), 1

)
,
(
b#, 1.1

)
}⟩}

The resulting set is well-positioned again, since A′ ⊆ dp(c(g(b), f(a))). Here, we use the
main rewrite pair

(
f#(a), 1

)
, the identity substitution id and the only dependency tuple.

Note that every proper subterm of f#(a) is in normal form w.r.t. S. Following the notation
of Definition 5.1.12, we get

⟨{
(
c#(f(a), f(a)), ε

)
,
(
f#(a), 2

)
,
(
f#(a), 1

)
,
(
a#, 1.1

)
}⟩ = ⟨{(t, π)}⟩ ⊎ Mrew ⊎ M⊥ ⊎ M<

with

⟨{(t, π)}⟩ = ⟨{
(
f#(a), 1

)
}⟩

Mrew = ⟨{
(
c#(f(a), f(a)), ε

)
}⟩

M< = ⟨{
(
a#, 1.1

)
}⟩

M⊥ = ⟨{
(
f#(a), 2

)
}⟩

Hence, we keep the pair
(
f#(a), 2

)
and remove

(
a#, 1.1

)
. Furthermore, we have

M+
1

= ⟨{
(
g#(b), 1

)
,
(
b#, 1.1

)
}⟩

⟨{(a[r1σ]χa , τ) | (a, τ) ∈ Mrew}⟩
= ⟨{

(
c#(g(b), f(a)), ε

)
}⟩

In the pair
(
c#(f(a), f(a)), ε

)
, we have to rewrite the copy of f(a) at position 1 because the

additional position indicates this. Finally, the set M+
1 contains all new pairs introduced

by the right-hand side of the used dependency tuple. Thus we result with

A′ = M+
j ⊎ ⟨{(a[rjσ]χa.ρ, τ) | (a, τ) ∈ Mrew}⟩ ⊎ M⊥

= ⟨{
(
c#(g(b), f(a)), ε

)
,
(
f#(a), 2

)
,
(
g#(b), 1

)
,
(
b#, 1.1

)
}⟩

If we look at the terms that those sets are representing, then we have

c(f(a), f(a)) i→S {1 : c(g(b), f(a))}

Example 5.1.14 (Resolving the Problem with Dependency Tuples (Details)). Consider
the rewrite sequence

{ 1 : ⟨{
(
f#(s), ε

)
}⟩}

i__DT (Rtup),Rtup
{ 1 : ⟨{

(
f#(a), ε

)
,
(
a#, 1

)
}⟩}

i__DT (Rtup),Rtup
{ 1

2 : ⟨{
(
f#(b), ε

)
,
(
b#, 1

)
}⟩, 1

2 : ⟨{
(
f#(c), ε

)
,
(
c#, 1

)
}⟩}

from Example 5.1.11. We will take a closer look at the second rewrite step. Here, we use
the main rewrite pair (a#, 1), the identity substitution id and the dependency tuple

(a#, a) → {1
2 :

(
⟨{

(
b#, ε

)
}⟩, b

)
, 1

2 :
(

⟨{
(
c#, ε

)
}⟩, c

)
}

Following the notation of Definition 5.1.12, we get

⟨{
(
f#(a), ε

)
,
(
a#, 1

)
}⟩ = ⟨{(t, π)}⟩ ⊎ Mrew ⊎ M⊥ ⊎ M<

with
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⟨{(t, π)}⟩ = ⟨{(a#, 1)}⟩
Mrew = ⟨{(f#(a), ε)}⟩

M< = ∅
M⊥ = ∅

For j = 1 we get

⟨{
(
f#(b), ε

)
,
(
b#, 1

)
}⟩ = B1 = M+

1 ⊎ ⟨{(a[r1σ]χa , τ) | (a, τ) ∈ Mrew}⟩ ⊎ M⊥

since the rule is still contained in our PTRS. We have

M+
1

= ⟨{(r′σ, π.π′) | (r′, π′) ∈ C1}⟩
= ⟨{(r′id, 1.π′) | (r′, π′) ∈ ⟨{(b#, ε)}⟩}⟩
= ⟨{(b#id, 1.ε)}⟩
= ⟨{(b#, 1)}⟩

⟨{(a[r1σ]χa , τ) | (a, τ) ∈ Mrew}⟩
= ⟨{(a[r1σ]χa , τ) | (a, τ) ∈ ⟨{(f#(a), ε)}⟩}⟩
= ⟨{(f#(a)[bid]1, ε)}⟩ (since ε.1 = 1)
= ⟨{(f#(b), ε)}⟩

and M⊥ = ∅. Hence, we result with ⟨{
(
f#(b), ε

)
,
(
b#, 1

)
}⟩ in the first part of our final

distribution. Completely analogous, we result with ⟨{
(
f#(c), ε

)
,
(
c#, 1

)
}⟩ in the second

part of our final distribution.

Next, we show that rewriting a well-positioned set always results in well-positioned sets
again. The proof of this also shows how a rewrite step with the PPTRS corresponds to a
rewrite step with the PTRS on terms.
Lemma 5.1.15 (Rewriting Well-Positioned Sets with i_P,S). Let A ∈ PDTSwp and let
A i_P,S µ. Then every B ∈ PDTS with µ(B) > 0 is well-positioned.

Proof. Let µ = {p1 : B1, . . . , pk : Bk}. We have A i_P,S µ and this means that there
is a dependency tuple (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ P, a main rewrite
pair (t, π) ∈ A, and a ground substitution σ ∈ Sub (Σ, V) such that the conditions from
Definition 5.1.12 hold. Let d ∈ T (Σ) such that A ⊆ dp(d). We will show for all 1 ≤ j ≤ k
that we have Bj ⊆ dp(d[rjσ]π) and hence, Bj is well-positioned. For this, we assume that
ℓ → {p1 : r1, . . . , pk : rk} ∈ S. If this does not hold, then we result in a set B′

j such
that B′

j ⊆ Bj and the property of being well-positioned is closed under taking subsets by
Lemma 5.1.8.
Let 1 ≤ j ≤ k and let (t1, τ) ∈ Bj. We have to show that t♭

1 = (d[rjσ]π)|τ . We distinguish
between the origin of the pair (t1, τ) in our rewrite step:

• If we have (t1, τ) ∈ M+
j = ⟨{(r′σ, π.π′) | (r′, π′) ∈ Cj}⟩, then there is a position χ ∈ N∗

with π.χ = τ and a term r′ with (r′, χ) ∈ Cj ⊆ dp(rj) such that (t1, τ) = (r′σ, π.χ).
We get

(d[rjσ]π)|τ
π.χ=τ= rjσ|χ

χ∈Occ(rj)= rj|χσ
rj |χ=r′♭

= (r′)♭σ = (r′σ)♭ = t♭
1

• If we have (t1, τ) ∈ M+
j = ⟨{(a[rjσ]χa , τ) | (a, τ) ∈ Mrew}⟩, then there exist (a, τ) ∈ A

and a non-empty position χ ∈ N+ such that τ.χ = π and t1 = a[rjσ]χ. We get

(d[rjσ]π)|τ
τ.χ=π= (d|τ )[rjσ]χ

d|τ =a♭

= (a♭)[rjσ]χ
χ ̸=ε= (a[rjσ]χ)♭ a[rjσ]χ=t1= t♭

1

• If we have (t1, τ) ∈ M⊥, then (t1, τ) ∈ A ⊆ dp(d) and π⊥τ . We get

(d[rjσ]π)|τ π⊥τ= d|τ
d|τ =t♭

1= t♭
1
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All in all, Bj is well-positioned for all 1 ≤ j ≤ k. ■

We show with the following example why storing the additional position is necessary.
Example 5.1.16 (Why do we need to store the positions?). Let R be a PTRS over the
signature Σ = ΣD = {f, g, h, a, b, c} that contains the three rules

a → {1 : f(h(g), g)}
g → {1 : b}
g → {1 : c}

Using only coupled dependency tuples (with Com-symbols instead of term representation
sets ⟨{◦}⟩), we would have DT (R) = {DT (1), DT (2), DT (3)} with

DT (1) = (a#, a) → (Com4(f#(h(g), g), h#(g), g#, g#), f(h(g), g))
DT (2) = (g#, g) → (Com1(b#), b)
DT (3) = (g#, g) → (Com1(c#), c)

We are not tracking the positions of the two different g#’s inside of our Com-Term. If we
would allow rewriting arbitrary “copies” of the flattened used redex in a step with our
PPTRS, then we would be able to do the following rewrite sequence (with P = DT (R)
and S = R):

{1 : Com(a#)} i
⇒P,S { 1 : Com(f#(h(g), g), h#(g), g#, g#)}
i
⇒P,S { 1 : Com(f#(h(g), b), h#(g), Com(b#), g#)}
i
⇒P,S { 1 : Com(f#(h(c), b), h#(b), Com(b#), Com(c#))}

And the last term does not correspond to any term in a i⇒R-rewrite sequence since we
have both h(c) and h#(b) as subterms. Hence, we can not use our PTRS to mirror this
rewrite sequence, and this leads to the fact that our chain criterion is not complete in this
case.

Next, we define how a PTRS S rewrites sets in PDTSwp. Essentially, these are the same
sets and restrictions used in the definition of i_P,S , but there are some slight differences
due to the fact that we can not rewrite at the root position of the main rewrite pair
anymore (since it has a tuple symbol at the root and our PTRS does not contain tuple
symbols).
Definition 5.1.17. Let S be a PTRS. A set A ∈ PDTSwp rewrites with the PTRS S to
{p1 : B1, . . . , pk : Bk} (denoted i_S) iff there is a rule ℓ → {p1 : r1, . . . , pk : rk} ∈ S, a pair
(t, π) ∈ A, again called the main rewrite pair, a ground substitution σ ∈ Sub (Σ, V), and a
position ρ such that t|ρ = ℓσ and all proper subterms of ℓσ are in normal form w.r.t. S.
Additionally, there is no pair (t′, π′) ∈ A such that π′ is strictly between π and π.ρ. Then,
the following conditions hold for all 1 ≤ j ≤ k:

• Let
Mrew := ⟨{(a, τ) ∈ A | τ < π}⟩
M⊥ := ⟨{(a, τ) ∈ A | τ⊥π.ρ}⟩
M< := ⟨{(a, τ) ∈ A | π.ρ ≤ τ}⟩

Again, we have
A = ⟨{(t, π)}⟩ ⊎ Mrew ⊎ M⊥ ⊎ M<,

due to the fact that there is no pair (t′, π′) such that π′ is strictly between π and π.ρ.
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• The main rewrite pair ⟨{(t, π)}⟩ gets replaced by M+
j := ⟨{(t[rjσ]ρ, π)}⟩

• For all (a, τ) ∈ Mrew there exists a χa ∈ N+ such that τ.χa = π. Since A is well-
positioned, we get a|χa = t♭ by Lemma 5.1.8. Then we can rewrite a to a[rjσ]χa.ρ

using the substitution σ, the position χa.ρ, and the rule ℓ → rj, since all proper
subterms of ℓσ are in normal form w.r.t. S.

• Finally, we have

Bj = M+
j ⊎ ⟨{(a[rjσ]χa.ρ, τ) | (a, τ) ∈ Mrew}⟩ ⊎ M⊥.

The restriction that there is no pair (t′, π′) such that π′ is strictly between π and π.ρ
means that the main rewrite pair is at the lowest possible position so that we apply the
rewrite rule to every copy with a position above. Such a condition was not needed when
defining the rewrite relation of a PPTRS in Definition 5.1.12, as we can only rewrite at the
root position of the main rewrite pair (t, π) using a dependency tuple. Finally, our case
distinction for the sets M⊥ and M< do not dependent on the position π of the main rewrite
pair but on the position π.ρ, where our actual rewrite step takes place. Again, when
rewriting with a PPTRS, then we can only rewrite at the root position of our main rewrite
pair. Hence, we solely use π in the case distinction of Definition 5.1.12. Furthermore, in
the definition of M< we use π.ρ ≤ τ (instead of π.ρ < τ) this time. This means that our
rewrite relation i_S may remove the pair (t|#ρ , π.ρ) if it exists in the set A.
Example 5.1.18 (Rewriting with i_S). Consider the PTRS S, the PPTRS P and the set
A from Example 5.1.13. Let us take a closer look at the following rewrite step with i_S :

A i_S {1 : A′} = {1 : ⟨{
(
c#(g(b), f(a)), ε

)
,
(
f#(a), 2

)
}⟩}

Here, we use the main rewrite pair
(
c#(f(a), f(a)), ε

)
, the identity substitution id and the

only rewrite rule. Following the notation of Definition 5.1.17, we get

⟨{
(
c#(f(a), f(a)), ε

)
,
(
f#(a), 2

)
,
(
f#(a), 1

)
,
(
a#, 1.1

)
}⟩ = ⟨{(t, π)}⟩ ⊎ Mrew ⊎ M⊥ ⊎ M<

with

⟨{(t, π)}⟩ = ⟨{
(
c#(f(a), f(a)), ε

)
}⟩

Mrew = ∅
M< = ⟨{

(
f#(a), 1

)
,
(
a#, 1.1

)
}⟩

M⊥ = ⟨{
(
f#(a), 2

)
}⟩

Note that the position for the definition of the sets M< and M⊥ is not the position ε from
the main rewrite pair, but the position 1, where we actually rewrite inside of the main
rewrite pair. Additionally, note that the pair with position 1 is also contained in M< and
gets removed as well. Hence, we remove the pairs

(
f#(a), 1

)
and

(
a#, 1.1

)
. Furthermore,

we have
M+

1 = ⟨{
(
c#(g(b), f(a)), ε

)
}⟩

and thus result with

A′ = M+
j ⊎ ⟨{(a[rjσ]χa.ρ, τ) | (a, τ) ∈ Mrew}⟩ ⊎ M⊥ = ⟨{

(
c#(g(b), f(a)), ε

)
,
(
f#(a), 2

)
}⟩

Again, we prove that a rewrite step with i_S starting with a well-positioned set results in
sets that are also well-positioned.
Lemma 5.1.19 (Rewriting Well-Positioned Sets with i_S). Let A be well-positioned and
let A i_S µ. Then every B ∈ PDTS with µ(B) > 0 is well-positioned.
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Proof. This proof is similar to the one of Lemma 5.1.15. Let µ = {p1 : B1, . . . , pk : Bk}.
We have A i_S µ and this means that there is a rule ℓ → {p1 : r1, . . . , pk : rk} ∈ S, a main
rewrite pair (t, π) ∈ A, a position ρ ∈ N+, and a ground substitution σ ∈ Sub (Σ, V) such
that the conditions from Definition 5.1.17 hold. Let d ∈ T (Σ) such that A ⊆ dp(d). We
will show that for all 1 ≤ j ≤ k we have Bj ⊆ dp(d[rjσ]π.ρ) and hence, Bj is well-positioned.
Let 1 ≤ j ≤ k and let (t1, τ) ∈ Bj . We have to show that t♭

1 = (d[rjσ]π.ρ)|τ . We distinguish
between the origin of the pair (t1, τ) in our rewrite step:

• If we have (t1, τ) ∈ M+
j = ⟨{(t[rjσ]ρ, π)}⟩, then (t1, τ) = (t[rjσ]ρ, π). We get

(d[rjσ]π.ρ)|τ τ=π= (d[rjσ]π.ρ)|π = (d|π)[rjσ]ρ
d|π=t♭

= (t♭)[rjσ]ρ
ρ ̸=ε= (t[rjσ]ρ)♭ t[rjσ]ρ=t1= t♭

1

• If we have (t1, τ) ∈ M+
j = ⟨{(a[rjσ]χa , τ) | (a, τ) ∈ Mrew}⟩, then there exist (a, τ) ∈ A

and a position χN+ such that τ.χ = π and t1 = a[rjσ]χ.ρ. We get

(d[rjσ]π.ρ)|τ
τ.χ=π= (d|τ )[rjσ]χ.ρ

d|τ =a♭

= (a♭)[rjσ]χ.ρ
χ.ρ ̸=ε= (a[rjσ]χ.ρ)♭ a[rjσ]χ.ρ=t1= t♭

1

• If we have (t1, τ) ∈ M⊥, then (t1, τ) ∈ A ⊆ dp(d) and π⊥τ . We get

(d[rjσ]π.ρ)|τ π⊥τ= d|τ
d|τ =t♭

1= t♭
1

All in all, Bj is well-positioned for all 1 ≤ j ≤ k. ■

In Section 4.2, we have seen how we can represent a i⇒R-rewrite sequence as a tree. Instead
of defining the probabilistic version of an innermost (P , S)-chain using some kind of lifting
of i_P,S and i_S , we go one step further and define an innermost (P , S)-chain directly via
its tree representation in the next section.

5.2 Computation Trees and Chains
For the rest of this section, let (P , S) be an arbitrary DP problem. In this chapter, we
want to introduce chain trees. A chain tree is defined like a rewrite sequence tree, but
we have an additional subset P ⊆ V of the inner nodes to indicate whether we used
a rewrite step with i_P,S or i_S . After the first definitions and lemmas regarding this
new structure, we define (P , S)-computation tree, which is the notion of a chain in the
probabilistic setting.
Example 5.2.1 (Chain Tree). Consider the following PPTRS P , over the signature Σ with
ΣD = {f, a, b, c} and ΣC = {O}, containing the rules

(a#, a) → {1
2 : (⟨{(f#(b), ε), (b#, 1)}⟩, f(b)), 1

2 : (⟨{(f#(c), ε), (c#, 1)}⟩, f(c))} (5.5)
(f#(O), f(O)) → {1 : (⟨{(a#, ε)}⟩, a)} (5.6)

(b#, b) → {1 : (⟨{(a#, ε)}⟩, a)} (5.7)

and the PTRS S containing the rules

c → {1 : O} (5.8)
b → {1 : a} (5.9)
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A (P , S)-computation tree is depicted in the following figure. Here, we omit the positions
for readability.

1 : ⟨{a#}⟩

P

1
2 : ⟨{f#(b), b#}⟩

P

1
2 : ⟨{f#(c), c#}⟩

S

1
2 : ⟨{f#(a), a#}⟩ 1

2 : ⟨{f#(O)}⟩
P

1
2 : ⟨{a#}⟩

Figure 5.1: Example (P , S)-computation tree T1

The edges of the tree represent the used rewrite steps, and the nodes represent pairs (p : t).
By the additional labels P and S, we indicate whether we used a rewrite step with i_P,S
or i_S .
The two major differences between a (P , S)-computation tree and a R-computation tree
for some PTRS R is the structure induced by the new labels P and S. Remember that
a chain in the non-probabilistic setting used the rewrite relation i→D,R ◦ i→∗

R. This is
now represented by the paths in our (P , S)-computation tree. More precisely, we restrict
ourselves to trees, such that on every path that starts on some node x, we will have a
node labeled P after a finite amount of steps. This means that on every path that starts
at the root, we have one step with the PPTRS and then an arbitrary but finite amount of
steps of the PTRS on every path, similar to the definition of a non-probabilistic chain.
However, we do not require that the nodes from P are all at the same layer, as one can
see in Figure 5.1.

We start with the basic definitions and notations regarding the structures that we want to
work with, namely chain trees.
Definition 5.2.2 (Chain Tree). A chain tree is a directed, labeled tree T = (V T, ET, LT, P T)
with

• V T is a possibly infinite, non-empty set of vertices.

• ET ⊆ V T × V T is the set of directed edges.

• LT : V T → (0, 1] × PDTSwp labels every vertex by a probability and a well-positioned
positional dependency tuple set.

• P T ⊆ V T is a subset of the nodes that indicates whether we used the PPTRS for
the rewrite step or the PTRS.

such that the following properties are satisfied:

1. GT = (V T, ET) is a finitely branching, directed tree. Let LeafT be the set of all
leaves in GT and let rT be the root node of GT.
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2. For all x ∈ V T with LT(x) = (px : Ax) and xET ̸= ∅ we have∑
y∈xET,LT(y)=(py :Ay)

py = px

Here, by xET := {y | (x, y) ∈ ET} we denote the set of direct successors of x.

3. P T ⊆ V T \ LeafT only contains inner nodes.

4. LT(ε) = (1, A) for some A ∈ PDTSwp.

We will write ST := (V T \ LeafT) \ P T for the set of all inner nodes that are not in P T.
Note that V T = P T ⊎ ST ⊎ LeafT. For a node x ∈ V T with LT(x) = (p : A), we will also
write pT

x for p and AT
x for A. If the chain tree is clear from the context, we may omit it in

the notations for readability (e.g., we write V for V T). For a node x ∈ V , we write d(x)
for the depth of x, that is, the number of edges in the path from the root to x.

All of the constructions and lemmas about RSTs can be adapted to chain trees with the
same results. For the constructions, we only have to define how the set P changes. The
proofs are most of the time the same as for RSTs since the set P is not of any importance
yet. We will start using the new set P when talking about (P , S)-computation trees.
Definition 5.2.3 (Induced Sub Chain Tree). Let T = (V, E, L, P ) be a chain tree. Let
W ⊆ V be non-empty, weakly connected and for all x ∈ W we have xE ∩ W = ∅ or
xE ∩ W = xE. The property of being non-empty and weakly connected ensures that the
resulting graph GT[W ] = (W, E ∩ (W × W )) is a tree again. The last property regarding
the successors of a node ensures that the sum of probabilities for the successors of a node
x is equal to the probability for the node x itself. Then, we define the sub chain tree T[W ]
by

T[W ] := (W, (E ∩ (W × W )), LW , (P ∩ (W \ WLeaf)))

Here, by WLeaf , we denote the leaves of the tree GT[W ] so that the new set P ∩ (W \ WLeaf)
only contains inner nodes. Let w ∈ W be the root of GT[W ]. To ensure that the root of our
induced sub chain tree has the probability 1 again, we use the labeling (LW )(x) = ( pTx

pTw
: AT

x)
for all nodes x ∈ W . If we have rT ∈ W , then we call the induced sub chain tree grounded.
Example 5.2.4 (Induced Sub Chain Tree). The following chain tree T2 is a grounded,
induced sub chain tree of T1 from Example 5.2.1.

1 : ⟨{a#}⟩

P

1
2 : ⟨{f#(b), b#}⟩ 1

2 : ⟨{f#(c), c#}⟩

Figure 5.2: T2

Since this is a grounded, induced sub chain tree, we do not have to adjust the probabilities.
However, we have to adjust the set P so that it does not contain any leaf.
Lemma 5.2.5. Let T = (V, E, L, P ) be a chain tree and let W ⊆ V be satisfying the
conditions of Definition 5.2.3. Then T[W ] = (V ′, E ′, L′, P ′) is a chain tree again.
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Proof. Same proof as for Lemma 4.2.5. We only have to additionally prove that
P ′ ⊆ V ′ \ LeafT[W ] holds. But this is ensured due to the fact that we explicitly remove the
leaves from P ′ in our construction. ■

Definition 5.2.6 (Extension of Chain Trees). Let T = (V, E, L, P ), T′ = (V ′, E ′, L′, P ′) be
chain trees with V ∩ V ′ = ∅, and let x ∈ LeafT such that AT

x = AT′

rT
′ (i.e., the set of node

x in T is equal to the set of the root of T′). Then, we define the extension of T w.r.t. the
leaf x and the chain tree T′ (denoted as Ext(T, x,T′)) by

Ext(T, x,T′) := (VExt, EExt, LExt, PExt)
with
VExt := V ∪ (V ′ \ {rT′})
EExt := E ∪ (E ′ \ {(rT′

, y) | y ∈ rT
′
E ′})

∪ {(x, y) | y ∈ rT
′
E ′}

PExt :=
P ∪ P ′ ∪ {x} rT

′ ∈ P ′

P ∪ P ′ rT
′ ̸∈ P ′

And for all z ∈ VExt we define

LExt(z) =
(pT

z , AT
z ) , z ∈ V,

(pT
x · pT′

z , AT′
z ) , z ∈ V ′.

T

a1

a2 px : Ax

T′

1 : Ax

b2 b3

Ext(T, x,T′)
a1

a2 px : Ax

b2 b3

Example 5.2.7. Consider the chain tree T1 from Example 5.2.1 and the chain tree T2 from
Example 5.2.4. We can use T2 to extend T1 in the leaf x that is labeled by (1

2 : ⟨{a#}⟩).
Then Ext(T, x,T′) has the form:

1 : ⟨{a#}⟩

P

1
2 : ⟨{f#(b), b#}⟩

P

1
2 : ⟨{f#(c), c#}⟩

S

1
2 : ⟨{f#(a), a#}⟩ 1

2 : ⟨{f#(O)}⟩
P

1
2 : ⟨{a#}⟩

P

1
4 : ⟨{f#(b), b#}⟩ 1

4 : ⟨{f#(c), c#}⟩

Figure 5.3: Ext(T1, x,T2)

Again, we are also able to perform multiple (even infinite) extension steps simultaneously.
Definition 5.2.8 (Family Extension of Chain Trees). Let T = (V, E, L, P ) be a chain tree,
H ⊆ LeafT, and let (Tx)x∈H be a family of chain trees such that Tx = (Vx, Ex, Lx, Px),
AT

x = ATx

rTx for all x ∈ H and all occurring chain trees have disjoint node sets. Additionally,
let Ext(T, x,Tx) = (V ′

x, E ′
x, L′

x, P ′
x). Then we define the family extension of T w.r.t. the
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family (Tx)x∈H (denoted as FamExt(T, (Tx)x∈H)) by

FamExt(T, (Tx)x∈H) := ⋃
x∈H Ext(T, x,Tx)

:= (⋃
x∈H V ′

x,
⋃

x∈H E ′
x,

⋃
x∈H L′

x,
⋃

x∈H P ′
x)

Here, the labeling ⋃
x∈H L′

x is defined such that
(⋃

x∈H L′
x

)
|V ′

x
= L′

x for all x ∈ H.

Lemma 5.2.9. Let T = (V, E, L, P ), T′ = (V ′, E ′, L′, P ′) be chain trees with V ∩ V ′ = ∅,
and let x ∈ LeafT such that AT

x = AT′

rT
′ . Then Ext(T, x,T′) is a chain tree. Furthermore, if

we have H ⊆ LeafT, and (Tx)x∈H is a family of chain trees such that Tx = (Vx, Ex, Lx, Px),
AT

x = ATx

rT
′ for all x ∈ H and with pairwise disjoint node sets. Then FamExt(T, (Tx)x∈H)

is a chain tree as well.

Proof. Same proof as for Lemma 4.2.9. We only have to additionally prove that P Ext(T,x,T′)

only contains inner nodes. But this holds due to the fact that P T only contains inner
nodes from T and P T′ only contains inner nodes for T′. Furthermore, we only add x into
PExt if the root of T′ is in P ′. But this means that x can not be a leaf anymore. For
extension families, we have the same reasoning again. ■

Definition 5.2.10 (Convergence Notations). Let T be a chain tree and let H ⊆ Leaf. Let
x0, x1, x2, . . . be an arbitrary enumeration of H. Then we define:

|T|H :=


∑
v∈H pv , if |H| finite,

limi→∞
∑

v∈(xk)k≤i
pv , otherwise.

If we have |T|H = c we say that T converges w.r.t. H with probability c. If H = Leaf, we
simply say that T converges with probability c.

Again, the value of |T|H does not depend on the enumeration but just on the chain tree T
due to the following lemma.
Lemma 5.2.11. Let T be a chain tree, H ⊆ Leaf be infinite, and let x0, x1, x2, . . . be
an arbitrary enumeration of H. Then ∑

v∈(xk)k≤i
pv is strictly increasing for i → ∞ and

bounded from above by 1. Hence, the sum ∑
v∈(xk)k≤i

pv is absolutely convergent for i → ∞,
i.e., limi→∞

∑
v∈(xk)k≤i

pv exists.

Proof. Same proof as for Lemma 4.2.11. ■

While for every finite chain tree T we have |T|Leaf = 1, this does not hold for infinite chain
trees in general. Again, analogous to rewrite sequence trees, we can have infinite chain
trees that converge with a probability < 1 or even 0 if there is no leaf at all.
Next, we investigate how the absolute Leaf value is impacted by our constructions. Again
due to the fact that the new set P is not of any importance for this, we get the same
results as for RSTs in the previous chapter.
Lemma 5.2.12. Let T = (V, E, L, P ),T′ = (V ′, E ′, L′, P ′) be chain trees with V ∩ V ′ = ∅,
and let x ∈ LeafT such that AT

x = AT′

rT
′ . Then we have

| Ext(T, x,T′)|Leaf = |T|Leaf − pT
x + pT

x · |T′|Leaf .

Furthermore, if we have H ⊆ LeafT, and (Tx)x∈H is a family of RSTs such that
Tx = (Vx, Ex, Lx, Px), AT

x = ATx

rTx for all x ∈ H and with pairwise disjoint node sets.
Then, we have

| FamExt(T, (Tx)x∈H)|Leaf = |T|Leaf − |T|H +
∑
x∈H

pT
x · |Tx|Leaf .
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Proof. Same proof as for Lemma 4.2.12. ■

Corollary 5.2.13 (Little Extension Lemma). Let T = (V, E, L, P ),T′ = (V ′, E ′, L′, P ′)
be chain trees with V ∩ V ′ = ∅, and let x ∈ LeafT such that AT

x = AT′

rT
′ . Then we have

| Ext(T, x,T′)|Leaf ≤ |T|Leaf . Moreover, |T|Leaf = | Ext(T, x,T′)|Leaf iff |T′|Leaf = 1.

Proof. Same proof as for Corollary 4.2.13. ■

Corollary 5.2.14 (Full Extension Lemma). Let T be a chain tree, let H ⊆ LeafT and let
(Tx)x∈H be a family of RSTs such that Tx = (Vx, Ex, Lx, Px), AT

x = ATx

rTx for all x ∈ H
and with pairwise disjoint node sets. Then we have | FamExt(T, (Tx)x∈Hole)|Leaf ≤ |T|Leaf .
Moreover, |T|Leaf = | FamExt(T, (Tx)x∈Hole)|Leaf iff |Tx|Leaf = 1 for all x ∈ H.

Proof. Same proof as for Corollary 4.2.14. ■

Lemma 5.2.15. Let T be a chain tree. Then we have |T|Leaf = 1 iff for all induced sub
chain trees T′ we have |T′|Leaf = 1.

Proof. Same proof as for Lemma 4.2.15. ■

Finally, we define (P , S)-computation trees, which is the probabilistic version of a chain.
Definition 5.2.16 ((P , S)-computation tree). Let T = (V, E, L, P ) be a chain tree. We
say that T is a (P , S)-computation tree iff additionally the following conditions hold:

(a) For every x ∈ P with xE = {y1, . . . , yk} we have Ax
i_P,S {py1

px
: Ay1 , . . . ,

pyk

px
: Ayk

}

(b) For every x ∈ S with xE = {y1, . . . , yk} we have Ax
i_S {py1

px
: Ay1 , . . . ,

pyk

px
: Ayk

}

(c) Every infinite path contains an infinite amount of P nodes. Since we are dealing
with finitely-branching trees, this is equivalent to saying that every path that starts
at some node x has a node in P after a finite amount of steps. Or that there exists
no infinite path of purely S nodes.

Note that our (P , S)-computation tree does not have to start with a node from P , while
in the non-probabilistic chain, we are required to use a dependency pair at the start.
However, whether we start with a dependency pair or not is not of any importance. The
important property is that we cannot use infinitely many rewrite rules without using any
dependency pair.
Most of the conditions of a (P , S)-computation tree only depend on the local neighborhood
of the nodes. To be precise, in order to verify that (a), (b) and the properties of a chain
tree hold, it suffices to look at each node together with its direct successors. The only
global property that we have is (c), where we need to look at the infinite paths in the tree.
Example 5.2.17 ((DT (Rdiv), Rdiv)-Computation Tree). Again, we consider the PTRS Rdiv

from Example 5.0.1 and the corresponding set of dependency tuples from Example 5.1.10.
Here, we have the following possible (DT (Rdiv), Rdiv)-computation tree that does not use
any i_S steps.
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1 : ⟨{
(
div#(4, 2), ε

)
}⟩

P

1
2 : ⟨{

(
div#(4, 2), ε

)
}⟩

P

1
2 : ⟨{

(
div#(minus(3, 1), 2), 1

)
,
(
minus#(3, 1), 1.1

)
}⟩

P

. . . . . . . . . . . .

Definition 5.2.18 (Innermost Termination and Innermost AST for (P , S)). We say that
a DP problem (P , S) is innermost surely terminating iff there is no infinite (P , S)-
computation tree. A DP problem (P , S) is innermost almost-surely terminating (innermost
AST) iff for all (P , S)-computation trees T we have |T|Leaf = 1.

Note that we defined (P , S)-computation trees using the relations i_P,S and i_S and thus
we implicitly defined everything w.r.t. innermost evaluation.
Again, we can use the constructions regarding chain trees for (P , S)-computation trees as
well.
Corollary 5.2.19. Induced sub chain trees, extensions and family extensions of (P , S)-
computation trees are (P , S)-computation trees again.

Proof. It is straightforward to see that all of the properties of Definition 5.2.16 hold since
they hold for all of the initial (P , S)-computation trees. ■

Note that in a family extension, we extend the original (P , S)-computation tree at parallel
positions. The infinite extension of a (P , S)-computation tree, where we place (P , S)-
computation trees after each other does not have to be a (P , S)-computation tree anymore.
To see this, consider (P , S)-computation trees that only consist of nodes from S. Then all
of the (P , S)-computation trees must be finite in order to satisfy the global property, but
an infinite extension of those (P , S)-computation trees after each other would contain an
infinite path purely out of S nodes, which is not allowed.
Next, we prove two lemmas, which will be the most important tools for our proofs of
the processors later on. First, we prove the P-Partition Lemma. It states that if we can
partition P = P1 ⊎ P2 such that (P1, S) is AST, then for (P , S) it suffices to look at
(P , S)-computation trees such that every infinite path has an infinite amount of P nodes
that correspond to steps with P2. This does not only work for a partition P = P1 ⊎ P2,
but we can even more generally speak about the set P of a chain tree itself. If we have a
chain tree T that converges with probability < 1 and suppose that we can partition the
set P T = P1 ⊎ P2 of the chain tree such that for every induced sub chain tree T′ that only
uses nodes from P1 converges with probability 1, then there is a grounded induced sub
chain tree that converges with probability < 1 such that on every infinite path, there is an
infinite amount of P2 nodes.
Lemma 5.2.20 (P-Partition Lemma). Let T = (V, E, L, P ) be a chain tree that converges
with probability < 1. Assume that we can partition P = P1 ⊎ P2 such that for every induced
sub chain tree that only contains P nodes from P1 converges with probability 1. Then there
is a grounded induced sub chain tree T′ that converges with probability < 1 such that every
infinite path has an infinite number of P2 nodes.
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Proof. Let T = (V, E, L, P ) be a chain tree with |T|Leaf = c < 1 for some c ∈ R. Since we
have 0 ≤ c < 1, there is an ε > 0 such that c + ε < 1. Remember that the formula for the
geometrical sum is:

∞∑
n=1

(1
d

)n

= 1
d − 1 , for all 1

|d|
< 1

We set d := 1
ε

+ 2 and get

1
ε

+ 1 <
1
ε

+ 2 ⇔ 1
ε

+ 1 < d ⇔ 1
ε

< d − 1 ⇔ 1
d − 1 < ε

We will now create a grounded induced sub chain tree T′ = (V ′, E ′, L′, P ′) such that every
infinite path will have an infinite number of P2 nodes and such that

|T′|Leaf ≤ |T|Leaf +
∞∑

n=1

(1
d

)n

(5.10)

Then, we finally have

|T′|Leaf ≤ |T|Leaf +
∞∑

n=1

(1
d

)n

= |T|Leaf + 1
d − 1 = c + 1

d − 1 < c + ε < 1

The idea of this construction is that we cut infinite sub-paths of pure P1 and S nodes as
soon as the probability for normal forms on that path is high enough. In this way, one
then obtains paths where after finitely many P1 nodes, there is always a P2 node.
The construction goes as follows. For any node x ∈ V let L2(x) be the number of P2
nodes in the path from the root to x. Furthermore, for any set W ⊆ V and k ∈ N let
L2(W, k) := {x ∈ W | L2(x) ≤ k ∨ (x ∈ P ∧ L2(x) ≤ k + 1)} be the set of all nodes in
W that have at most k nodes from P2 in the path from the root to its predecessor. So if
x ∈ W is not in P2, then we have at most k nodes from P2 in the path from the root to
itself and if x ∈ W is in P2, then we have at most k + 1 nodes from P2 in the path from
the root to itself. We will inductively create a set Vk ⊆ V such that Vk ⊆ L2(V, k) and
then define the grounded induced sub chain tree as T′ := T[⋃k∈N Vk]. In other words, we
are going inductively over the L2-levels of the tree T and cut infinite sub-paths of pure P1
and S nodes as soon as the probability for normal forms on that path is high enough.
In the base case, we consider the induced sub chain tree Tr := T[L2(V, 0)]. This tree only
contains P nodes from P1. While the node set L2(V, 0) itself may contain nodes in P2,
this can only occur at the leaves of Tr, and by definition of an induced sub chain tree, we
remove every leaf from P in the creation of Tr. Using our assumption we get |Tr|Leaf = 1.
In Figure 5.4 one can see the different possibilities for Tr. Either Tr is finite, or Tr is infinite.
In the first two cases, we can add all the nodes to V0 since there is no infinite path of pure
P1 and S nodes. Hence, we define V0 := L2(V, 0). In the last case, we have to cut the tree
at a specific depth once the probability of leaves is high enough. Let dr(y) be the depth of
the node y in the tree Tr. Moreover, let Dr(k) := {x ∈ L2(V, 0) | dr(y) ≤ k} be the set of
nodes in Tr that have a depth of at most k. Since |Tr|Leaf = 1 and | ◦ |Leaf is monotone
w.r.t. the depth of the tree Tr, we can find an Nr ∈ N such that

∑
x∈LeafTr ,dr(x)≤Nr

pTr
x ≥ 1 − 1

d

We include all nodes from Dr(Nr) in V0 and delete every other node of Tr. In other words,
we cut the tree after depth Nr. This cut can be seen in Figure 5.4, indicated by the red
line. Therefore, we set V0 := Dr(Nr) in this case.
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P1P2 P2P1

S

NF NF NFP2 P2

SS

(a) Tr finite

P1P2 P2P1

S

NF NF P1P2 P1

SS
Nr

(b) Tr infinite

Figure 5.4: Possibilities for Tr

For the induction step, assume that we have already defined a subset Vi ⊆ L2(V, i). Let
Hi := {x ∈ Vi | x ∈ P ∧ L2(x) = i + 1} be the set of leaves in T[Vi] that are in P2.
Additionally, let x ∈ Hi. For each x, we consider the induced sub chain tree that starts
at x until we see the next node from P2, including the node itself. Everything below
such a node will be cut. To be precise, we set Vx := L2(xE∗, i + 1) and look at the tree
Tx = (Vx, Ex, Lx) := T[Vx].
First, we show that |Tx|Leaf = 1. For every successor y of x, the induced sub chain tree
Ty := Tx[y(Ex)∗] of Tx that starts at y does not contain any nodes from P2. Hence, we
have |Ty|Leaf = 1, by our assumption. Then, Tx is the family extension of the finite
chain tree T[{x} ∪ xE] and the family (Ty)y∈xE. Since T[{x} ∪ xE] is finite we have
|T[{x} ∪ xE]|Leaf = 1 and since we have |Ty|Leaf = 1 for all y ∈ xE, we get |Tx|Leaf = 1 by
the full extension lemma (Corollary 5.2.14).
Now, for the construction, we have the same cases as before. Either Tx is finite or Tx is
infinite. In the first case, we can add all the nodes again. For this, we set Zx := Vx. In
the second case, we once again cut the tree at a specific depth once the probability for
leaves is high enough. Let dx(z) be the depth of the node z in the tree Tx. Moreover, let
Dx(k) := {x ∈ Vx | dx(z) ≤ k} be the set of nodes in Tx that have a depth of at most k.
Since |Tx|Leaf = 1 and | ◦ |Leaf is monotone w.r.t. the depth of the tree Tx, we can find an
Nx ∈ N such that ∑

y∈LeafTx ,dx(y)≤Nx

pTx
y ≥ 1 −

(1
d

)i+1
· 1

|Hi|

We will include all nodes from Dx(Nx) in Vi+1 and delete every other node of Tx. In other
words, we cut the tree after depth Nx. Therefore, we set Zx := Dx(Nx) in this case.
We do this for each x ∈ H and in the end, we set Vi+1 := Vi ∪ ⋃

x∈H Zx.
It is straightforward to see that ⋃

k∈N Vk satisfies the conditions of Definition 5.2.3, as we
only cut after certain nodes in our construction. Hence, ⋃

k∈N Vk is non-empty, weakly
connected, and we either have no or all successors of a node inside of it. Furthermore,
T′ := T[⋃k∈N Vk] is a grounded induced sub chain tree and does not contain an infinite
path of pure P1 and S nodes as we cut every such path after a finite depth. The last
thing we need to prove is that |T′|Leaf ≤ |T(µ)|Leaf + ∑∞

n=1

(
1
d

)n
holds. During the i-th

construction iteration, we may increase the value of |T(µ)|Leaf by the sum of all probabilities
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corresponding to the new leaves resulting from the cuts. As we cut at most |Hi| trees in the
i-th iteration and for each such tree, we added at most a total probability of

(
1
d

)i+1
· 1

|Hi| ,
the value of |T(µ)|Leaf might increase by

|Hi| ·
(1

d

)i+1
· 1

|Hi|
=

(1
d

)i+1

in the i-th iteration, and hence in total, we then get

|T′|Leaf ≤ |T(µ)|Leaf +
∞∑

n=1

(1
d

)n

■

Next, we introduce split-nodes for our computation trees. These are nodes that split into
multiple ones without changing the set in the labeling of the node.
Definition 5.2.21 ((P , S)-computation tree with splits). We exchange the property (b) of
Definition 5.2.16 by the following:

(b-split) For every x ∈ S with xE = {y1, . . . , yk} we have Ax
i_S {py1

px
: Ay1 , . . . ,

pyk

px
: Ayk

} or
Ayj

= Ax for all 1 ≤ j ≤ k.

A chain-tree T = (V, E, L, P ) that satisfies the conditions from Definition 5.2.16 but with
(b-split) instead of (b), is called a (P , S)-computation tree with splits. A node x ∈ S with
xE = {y1, . . . , yk}, Ayj

= Ax for all 1 ≤ j ≤ k, and Ax ̸ i_S {py1
px

: Ay1 , . . . ,
pyk

px
: Ayk

} is
called a split-node.

Allowing split-nodes does not change the property of being AST as described in the
following lemma
Lemma 5.2.22 (Splitting Lemma). If there exists a (P , S)-computation tree T with splits
such that |T|Leaf < 1, then there is also a (P , S)-computation tree T without splits such
that |T|Leaf < 1.

Proof. The proof of this theorem combines the ideas of the proofs from Lemma 4.2.22
and Theorem 4.2.21. Assume that there exists a (P , S)-computation tree T = (V, E, L, P )
with splits such that |T|Leaf = c < 1. From T, we will now create an infinite, finitely
branching, labeled tree F such that the label of every node X inside of this tree represents
a (P , S)-computation tree TX = (VX , EX , LX , PX) without splits, such that VX ⊆ V ,
and the sum of all probabilities for leaves in TX that are also leaves in T is less than c
(i.e., ∑

x∈LeafTX ∧x∈LeafT pTX
x ≤ c). Since this tree F is infinite and finitely branching, there

must exist an infinite path by König’s lemma. This infinite path will correspond to a
(P , S)-computation tree Tlim without splits such that LeafTlim ⊆ LeafT and thus we have

|Tlim|Leaf =
∑

x∈LeafTlim

pTlim
x =

∑
x∈LeafTlim ∧x∈LeafT

pTlim
x ≤ c < 1

so that Tlim converges with probability < 1, and this ends the proof.
Now to the precise construction of the tree F. The root of F is labeled with the induced
sub chain tree T[{rT}] of T that only consists of the root. Here, T[{rT}] is a finite (P , S)-
computation tree and ∑

x∈LeafT[{rT}] ∧x∈LeafT pT[{rT}]
x = 0 ≤ c, since the root of T can not be

a leaf in T, otherwise, we would have |T|Leaf = 1.
Let x1x2 . . . be an enumeration of V such that there exists no i < j with d(xi) > d(xj).
This means that our enumeration starts with the root, then enumerates all nodes of depth
1, then all nodes of depth 2, and so on.

87



5. DP Framework for PTRS

In the i-th iteration of our construction of the tree F, we consider node xi and all of the
nodes in depth i of the tree F. Let Vi := {x1, . . . , xi} ∪ ⋃

1≤j≤i xjE and let Ti := T[Vi]
be the induced sub (P , S)-computation tree consisting of the nodes x1, . . . , xi together
with their successors. The set Vi satisfies the conditions of Definition 5.2.3 because it
is weakly connected by definition of our enumeration and we either have all successors
existent or none. We now use the same construction as in Theorem 4.2.21 to create a
set Split(Ti) that contains all possible (P , S)-computation trees that are contained in our
(P , S)-computation tree Ti with splits. Instead of the nodes with a position indicator of
j ̸= i that we used in Theorem 4.2.21 to split a tree into multiple ones, this time we split
at the split-nodes. The rest of the construction is completely the same, and the details can
be found in the proof of Theorem 4.2.21. After this construction, we get a set Split(Ti)
that satisfies the following:

(1.) ∑
(pT ,T )∈Split(Ti) pT = 1. This means that the sum of the probabilities for all possible

(P , S)-computation trees is one.

(2.) For all x ∈ Vi we have pTi
x = ∑

(pT ,T )∈Split(Ti) pT · p(T,x), where

p(T,x) =
pT

x if x ∈ V T ,

0 otherwise.

This means that the probability for node x in our tree Ti is equal to the sum over
all trees T that contain x, where we multiply the probability of the tree T by the
probability of node x in T .

(3.) For all (pT , T ) ∈ Split(Ti) the tree T is a (P , S)-computation tree without splits.

For the tree F, we have a node in the (i + 1)-th depth for every tree T inside of Split(Ti)
such that ∑

x∈LeafT ∧x∈LeafT pT
x ≤ c and label it accordingly. We draw an edge from a node

X in depth i to the node Y in depth i + 1 if the corresponding trees are either the same,
if the tree for node Y is the result of the tree for node X if we add the successors of xi

or if the tree for node Y is the result of the tree for node X if we split at node xi, i.e., if
we remove xi and directly move to one of its successors. A node X can only have a finite
amount of direct successors in the tree F since the node xi can only have a finite amount
of direct successors in T so that the split at node xi can only result in a finite amount
of possible trees. If xi is not a split-node, then there is a unique successor for each tree.
Hence, F is finitely branching.
We now have to prove that there exists a node in every depth of the tree F. Let i ∈ N. We
have to show that there exists a pair (pT , T ) ∈ Split(Ti) such that ∑

x∈LeafT ∧x∈LeafT pT
x ≤ c.

Assume for a contradiction that ∑
x∈LeafT ∧x∈LeafT pT

x > c holds for all (pT , T ) ∈ Split(Ti).
Then we would have∑

x∈LeafTi ∧x∈LeafT pTi
x

= ∑
x∈LeafTi ∧x∈LeafT

∑
(pT ,T )∈Split(Ti) pT · p(T,x) (by 2.)

= ∑
(pT ,T )∈Split(Ti)

∑
x∈LeafTi ∧x∈LeafT pT · p(T,x)

= ∑
(pT ,T )∈Split(Ti) pT · ∑

x∈LeafTi ∧x∈LeafT p(T,x)
= ∑

(pT ,T )∈Split(Ti) pT · ∑
x∈LeafT ∧x∈LeafT pT

x

>
∑

(pT ,T )∈Split(Ti) pT · c (as ∑
x∈LeafT ∧x∈LeafT pT

x > c)
= c · ∑

(pT ,T )∈Split(Ti) pT

= c · 1 (by 1.)
= c
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But this is a contradiction since this means

c <
∑

x∈LeafTi ∧x∈LeafT
pTi

x ≤
∑

x∈LeafT
pT

x = c

Hence, there exists a node in every depth of the tree F. Note that if a tree T is
contained in depth i of the tree F, then for every predecessor T ′ of T in F we also
have ∑

x∈LeafT ′ ∧x∈LeafT pT ′
x ≤ c and thus the whole path is contained in F. This means that

F is an infinite and finitely branching tree, so there must exist an infinite path by König’s
lemma.
Finally, we show that this infinite path corresponds to a (P , S)-computation tree Tlim
without splits such that LeafTlim ⊆ LeafT. Let T1,T2, . . . be the finite (P , S)-computation
trees without splits of the nodes in the infinite path in F. We define the tree Tlim by
Tlim := limi→∞ Ti. Note that there is some natural number Nj ∈ N for every j ∈ N, such
that everything below the j-th depth is the same for all trees Ta with a > Nj. Hence, the
limit exists and all local properties for a (P , S)-computation tree are satisfied for Tlim.
For the only global property regarding the infinite paths in Tlim, note that every infinite
path in Tlim corresponds to an infinite path in T that is only missing split-nodes. Since
split-nodes are contained in S, we can be sure that every infinite path in Tlim must contain
an infinite amount of P nodes.
Lastly, we have to show that LeafTlim ⊆ LeafT. Let x ∈ LeafTlim . We have d(x) = j for
some j ∈ N and by our previous observation, there must be a Nj ∈ N such that x ∈ LeafTa

for all a > Nj. But this is only possible if x is already a leaf in T because otherwise, we
would add one of its successors into the tree afterward, or we would skip the node x if it is
a split-node. Thus we have LeafTlim ⊆ LeafT and this ends the proof. ■

At the end of this section, we once again prove our theorem regarding the structure of
a witness that (P , S) is not innermost AST. We will see that we can once again start
with a fully instantiated left-hand side of some dependency tuple in the PPTRS such that
every proper subterm is in normal form. We have only defined computation trees and no
computation forests. Hence, we have implicitly defined that our probabilistic chains start
with a single set.
Theorem 5.2.23 (Witness Theorem of probabilistic DP problems). If (P , S) is not
innermost AST then there exists a (P , S)-computation tree T = (V, E, L, P ) that converges
with probability < 1 and starts with (1 : ⟨{(t#, ε)}⟩) such that t# = ℓ#σ for some dependency
tuple (ℓ#, ℓ) → . . . ∈ P, some ground substitution σ ∈ Sub (Σ, V), and every proper subterm
of ℓ#σ is in normal form w.r.t. S.

In order to prove this, we first introduce two new definitions regarding the syntactical
structure of our sets.
Definition 5.2.24 (Orthogonal Cuts and Hierarchical Sets). Let A ∈ PDTSwp. We say
that (B, C) is an orthogonal cut of A if we have B ̸= ∅, C ̸= ∅, A = B ⊎ C and for all
(t1, π1) ∈ B, and all (t2, π2) ∈ C we have π1⊥π2.
If there does not exist an orthogonal cut of A then there is a pair (t, π) ∈ A, called the
top pair, such that π ≤ π′ for all (t′, π′) ∈ A. Here, we say that A is hierarchical.

The core idea of an orthogonal cut is that in a rewrite step, we change only pairs of one of
the parts in the cut. The other part will stay the same.
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Example 5.2.25 (Rewriting Orthogonal Cuts). Remember the DP problem from
Example 5.1.13. For the set

A := ⟨{
(
f#(a), 2

)
,
(
f#(a), 1

)
,
(
a#, 1.1

)
}⟩

we have an orthogonal cut of A given by the two sets

A1 := ⟨{
(
f#(a), 2

)
}⟩, A2 := ⟨{

(
f#(a), 1

)
,
(
a#, 1.1

)
}⟩

If we now look at the following rewrite step:

A i_P,S {1 : B} = {1 : ⟨{
(
f#(a), 2

)
,
(
g#(b), 1

)
,
(
b#, 1.1

)
}⟩}

Then we have
B1 := ⟨{

(
f#(a), 2

)
}⟩, B2 := ⟨{

(
g#(b), 1

)
,
(
b#, 1.1

)
}⟩

as an orthogonal cut of B. As one can see, one part of the orthogonal cut stays the same.
If we remove the pair

(
f#(a), 2

)
from A, then the resulting set

A′ := ⟨{
(
f#(a), 1

)
,
(
a#, 1.1

)
}⟩

is hierarchical. Here we have the top pair
(
f#(a), 1

)
.

Lemma 5.2.26 (Orthogonal Cuts and Rewrite Steps). Let A ∈ PDTSwp and let (A1, A2)
be an orthogonal cut of A. If we have

A i_P,S {p1 : B1, . . . , pk : Bk} or A i_S {p1 : B1, . . . , pk : Bk}

using a main rewrite pair (t, π) ∈ A1, then A2 ⊆ Bj for every 1 ≤ j ≤ k.

Proof. Assume that we have A i_P,S {p1 : B1, . . . , pk : Bk} and use the main rewrite pair
(t, π) ∈ A1. Let 1 ≤ j ≤ k. Following the notation from Definition 5.1.12, we have

A = ⟨{(t, π)}⟩ ⊎ Mrew ⊎ M⊥ ⊎ M<

and
Bj = M+

j ⊎ M⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ Mrew}⟩

Since for every (a, α) ∈ A2 we have α⊥π, by definition of an orthogonal cut, we get
A2 ⊆ M⊥ ⊆ Bj. The case for A i_S {p1 : B1, . . . , pk : Bk} is completely analogous. ■

Now, we are able to prove the main lemma for the witness theorem.
Lemma 5.2.27. If (P , S) is not innermost AST then there exists an innermost (P , S)-
computation tree T that converges with probability < 1 and starts with (1 : A) for some
A ∈ PDTSwp such that |A| = 1.

Proof. We will prove the contraposition. This proof follows the same structure as the
proof for Theorem 2.1.23 and Theorem 4.2.21. But as we are rewriting on sets, we can
not argue in the induction step about rewriting at the root position. Hence, we use our
new definitions regarding orthogonal cuts and hierarchical sets to create our desired case
distinction in this way. The case that there exists an orthogonal cut was in Theorem 2.1.23
and Theorem 4.2.21, the case where we do not rewrite at the root position. The case for a
hierarchical set was then the second step, where we allowed rewriting at the root position
again.
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Assume that every (P , S)-computation tree T that starts with (1 : A) for some term
A ∈ PDTSwp such that |A| = 1 converges with probability 1. We prove by induction over
|A|, that then all (P , S)-computation trees T that start with (1 : A) for some A ∈ PDTSwp
converge with probability 1.
If we have |A| = 0, then the set is in normal form and the case |A| = 1 is precisely our
assumption. Hence, all (P , S)-computation trees T that start with (1 : A) such that
|A| ∈ {0, 1} converge with probability 1.
In the induction step, we assume that every (P , S)-computation tree T = (V, E, L, P ) that
start with (1 : A′) such that |A′| < |A| converges with probability 1. We now distinguish
two different cases:

• If there exists an orthogonal cut (A1, A2) of A, then assume for a contradiction that
there exists a (P , S)-computation tree T = (V, E, L, P ) that starts with (1 : A) and
converges with probability < 1. We will now do the following steps:

1) Partition the set P into the sets P1 and P2 according to the position of the
used main rewrite pair.

2) Create a chain tree T(1) that starts with (1 : A1) and |T(1)|Leaf < 1.
3) Use the P-Partition Lemma to get a (P , S)-computation tree T′ with |T′|Leaf < 1.
4) Create a (P , S)-computation tree T′(2) that starts with (1 : A2) and |T(2)|Leaf <

1.

In the end, we created a (P , S)-computation tree T′(2) that starts with A2 such that
|T′(2)|Leaf < 1. This is a contradiction since we have |A2| < |A| (by definition of an
orthogonal cut) and by induction hypothesis, we must have |T′(2)|Leaf = 1.

1) Partition the set P

Let
X1 := {π | (t, π) ∈ A1 ∧ ¬∃(t′, π′) ∈ A1 : π′ < π}

be the top positions in A1 and similarly

X2 := {π | (t, π) ∈ A2 ∧ ¬∃(t′, π′) ∈ A2 : π′ < π}

be the top positions in A2. Note that rewriting with i_P,S or i_S can only extend
existent positions. Hence, for every x ∈ V the set Ax can only contain pairs that
have a position below some position in X1 or X2. To be precise, we have

Ax = A(1)
x ⊎A(2)

x := {(t, π) ∈ Ax | ∃τ ∈ X1 : τ ≤ π}⊎{(t, π) ∈ Ax | ∃τ ∈ X2 : τ ≤ π}

If both of these are non-empty, then they form an orthogonal cut of Ax, e.g., we have
Ar = A = A(1)

x ⊎ A(2)
x = A1 ⊎ A2 for the root and (A1, A2) is an orthogonal cut of A.

We can partition P into the sets

P1 := {x ∈ P | x together with the labeling and its successors represents a
i_P,S step with a main rewrite pair position below some π ∈ X1}

P2 := {x ∈ P | x together with the labeling and its successors represents a
i_P,S step with a main rewrite pair position below some π ∈ X2}
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2) Create a chain tree T(1)

We start by constructing a chain tree T(1) = (V, E, L(1), P1) with the labeling
L(1)(z) = (pT

z , A(1)
z ) for all z ∈ V . This means that T and T(1) have the same tree

structure and the same probabilities, but we only use the sets of the first part of our
orthogonal cut in the labeling. Hence, we have |T(1)|Leaf = |T|Leaf < 1.

1 : A

P1

p1 : A1

P2

p2 : A2

p3 : A3 p4 : A4

P1

p5 : A5

P2

. . . . . . . . .

⇝
1 : A(1)

P1

p1 : A
(1)
1 p2 : A

(1)
2

p3 : A
(1)
3 p4 : A

(1)
4

P1

p5 : A
(1)
5

. . . . . . . . .

Figure 5.5: Construction of T(1)

Rewrite steps with a main rewrite pair position below X2 do not change the set of
the first part of our orthogonal cut as described by Lemma 5.2.26. Here, we can
use split-nodes to perform no rewrite step but mirror the tree structure. In order
to do this, we have to remove every node from P2 and move it into S. This means
that every local property of a (P , S)-computation tree is satisfied for T(1). However,
if there exists an infinite path in T that only sees nodes from P2 and S, then this
path would not contain an infinite amount of P1 nodes in the tree T(1). Hence, T(1)

might not be a (P , S)-computation tree anymore as the global property might not
be satisfied. However, every induced sub chain tree such that every infinite path has
an infinite amount of P1 nodes is a (P , S)-computation tree with splits. This also
includes every finite induced sub chain tree as there does not exist an infinite path
in such trees.

3) Use the P-Partition Lemma
In order to use the P-Partition Lemma for the tree T, we have to show that every
induced sub chain tree T′ of T that only contains P nodes from P1 converges with
probability 1. Let T′ = (V ′, E ′, L′, P ′) be an induced sub chain tree of T that
does not contain nodes from P2. There exists a set W satisfying the conditions of
Definition 5.2.3 such that T′ = T[W ]. Let w ∈ W be the root of T′. Since T and
T(1) have the same tree structure, we have T(1)[W ] as an induced sub chain tree of
T(1) with T(1)[W ] = T′. Moreover, T(1)[W ] is a (P , S)-computation tree, since the
set W does not contain any inner nodes from P2. Note that T(1)[W ] starts with
(1 : A(1)

w ) and that every (P , S)-computation tree that starts with (1 : A1) converges
with probability 1 by our induction hypothesis. We now show that T(1)[W ] is the
induced sub chain tree of a (P , S)-computation tree that starts with (1 : A1) and
thus, we know that T(1)[W ] must be converging with probability 1 as well.
Let r = y1 . . . ym = w be the path from the root to w in T. The tree we are looking
for is T := T(1)[⋃1≤j≤m yjE ∪ W ]. This is a grounded, induced sub chain tree. Every
infinite path in T must visit the node w and corresponds to an infinite path in
T(1)[W ] so that it has an infinite amount of P1 nodes. Furthermore, ⋃

1≤j≤m yjE ∪ W
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satisfies the conditions of Definition 5.2.3, as the set is weakly connected and we
always have the whole successor set contained or no successor at all. Therefore, T is
a (P , S)-computation tree that starts with A1 and must converge with probability 1
by our induction hypothesis.
Now, we have shown that the conditions for the P-Partition Lemma (Lemma 5.2.20)
are satisfied. We can now apply the P-Partition Lemma to get a grounded, induced
chain tree T′ of T with |T′|Leaf < 1 such that on every infinite path, we will have an
infinite number of P2 nodes.

4) Create a (P , S)-computation tree T′(2)

We can now create a (P , S)-computation tree T′(2) = (V ′, E ′, L′(2), P2 ∩ V ′) with
splits and the labeling L′(2)(z) = (pT′

z , A(2)
z ) that starts with (1 : A2) and has the

same underlying tree structure and probabilities for the nodes as T′. Since the tree
structure and the probabilities are the same, we then get |T′(2)|Leaf = |T′|Leaf . Since
|T′|Leaf < 1 we thus have |T′(2)|Leaf < 1, which is our desired contradiction.

1 : A

P1

p1 : A1

P2

p2 : A2

p3 : A3 p4 : A4

P1

p5 : A5

P2

. . . . . . . . .

⇝
1 : A(2)

p1 : A
(2)
1

P2

p2 : A
(2)
2

p3 : A
(2)
3 p4 : A

(2)
4 p5 : A

(2)
5

P2

. . . . . . . . .

Figure 5.6: Construction of T′(2)

The core idea of this construction is that we remove every node from P2 and use
split-nodes to do nothing, analogous to the previous construction, where we did the
same for P1. Again, all local properties for a (P , S)-computation tree with splits are
satisfied, and since we know that every path has an infinite amount of P2 nodes in
T′, we also know that the global property for T′(2) is satisfied.

• If we have A hierarchical, then there is a top pair (t, π) inside of A. Assume for
a contradiction that there exists a (P , S)-computation tree T = (V, E, L, P ) that
starts with (1 : A) and converges with probability < 1. By TC = (V ′, E ′, L′, P ′) we
denote the (P , S)-computation tree that results when cutting everything after a
node that represents a rewrite step with a main rewrite pair position π. This tree
can be transformed into a (P , S)-computation tree T′

C = (V ′, E ′, L′′, P ′) with the
labeling L′′(x) = (px, {(a, α) ∈ Ax | α ≠ π}) that uses the same probabilities but
removes the top pair (t, π) from every occurring set. Since we always rewrite with a
main rewrite pair position strictly below π in T′

C (as we cut before such a rewrite
step occurs), we know that T′

C is a (P , S)-computation tree. Furthermore, T′
C starts

with A \ {(t, π)} and since |A \ {(t, π)}| < |A| we get |T′
C|Leaf = 1 by our induction

hypothesis. Now T′
C and TC have the same tree structure and the same probabilities

so that |TC|Leaf = |T′
C|Leaf = 1.

If we rewrite with the main rewrite position π, then every other pair gets removed, as
every other position is below π. Hence, the leaves inside of T′ that are not in normal
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form yet, can be extended with (P , S)-computation trees T′′ that start with {(t′, π)}
for some term t′ ∈ T # (Σ). Again, we get |T′′|Leaf = 1 for all these computation
trees by our assumption. Now, T is the family extension of trees that converge with
probability 1 and by the full extension lemma (Corollary 5.2.14) we get |T|Leaf = 1,
which is our desired contradiction. ■

Proof of Theorem 5.2.23. Assume that (P , S) is not innermost AST. By Lemma 5.2.27
there exists a (P , S)-computation tree T that start with (1 : A) for some A ∈ PDTSwp with
|A| = 1. This means that we start with the singleton set ⟨{(t#, π)}⟩, and hence the precise
position π is irrelevant so that we can assume that we have π = ε. If the root is inside of
P , then we can only perform a rewrite step if t# = ℓ#σ for some rule (ℓ#, ℓ) → . . . ∈ P,
some ground substitution σ ∈ Sub (Σ, V) and such that every proper subterm of ℓ#σ is in
normal form w.r.t. S.
If the root is not inside of S, then we show that there exists an induced sub (P , S)-
computation tree that starts with (1 : A′) for some A′ ∈ PDTSwp with |A| = 1, converges
with probability < 1, and such that the root is contained in P . This tree is then of our
desired form by the previous paragraph again.
The grounded, induced sub (P , S)-computation tree T′ that results from cutting every
edge after the first node in P must be finite. Hence, we have a finite set of leaves for T′,
given by LeafT′ = {z1, . . . , zk}, and every leaf z ∈ LeafT′ is either in P or a leaf in T as well.
Note that rewriting with i_S can not increase the size of the set, so that |Az| = |A| = 1
for all z ∈ LeafT′ holds. Let Tz := T[zE∗] be the induced sub (P , S)-computation tree
that starts at z. If we assume for a contradiction that Tz converges with probability 1 for
every z ∈ LeafT′ , then also T converges with probability 1 as it is the family extension of
trees that converge with probability 1 and by the full extension lemma (Corollary 5.2.14)
we get |T|Leaf = 1, which is a contradiction to our assumption. Hence, there must exists a
z ∈ LeafT′ such that Tz converges with probability < 1. This is then a (P , S)-computation
tree of our desired from as we have |Az| = 1 and the root is contained in P . ■

5.3 Chain Criterion

Before we talk about the DP framework and the processors, we have to prove the chain
criterion for the probabilistic dependency tuples.
Theorem 5.3.1 (Probabilistic Chain Criterion). A PTRS R is innermost AST iff
(DT (R), R) is innermost AST.

This proof is more involved than the one for the non-probabilistic dependency pairs due
to the more complex definition of a probabilistic chain. We will split this proof into
two smaller parts. We start by defining some important sets that we consistently use
throughout both parts of the proof.
Definition 5.3.2. Let R be a PTRS. For a set A ∈ PDTSwp we define SubMain

set (A, R) :=
{(r, π) | (r, π) ∈ A, r♭ is not in normal form w.r.t. R and every proper subterm of r♭ is
in normal form w.r.t. R} and SubPoss

set (A, R) := {(r, π) | (r, π) ∈ A, r♭ is not in normal
form w.r.t. R }. For a term t we define SubMain

term (t, R) := {(r#, π) | r is a subterm of t at
position π with defined root symbol that is not in normal form w.r.t. R and every proper
subterm of r is in normal form w.r.t. R } and SubPoss

term(t, R) := {(r#, π) | r is a subterm of
t at position π with defined root symbol that is not in normal form w.r.t. R }.
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SubMain
set (A, R) and SubMain

term (t, R) contain precisely the pairs/subterms that may be used
for an innermost rewrite step. To be precise, SubMain

set (A, R) contains exactly the pairs
that may be used as main rewrite pair for i_DT (R),R steps, and SubMain

term (t, R) contains
exactly the pairs where the corresponding term is a possible redex for the PTRS R. On
the other hand, the sets SubPoss

set (A, R) and SubPoss
term(t, R) contain all of the pairs/subterms

that may be used now or in future rewrite steps as main rewrite pair/redex, due to the
fact that the term has a defined root symbol and is not in normal form w.r.t. R.
Example 5.3.3 (Important Sets). Consider the PTRS Rdiv from Example 5.0.1. For the
term t := s(div(minus(x, y), s(y))), we have

SubPoss
term(t, R) = {

(
div#(minus(x, y), s(y)), 1

)
,
(
minus#(x, y), 1.1

)
}

SubMain
term (t, R) = {

(
minus#(x, y), 1.1

)
}

For the set A := {
(
div#(minus(x, y), s(y)), 1

)
,
(
minus#(x, y), 1.1

)
,
(
div#(O, O), 2

)
}, we

have
SubPoss

set (A, R) = {
(
div#(minus(x, y), s(y)), 1

)
,
(
minus#(x, y), 1.1

)
}

SubMain
set (A, R) = {

(
minus#(x, y), 1.1

)
}

Here, the term in the pair
(
div#(O, O), 2

)
is in normal form w.r.t. R and thus not contained

in SubPoss
set (A, R) and not contained in SubMain

set (A, R).

We can now prove the first part of our chain criterion.
Lemma 5.3.4 (Proving Innermost AST with Dependency Tuples (Part 1)). Let R be a
PTRS and t ∈ T (Σ) with a defined root symbol. Then the following is equivalent:

• There exists an innermost R-computation tree T = (V, E, L) that converges with
probability < 1 and starts with (1 : t) such that t = ℓσ for some rule ℓ → r ∈ R, some
ground substitution σ ∈ Sub (Σ, V), and every proper subterm of ℓσ is in normal
form w.r.t. R.

• There exists a (DT (R), R)-computation tree T = (V, E, L, P ) that converges with
probability < 1 and starts with (1 : ⟨{(t#, ε)}⟩) such that t# = ℓ#σ for some
dependency tuple (ℓ#, ℓ) → . . . ∈ DT (R), some ground substitution σ ∈ Sub (Σ, V),
and every proper subterm of ℓ#σ is in normal form w.r.t. R. Furthermore, we have
P = V \ Leaf (i.e., we do not use any i_R steps).

Example 5.3.5 (Illustration of Part 1). Consider the following PTRS R over the signature
Σ with ΣD = {f, g} and ΣC = {a, s} with the rules:

(1) = f(a, a) → {1 : s(f(g, g))}
(2) = g → {1 : a}

This is not AST, as it can be seen as a non-probabilistic TRS that does not terminate.
Now, consider the PPTRS DT (R). Here, we have the dependency tuples:

DT ((1)) = (f#(a, a), f(a, a)) → {1 : (⟨{
(
f#(g, g), 1

)
,
(
g#, 1.1

)
,
(
g#, 1.2

)
}⟩, s(f(g, g)))}

DT ((2)) = (g#, g) → {1 : (∅, a)}
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1 : f(a, a)

1 : s(f(g, g))

1 : s(f(a, g))

1 : s(f(a, a))

. . .

(a) R-computation tree T

1 : ⟨{
(
f#(a, a), ε

)
}⟩

P

1 : ⟨{
(
f#(g, g), 1

)
,
(
g#, 1.1

)
,
(
g#, 1.2

)
}⟩

P

1 : ⟨{
(
f#(a, g), 1

)
,
(
g#, 1.2

)
}⟩

P

1 : ⟨{
(
f#(a, a), 1

)
}⟩

P

. . .

(b) (DT (R), R)-computation tree T′

Figure 5.7: Transformation of the following proof part (1).

Consider the infinite innermost R-computation tree T in Figure 5.7a. This tree is an
infinite path without leaves, so it converges with probability 0. We can construct the
(DT (R), R)-computation tree T′ depicted in Figure 5.7b that converges with probability
0 as well and only uses i_DT (R),R steps. If we start with T′ for the other direction of the
proof, we will get T.

Proof of Lemma 5.3.4.

“⇒” Let T = (V, E, L) be an innermost R-computation tree that converges with
probability < 1 and starts with t such that t = ℓσ for some rule ℓ → r ∈ R, some
ground substitution σ ∈ Sub (Σ, V), and every proper subterm of ℓσ is in normal form
w.r.t. R. We will construct a (DT (R), R)-computation tree T′ = (V, E, L′, V \LeafT)
with the same underlying tree structure and an adjusted labeling such that pT

x = pT′
x

for all x ∈ V . Since the tree structure and the probabilities are the same, we then
get |T|Leaf = |T′|Leaf . To be precise, the set of leaves in T is equal to the set of leaves
in T′, and they have the same probability. Since |T|Leaf < 1 we thus have |T′|Leaf < 1.
Additionally, the computation tree T′ will start with (1 : ⟨{(t#, ε)}⟩) and therefore,
there exists a (DT (R), R)-computation tree T′ that converges with probability < 1
with our desired properties.

1 : t

p1 : t1 p2 : t2

p3 : t3 p4 : t4 p5 : t5

. . . . . . . . .

⇝
1 : ⟨{(t#, ε)}⟩

P

p1 : A1

P

p2 : A2

P

p3 : A3

P

p4 : A4

P

p5 : A5

P

. . . . . . . . .

Figure 5.8: Construction for the proof of the direction “⇒”
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We construct the new labeling L′ for the (DT (R), R)-computation tree inductively
such that for all inner nodes x ∈ V \ Leaf with children nodes xE = {y1, . . . , yk} we
have Ax

i_DT (R),R {py1
px

: Ay1 , . . . ,
pyk

px
: Ayk

}. Then every property of Definition 5.2.16
is satisfied so that T′ is a (DT (R), R)-computation tree. Let X ⊆ V be the set of
nodes where we have already defined the labeling L′(x). During our construction,
we ensure that the following property holds:

For every node x ∈ X we have SubPoss
term(tx, R) ⊆ SubPoss

set (Ax, R) and
hence SubMain

term (tx, R) ⊆ SubMain
set (Ax, R). (5.11)

This means that the corresponding term tx for the node x in T has at most the same
possible redexes as we have possible main rewrite pairs for the corresponding set Ax

in T′.
We start by setting Ar := ⟨{(t#, ε)}⟩. Here, we have SubPoss

term(tr, R) = SubPoss
term(t, R) =

SubPoss
set (⟨{(t#, ε)}⟩, R) = SubPoss

set (Ar, R), since every proper subterm of t is in normal
form w.r.t. R.
As long as there is still an inner node x ∈ X such that its successors are not contained
in X, we do the following. Let xE = {y1, . . . , yk} be the set of its successors. We
need to define the corresponding sets Ay1 , . . . , Ayk

for the nodes y1, . . . , yk.
Since x is not a leaf, we have tx

i→R {py1
px

: ty1 , . . . ,
pyk

px
: tyk

}. This means that there
is a rule ℓ → {p1 : r1, . . . , pk : rk} ∈ R, a position π, and a ground substitution
σ ∈ Sub (Σ, V) such that tx|π = ℓσ and every proper subterm of ℓσ is in normal form
w.r.t. R. Furthermore, we have tyj

= tx[rjσ]π for all 1 ≤ j ≤ k. So the labeling of
the successors y1, . . . , yk in T is L(yj) = (px · pj : tx[rjσ]π) for all 1 ≤ j ≤ k.
Let µ = {p1 : r1, . . . , pk : rk}. The corresponding dependency tuple for the rule ℓ → µ
is DT (ℓ → µ) = (ℓ#, ℓ) → {p1 : (dp(r1), r1), . . . , pk : (dp(rk), rk)}. Furthermore, we
have (ℓ#σ, π) ∈ SubMain

term (tx, R) ⊆(IH) SubMain
set (Ax, R) ⊆ Ax. Hence, we can rewrite

Ax with (ℓ#, ℓ) → {p1 : (dp(r1), r1), . . . , pk : (dp(rk), rk)} ∈ DT (R), the ground
substitution σ ∈ Sub (Σ, V), and the main rewrite pair (ℓ#σ, π), since every proper
subterm of ℓ#σ is in normal form w.r.t. R. We get Ax

i_DT (R),R {p1 : Bx
1 , . . . , pk :

Bx
k } with

Ax = ⟨{(ℓ#σ, π)}⟩ ⊎ Mrew ⊎ M⊥ ⊎ M<

and
Bx

j = M+
j ⊎ M⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ Mrew}⟩

for all 1 ≤ j ≤ k as in Definition 5.1.12.
For our new labeling, we set Ayj

:= Bx
j . It remains to show that our induction

hypothesis (5.11) is still satisfied for this new labeling, i.e., that we have
SubPoss

term(tyj
, R) ⊆ SubPoss

set (Ayj
, R) ⇔ SubPoss

term(tx[rjσ]π, R) ⊆ SubPoss
set (Bx

j , R) for all
1 ≤ j ≤ k.
Let 1 ≤ j ≤ k and ((tx[rjσ]π|τ )#, τ) ∈ SubPoss

term(tx[rjσ]π, R). We have the following
possibilities:

– If π ≤ τ , then there is a χ ∈ N∗ such that π.χ = τ and we have
(tx[rjσ]π|τ )# = (rjσ|χ)#. Due to the innermost strategy, we must have
χ ∈ Occ(rj) and rj|χ ̸∈ V. This means that at least the defined root symbol
of rjσ|χ must be inside of rj and thus we have ((rj|χ)#, χ) ∈ dp(rj). Thus,
((tx[rjσ]π|τ )#, τ) = ((rjσ|χ)#, π.χ) ∈ M+

j ⊆ Bx
j and hence ((tx[rjσ]π|τ )#, τ) ∈

SubPoss
set (Bx

j , R).
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– If τ < π, then there is a χ ∈ N+ such that τ.χ = π and we have
tx[rjσ]π|τ = tx|τ [rjσ]χ. Furthermore, we have ((tx|τ )#, τ) ∈ SubPoss

term(tx, R) ⊆(IH)
SubPoss

set (Ax, R), as tx|τ is not in normal form w.r.t. R (the used redex is inside
of this term). Again since τ < π, we have ((tx|τ )#, τ) ∈ Mrew and thus
((tx|τ [rjσ]χ)#, τ) ∈ Bx

j , which means ((tx|τ [rjσ]χ)#, τ) ∈ SubPoss
set (Bx

j , R).
– If τ⊥π, then tx[rjσ]π|τ = tx|τ . Hence, we have ((tx|τ )#, τ) ∈

SubPoss
term(tx, R) ⊆(IH) SubPoss

set (Ax, R), as tx|τ = tx[rjσ]π|τ is not in normal
form w.r.t. R (because we have ((tx[rjσ]π|τ )#, τ) ∈ SubPoss

term(tx[rjσ]π, R)). Since
τ⊥π, we have ((tx|τ )#, τ) ∈ M⊥ and thus ((tx|τ )#, τ) ∈ Bx

j , which means
((tx|τ )#, τ) ∈ SubPoss

set (Bx
j , R).

“⇐” Let T = (V, E, L, P ) be a (DT (R), R)-computation tree that converges with
probability < 1 and starts with (1 : ⟨{(t#, ε)}⟩) such that t# = ℓ#σ for some
dependency tuple (ℓ#, ℓ) → . . . ∈ DT (R), some ground substitution σ ∈ Sub (Σ, V),
and every proper subterm of ℓ#σ is in normal form w.r.t. R. Furthermore, we
have P = V \ Leaf (i.e., we do not use any i_R steps). We will construct an
R-computation tree T′ = (V, E, L′) with the same underlying tree structure and an
adjusted labeling such that pT

x = pT′
x for all x ∈ V . Since the tree structure and the

probabilities are the same, we then get |T|Leaf = |T′|Leaf . To be precise, the set of
leaves in T is equal to the set of leaves in T′, and they have the same probability.
Since |T|Leaf < 1 we thus have |T′|Leaf < 1. Additionally, the computation tree T′

will start with (1 : t) and thus there exists a R-computation tree T = (V, E, L) that
converges with probability < 1 with our desired properties.

1 : t

p1 : t1 p2 : t2

p3 : t3 p4 : t4 p5 : t5

. . . . . . . . .

⇝
1 : ⟨{(t#, ε)}⟩

P

p1 : A1

P

p2 : A2

P

p3 : A3

P

p4 : A4

P

p5 : A5

P

. . . . . . . . .

Figure 5.9: Construction for the proof of the direction “⇐”

We construct the new labeling L′ for the R-computation tree inductively such that
for all inner nodes x ∈ V \ Leaf we have tx

i→R {py1
px

: ty1 , . . . ,
pyk

px
: tyk

}. Then every
property of Definition 4.2.16 is satisfied so that T′ is a R-computation tree. Let
X ⊆ V be the set of nodes where we have already defined the labeling L′(x). During
our construction, we ensure that the following property holds:

For every node x ∈ X we have SubPoss
set (Ax, R) ⊆ SubPoss

term(tx, R) and
hence SubMain

set (Ax, R) ⊆ SubMain
term (tx, R). (5.12)

This means that the corresponding set Ax for the node x in T has at most the same
possible main rewrite pairs as we have possible redexes for the corresponding term
tx in T′.
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We start by setting tr := t. Here, we have SubPoss
set (Ar, R) = SubPoss

set (⟨{(t#, ε)}⟩, R) =
SubPoss

term(t, R) = SubPoss
term(tr, R), since every proper subterm of t# is in normal form

w.r.t. R.
As long as there is still an inner node x ∈ X such that its successors are not contained
in X, we do the following. Let xE = {y1, . . . , yk} be the set of its successors. We
need to define the corresponding terms ty1 , . . . , tyk

for the nodes y1, . . . , yk.
Since x is not a leaf and T is a (DT (R), R)-computation tree with P = V \ Leaf, we
have x ∈ P and thus Ax

i_DT (R),R {py1
px

: Ay1 , . . . ,
pyk

px
: Ayk

}. This means that there
is a dependency tuple (ℓ#, ℓ) → {p1 : (dp(r1), r1), . . . , pk : (dp(rk), rk)} ∈ DT (R), a
ground substitution σ ∈ Sub (Σ, V), and a main rewrite pair (q, π) ∈ Ax such that
q = ℓ#σ and all proper subterms of ℓ#σ are in normal form w.r.t. R. Furthermore,
we have Ayk

= Bx
j for all 1 ≤ j ≤ k with

Ax = ⟨{(q, π)}⟩ ⊎ Mrew ⊎ M⊥ ⊎ M<

and
Bx

j = M+
j ⊎ M⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ Mrew}⟩

as in Definition 5.1.12. This means that the labeling of the successors y1, . . . , yk in
T is L(yj) = (px · pj : Bx

j ) for all 1 ≤ j ≤ k.
We have ℓ → {p1 : r1, . . . , pk : rk} ∈ R and (ℓ#σ, π) ∈ SubMain

term (Ax, R) ⊆(IH)
SubMain

set (tx, R). Hence, we can rewrite tx with the rule ℓ → {p1 : r1, . . . , pk : rk}, the
ground substitution σ ∈ Sub (Σ, V), and the position π, since tx|π = ℓσ and every
proper subterm of ℓσ is in normal form w.r.t. R. We get tx

i→R {p1 : tx[r1σ]π, . . . , pk :
tx[rkσ]π}. For our new labeling, we set tyj

:= tx[rjσ]π. It remains to show that our
induction hypothesis (5.12) is still satisfied for this new labeling, i.e., that we have
SubPoss

set (Ayj
, R) ⊆ SubPoss

term(tyj
, R) ⇔ SubPoss

set (Bx
j , R) ⊆ SubPoss

term(tx[rjσ]π, R) for all
1 ≤ j ≤ k.
Let 1 ≤ j ≤ k and (b, τ) ∈ SubPoss

set (Bx
j , R). We have the following possibilities:

– If (b, τ) ∈ M+
j , then we find a position χ ∈ N∗ and a term r′ such that

(b, τ) = ((r′σ)#, π.χ) and (r′#, χ) ∈ dp(rj). Hence, we have tx[rjσ]π|τ =
tx[rjσ]π|π.χ = rjσ|χ = r′σ and thus (b, τ) = ((r′σ)#, π.χ) ∈ SubPoss

term(tx[rjσ]π, R).
– If we have (b, τ) ∈ ⟨{(a[rjσ]χa , τ) | (a, τ) ∈ Mrew}⟩, then we have a pair

(a, τ) ∈ Ax and a position χ ∈ N+ with τ.χ = π. By definition, the same
rule that we applied to t is applied to a at position χ, so that we result in
b = a[rjσ]χ. Note that (a, τ) ∈ SubPoss

set (Ax, R) ⊆(IH) SubPoss
term(tx, R), since a is

not in normal form w.r.t. R (the used main rewrite pair has a position below
τ). Hence, we have (tx[rjσ]π|τ )# = (tx|τ [rjσ]χ)# = (tx|τ )#[rjσ]χ = a[rjσ]χ = b
and thus (b, τ) ∈ SubPoss

term(tx[rjσ]π, R).
– If we have (b, τ) ∈ M⊥, then we have (b, τ) ∈ Ax and (b, τ) ∈

SubPoss
set (Ax, R) ⊆(IH) SubPoss

term(tx, R), as b♭ is not in normal form w.r.t. R (be-
cause we have (b, τ) ∈ SubPoss

set (Bx
j , R)). Since (b, τ) ∈ M⊥, we have τ⊥π and

tx[rjσ]π|τ = tx|τ . Hence, (b, τ) ∈ SubPoss
term(tx[rjσ]π, R).

■

In our second part of the chain criterion, we now allow steps with i_R.
Lemma 5.3.6 (Proving Innermost AST with Dependency Tuples (2)). Let R be a PTRS
and t ∈ T (Σ) with a defined root symbol. Then the following is equivalent:
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• There exists a (DT (R), R)-computation tree T = (V, E, L, P ) that converges with
probability < 1 and starts with (1 : ⟨{(t#, ε)}⟩) such that t# = ℓ#σ for some
dependency tuple (ℓ#, ℓ) → . . . ∈ DT (R), some ground substitution σ ∈ Sub (Σ, V),
and every proper subterm of ℓ#σ is in normal form w.r.t. R. Furthermore, we have
P = V \ Leaf (i.e., we do not use any i_R steps).

• There exists a (DT (R), R)-computation tree T = (V, E, L, P ) that converges with
probability < 1 and starts with (1 : ⟨{(t#, ε)}⟩) such that t# = ℓ#σ for some
dependency tuple (ℓ#, ℓ) → . . . ∈ DT (R), some ground substitution σ ∈ Sub (Σ, V),
and every proper subterm of ℓ#σ is in normal form w.r.t. R. Here, we also allow
steps with i_R.

Example 5.3.7 (Illustration of Part 2). Again, consider the PTRS R and the PPTRS
DT (R) from Example 5.3.5. The idea for the following construction is that everything
that is possible with R is also possible with the second component of DT (R).

1 : ⟨{
(
f#(a, a), ε

)
}⟩

P

1 : ⟨{
(
f#(g, g), 1

)
,
(
g#, 1.1

)
,
(
g#, 1.2

)
}⟩

P

1 : ⟨{
(
f#(a, g), 1

)
,
(
g#, 1.2

)
}⟩

P

1 : ⟨{
(
f#(a, a), 1

)
}⟩

P

. . .

(a) (DT (R), R)-comp. tree T without i_R

1 : ⟨{
(
f#(a, a), ε

)
}⟩

P

1 : ⟨{
(
f#(g, g), 1

)
,
(
g#, 1.1

)
,
(
g#, 1.2

)
}⟩

1 : ⟨{
(
f#(a, g), 1

)
,
(
g#, 1.2

)
}⟩

1 : ⟨{
(
f#(a, a), 1

)
}⟩

P

. . .

(b) (DT (R), R)-comp. tree T′ with i_R

Figure 5.10: Transformation of the following proof part (2).

In Figure 5.10 one can see a (DT (R), R)-computation tree with and one without i_R
steps. In this case, there is no difference between both computation trees. However, in
Figure 5.11, we can see that this is not always the case. Here, the (DT (R), R)-computation
tree that does not use i_R steps is not able to mirror the rewrite steps with i_R.

1 : ⟨{
(
f#(g, g), ε

)
,
(
g#, 1.1

)
}⟩

P

1 : ⟨{
(
f#(a, g), ε

)
}⟩

(a) (DT (R), R)-comp. tree T without i_R

1 : ⟨{
(
f#(g, g), ε

)
,
(
g#, 1.1

)
}⟩

P

1 : ⟨{
(
f#(a, g), 1

)
}⟩

1 : ⟨{
(
f#(a, a), 1

)
}⟩

. . .

(b) (DT (R), R)-comp. tree T′ with i_R

Figure 5.11: Failing case for the transformation.
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5.3. Chain Criterion

The set ⟨{
(
f#(a, g), ε

)
}⟩ is in normal form w.r.t. i_DT (R),R but we can still use i_R steps

to rewrite the g of the term in the pair
(
f#(a, g), ε

)
. The reason for this is that while the

PTRS rule does the same as the projection to the second component of DT (R), we still
need the pair

(
g#, 1.2

)
to be existent in the set in order to use the PPTRS rule. The idea

of the following proof is that if we start with (1 : ⟨{(t, π)}⟩) such that t = ℓ#σ for some
PPTRS rule with left-hand side (ℓ#, ℓ) and some ground substitution σ ∈ Sub (Σ, V), and
we only use PPTRS rules to rewrite the terms, then we can be sure that the required main
rewrite pair always exists to mirror the i_R step with the second component of DT (R).

Proof of Lemma 5.3.6.

“⇒” Every (DT (R), R)-computation tree that does not use any i_R steps can also be
seen as a (DT (R), R)-computation tree in general.

“⇐” Let T = (V, E, L, P ) be a (DT (R), R)-computation tree that converges with
probability < 1 and starts with (1 : ⟨{(t#, ε)}⟩) such that t# = ℓ#σ for some
dependency tuple (ℓ#, ℓ) → . . . ∈ DT (R), some ground substitution σ ∈ Sub (Σ, V),
and every proper subterm of ℓ#σ is in normal form w.r.t. R. We will now create a
(DT (R), R)-computation tree T′ = (V, E, L′, P ′) that also starts with (1 : ⟨{(t#, ε)}⟩),
with the same underlying tree structure, and an adjusted labeling such that pT

x = pT′
x

for all x ∈ V . Since the tree structure and the probabilities are the same, we then
get |T|Leaf = |T′|Leaf . To be precise, the set of leaves in T is equal to the set of leaves
in T′, and they have the same probability. Since |T|Leaf < 1 we thus have |T′|Leaf < 1.
Furthermore, we will have P ′ = V \ LeafT′ so that T′ does not use any i_R steps.
Therefore, there exists a (DT (R), R)-computation tree with our desired properties.

1 : ⟨{(t#, ε)}⟩

P

p1 : A1 p2 : A2

p3 : A3

P

p4 : A4 p5 : A5

. . . . . . . . .

⇝
1 : ⟨{(t#, ε)}⟩

P

p1 : A′
1

P

p2 : A′
2

P

p3 : A′
3

P

p4 : A′
4

P

p5 : A′
5

P

. . . . . . . . .

Figure 5.12: Construction for the proof of the direction “⇐”

The core idea of this construction is that everything that is possible with i_R can
also be done with the second component of DT (R), as described in Example 5.3.7.
We construct the new labeling L′ for the (DT (R), R)-computation tree T′ inductively
such that for all inner nodes x ∈ V \ Leaf we have A′

x
i_DT (R),R {py1

px
: A′

y1 , . . . ,
pyk

px
:

A′
yk

}. Then every property of Definition 5.2.16 is satisfied so that T′ is a (DT (R), R)-
computation tree. Let X ⊆ V be the set of nodes where we have already defined the
labeling L′(x). During our construction, we ensure that the following property holds:

For every node x ∈ X we have SubPoss
set (PosEx(Ax), R) ⊆ A′

x and hence
SubPoss

set (PosEx(Ax), R) ⊆ SubPoss
term(A′

x, R) and SubMain
set (PosEx(Ax), R) ⊆

SubMain
term (A′

x, R).
(5.13)
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Here, the position extension of a A ∈ PDTSwp, denoted by PosEx(A) is defined as

PosEx(A) := A ∪ {(t|#τ , π.τ) | (t#, π) ∈ A ∧ τ ∈ N+ ∧ root(t|τ ) ∈ ΣD}

The position extension PosEx(A) contains all pairs that are missing in A, but the
corresponding term has a defined root symbol and is a proper subterm of some other
pair in A. These pairs might be needed to mirror a rewrite step with R using the
second component of DT (R). This means that the corresponding set A′

x for the
node x in T′ contains every possible main rewrite pair that we might need to use in
order to mirror the rewrite steps applied to the set Ax in T.
For example, if we consider our signature Σ = {div, minus, s, O} with ΣD =
{div, minus} and ΣC = {s, O}, and the set A := ⟨{(div#(minus(x, y), s(y)), 1)}⟩, then
we have

PosEx(A) = ⟨{(div#(minus(x, y), s(y)), 1), (minus#(x, y), 1.1)}⟩

If we would rewrite the inner minus in A with i_R, then we are able to mirror this
rewrite step in PosEx(A) with i_DT (R),R using the main rewrite pair (minus#(x, y), 1).
We start by setting A′

r := Ar = ⟨{(t#, ε)}⟩. Here, we have SubPoss
set (PosEx(Ar), R) =

SubPoss
set (PosEx(⟨{(t#, ε)}⟩), R) = ⟨{(t#, ε)}⟩ = A′

r, since every proper subterm of t is
in normal form w.r.t. R.
As long as there is still an inner node x ∈ X such that its successors are not contained
in X, we do the following. Let xE = {y1, . . . , yk} be the set of its successors. We
need to define the corresponding sets A′

y1 , . . . , A′
yk

for the nodes y1, . . . , yk.
Since x is not a leaf and T is a (DT (R), R)-computation tree, we have Ax

i_DT (R),R
{py1

px
: Ay1 , . . . ,

pyk

px
: Ayk

} (or Ax
i_R {py1

px
: Ay1 , . . . ,

pyk

px
: Ayk

}).

If we have Ax
i_DT (R),R {py1

px
: Ay1 , . . . ,

pyk

px
: Ayk

}, then there is a dependency
tuple (ℓ#, ℓ) → {p1 : (dp(r1), r1), . . . , pk : (dp(rk), rk)} ∈ DT (R), a main rewrite
pair (q, π) ∈ Ax, and a ground substitution σ ∈ Sub (Σ, V) such that q = ℓ#σ, and
all proper subterms of ℓ#σ are in normal form w.r.t. R. Furthermore, we have

Ax = ⟨{(q, π)}⟩ ⊎ Mrew ⊎ M⊥ ⊎ M<

and
Ayj

= M+
j ⊎ M⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ Mrew}⟩

for all 1 ≤ j ≤ k as in Definition 5.1.12.
Since we have (q, π) ∈ Ax, we get (q, π) ∈ PosEx(Ax) and since q♭ is not in normal
form w.r.t. R but every proper subterm of q♭ is in normal form w.r.t. R, we
also get (q, π) ∈ SubMain

set (PosEx(Ax), R) ⊆(IH) A′
x. Hence, we can also apply the

dependency tuple (ℓ#, ℓ) → {p1 : (dp(r1), r1), . . . , pk : (dp(rk), rk)} ∈ DT (R) to A′
x

using the main rewrite pair (q, π) and the ground substitution σ since q = ℓ#σ
and every proper subterm of ℓ#σ is in normal form w.r.t. R, so that we have
A′

x
i_DT (R),R {p1 : B1, . . . , pk : Bk} with

A′
x = ⟨{(q, π)}⟩ ⊎ M ′

rew ⊎ M ′
⊥ ⊎ M ′

<

and
Bx

j = M ′+
j ⊎ M ′

⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ M ′
rew}⟩

for all 1 ≤ j ≤ k as in Definition 5.1.12. Then we set A′
yj

:= Bx
j for all

1 ≤ j ≤ k. It remains to prove that our claim (5.13) still holds, i.e., we have
SubPoss

set (PosEx(Ayj
), R) ⊆ A′

yj
for all 1 ≤ j ≤ k.
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Let 1 ≤ j ≤ k. We have to show that for every (b#, ζ1) ∈ Ayj
and every position

ζ2 ∈ N∗ such that b|ζ2 has defined root symbol and is not in normal form w.r.t. R,
we have (b|#ζ2 , ζ1.ζ2) ∈ A′

yj
. We distinguish according to the origin of (b#, ζ1) ∈ Ayj

.

– If we have (b#, ζ1) ∈ M+
j , then we find a position χ ∈ N∗ and a term r′ such

that (b#, τ) = (r′#σ, π.χ) and (r′#, χ) ∈ dp(rj). Due to the innermost strategy,
we know that b|ζ2 cannot be completely inside the substitution σ, but at least
the defined root symbol must be introduced by rj. Therefore, we have b|ζ2 =
r′σ|ζ2 = r′|ζ2σ = rj|χ|ζ2σ = rj|χ.ζ2σ and we must have (rj|#χ.ζ2 , χ.ζ2) ∈ dp(rj).
Since we use the same dependency tuple, the same substitution and the same
main rewrite pair, we also have (b|#ζ2 , ζ1.ζ2) = (rj|#χ.ζ2σ, π.χ.ζ2) ∈ M ′+

j ⊆ A′
yj

.
– If we have (b#, ζ1) ∈ ⟨{(a[rjσ]χa.ρ, τ) | (a, τ) ∈ Mrew}⟩, then there is a pair

(a#, ζ1) ∈ Ax, and a position χ1 ∈ N+ such that ζ1.χ1 = π and b# = a#[rjσ]χ1 .
Furthermore, we have (a#, ζ1) ∈ SubPoss

set (PosEx(Ax), R) ⊆(IH) A′
x.

∗ If we have π ≤ ζ1.ζ2, then we can find a position χ2 ∈ N∗ such that
π.χ2 = ζ1.ζ2. Since ζ1.χ1 = π and π.χ2 = ζ1.ζ2 we get χ1.χ2 = ζ2 and thus
b|ζ2 = a[rjσ]χ1|ζ2 = rjσ|χ2 with defined root and not in normal form w.r.t. R.
Due to the innermost strategy, we know that b|ζ2 cannot be completely inside
the substitution σ, but at least the defined root symbol must be introduced
by rj. Thus, we have b|ζ2 = rjσ|χ2 = rj|χ2σ and (rj|#χ2 , χ2) ∈ dp(rj). Since
we use the same dependency tuple, the same substitution and the same
main rewrite pair, we also have (b|#ζ2 , ζ1.ζ2) = (rj|#χ2σ, π.χ2) ∈ M ′+

j ⊆ A′
yj

.
∗ If we have ζ1.ζ2 < π, then we can find a position χ2 ∈ N+ such

that ζ1.ζ2.χ2 = π. Then b|ζ2 = a[rjσ]χ1|ζ2 = a|ζ2 [rjσ]χ2 . We have
(a|#ζ2 , ζ1.ζ2) ∈ SubPoss

set (PosEx(Ax), R) ⊆(IH) A′
x. Thus, we also have

(b|#ζ2 , ζ1.ζ2) = ((a|ζ2 [rjσ]χ2)#, ζ1.ζ2) = (a|#ζ2 [rjσ]χ2 , ζ1.ζ2) ∈ M ′
rew ⊆ A′

yj
.

∗ If we have π⊥ζ1.ζ2, then we have b|ζ2 = a[rjσ]χ1|ζ2 = a|ζ2 and
SubPoss

set (PosEx(Ax), R) ⊆(IH) A′
x. Since π⊥ζ1.ζ2, we get (b|#ζ2 , ζ1.ζ2) =

(a|#ζ2 , ζ1.ζ2) ∈ M ′
⊥ ⊆ A′

yj
.

– If we have (b#, ζ1) ∈ M⊥, then we have ζ1⊥π and (b#, ζ1) ∈ Ax. Then,
(b|#ζ2 , ζ1.ζ2) ∈ SubPoss

set (PosEx(Ax), R) ⊆(IH) A′
x. Since we have ζ1⊥π we also

have ζ1.ζ2⊥π and thus (b|#ζ2 , ζ1.ζ2) ∈ M ′
⊥ ⊆ A′

yj
.

Thus, we have SubPoss
set (PosEx(Ayj

), R) ⊆ A′
yj

.

If we have Ax
i_R {py1

px
: Ay1 , . . . ,

pyk

px
: Ayk

}, then there is a rule ℓ → {p1 :
r1, . . . , pk : rk} ∈ R, a main rewrite pair (q, π) ∈ Ax, a ground substitution
σ ∈ Sub (Σ, V), and a non-empty position τ ∈ N+ with q|τ = ℓσ, such that all
proper subterms of ℓσ are in normal form w.r.t. R. Furthermore, we have

Ax = ⟨{(q, π)}⟩ ⊎ Mrew ⊎ M⊥ ⊎ M<

and
Ayj

= M+
j ⊎ M⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ Mrew}⟩

for all 1 ≤ j ≤ k as in Definition 5.1.17.
Since we have root(q|τ ) ∈ ΣD and (q, π) ∈ Ax, we get (q|#τ , π.τ) ∈ PosEx(Ax) and
since q|τ is not in normal form w.r.t. R but every proper subterm of q|τ is in normal
form w.r.t. R, we also get (q|#τ , π.τ) ∈ SubMain

set (PosEx(Ax), R) ⊆(IH) SubMain
set (A′

x, R).
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Using the same substitution σ, we get q|#τ = ℓ#σ and all proper subterms of
ℓ#σ are in normal form w.r.t. R. Hence, we can apply the dependency tuple
(ℓ#, ℓ) → {p1 : (dp(r1), r1), . . . , pk : (dp(rk), rk)} ∈ DT (R) to A′

x, so that we have
A′

x
i_DT (R),R {p1 : B1, . . . , pk : Bk} with

A′
x = ⟨{(q, π)}⟩ ⊎ M ′

rew ⊎ M ′
⊥ ⊎ M ′

<

and
Bx

j = M ′+
j ⊎ M ′

⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ M ′
rew}⟩

for all 1 ≤ j ≤ k as in Definition 5.1.12. Then we set A′
yj

:= Bx
j for all

1 ≤ j ≤ k. It remains to prove that our claim (5.13) still holds, i.e., that we
have SubPoss

set (PosEx(Ayj
), R) ⊆ A′

yj
for all 1 ≤ j ≤ k.

Let 1 ≤ j ≤ k. We have to show that for every (b#, ζ1) ∈ Ayj
and every position ζ2

such that b|ζ2 has defined root symbol and is not in normal form w.r.t. R, we have
(b|#ζ2 , ζ1.ζ2) ∈ A′

yj
. We distinguish according to the origin of (b#, ζ1) ∈ Ayj

.

– If we have (b#, ζ1) ∈ M+
j ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ Mrew}⟩ = {(q[rjσ]τ , π)} ⊎

⟨{(a[rjσ]χa , χ) | (a, χ) ∈ Mrew}⟩, then there is a pair (a#, ζ1) ∈ Ax, and position
χ1 ∈ N∗ such that we have ζ1.χ1 = π and b# = a#[rjσ]χ1.τ . Furthermore, we
have (a#, ζ1) ∈ SubPoss

set (PosEx(Ax), R) ⊆(IH) A′
x.

∗ If we have π.τ ≤ ζ1.ζ2, then we can find a position χ2 ∈ N∗ such that
π.τ.χ2 = ζ1.ζ2. Since ζ1.χ1 = π and π.τ.χ2 = ζ1.ζ2 we get χ1.τ.χ2 = ζ2
and thus b|ζ2 = a[rjσ]χ1.τ |ζ2 = rjσ|χ2 with defined root and not in normal
form w.r.t. R. Due to the innermost strategy we know that b|ζ2 cannot be
completely inside the substitution σ but at least the defined root symbol
must be introduced by rj, so that rjσ|χ2 = rj|χ2σ. Therefore, we have
(rj|#χ2 , χ2) ∈ dp(rj) and thus (b|#ζ2 , ζ1.ζ2) = (rj|#χ2σ, π.χ2) ∈ M ′+

j ⊆ A′
yj

.
∗ If we have ζ1.ζ2 < π.τ , then we can find a position χ2 ∈ N+ such

that ζ1.ζ2.χ2 = π.τ . Then b|ζ2 = a[rjσ]χ1.τ |ζ2 = a|ζ2 [rjσ]χ2 . We have
(a|#ζ2 , ζ1.ζ2) ∈ SubPoss

set (PosEx(Ax), R) ⊆(IH) A′
x. Thus, we also have

(b|#ζ2 , ζ1.ζ2) = ((a|ζ2 [rjσ]χ2)#, ζ1.ζ2) = (a|#ζ2 [rjσ]χ2 , ζ1.ζ2) ∈ M ′
rew ⊆ A′

yj
.

∗ If we have π.τ⊥ζ1.ζ2, then we have b|ζ2 = a[rjσ]χ1|ζ2 = a|ζ2 . Furthermore,
we have (a|#ζ2 , ζ1.ζ2) ∈ SubPoss

set (PosEx(Ax), R) ⊆(IH) A′
x. Since π.τ⊥ζ1.ζ2,

we also get (b|#ζ2 , ζ1.ζ2) = (a|#ζ2 , ζ1.ζ2) ∈ M ′
⊥ ⊆ A′

yj
.

– If we have (b#, ζ1) ∈ M⊥, then we have (b#, ζ1) ∈ Ax and thus (b#, ζ1) ∈
SubPoss

set (PosEx(Ax), R) ⊆(IH) A′
x. Since we have ζ1⊥π we also have ζ1.ζ2⊥π and

thus (b|#ζ2 , ζ1.ζ2) ∈ M ′
⊥ ⊆ A′

yj
.

Thus, we have SubPoss
set (PosEx(Ayj

), R) ⊆ A′
yj

. ■

Proof of Theorem 5.3.1 (Chain Criterion). Let R be a PTRS.

“⇒” Assume that R is not innermost AST. Then by Theorem 4.2.21 and Theorem 4.2.24,
there exists an innermost R-computation tree T that converges with probability
< 1 and starts with (1 : t) such that t = ℓσ for some rule ℓ → r ∈ R, some ground
substitution σ ∈ Sub (Σ, V), and every proper subterm of ℓσ is in normal form
w.r.t. R. By Lemma 5.3.4 we get the existence of a (DT (R), R)-computation tree
T = (V, E, L, P ) that converges with probability < 1 and starts with (1 : ⟨{(t#, ε)}⟩)
such that t = ℓ#σ for some dependency tuple (ℓ#, ℓ) → . . . ∈ DT (R), some ground
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substitution σ ∈ Sub (Σ, V), and every proper subterm of ℓ#σ is in normal form
w.r.t. R. Hence, (DT (R), R) is not innermost AST.

“⇐” Assume that (DT (R), R) is not innermost AST. Then by Theorem 5.2.23 there
exists a (DT (R), R)-computation tree T that converges with probability < 1
and starts with (1 : ⟨{(t#, ε)}⟩) such that t# = ℓ#σ for some dependency tuple
(ℓ#, ℓ) → . . . ∈ DT (R), some ground substitution σ ∈ Sub (Σ, V), and every proper
subterm of ℓ#σ is in normal form w.r.t. R. By Lemma 5.3.6 we get the existence of a
(DT (R), R)-computation tree T′ that converges with probability < 1 and starts with
(1 : ⟨{(t#, ε)}⟩) such that t# = ℓ#σ for some dependency tuple (ℓ#, ℓ) → . . . ∈ DT (R),
some ground substitution σ ∈ Sub (Σ, V), every proper subterm of ℓ#σ is in normal
form w.r.t. R, and such that we do not use any i_R steps. By Lemma 5.3.4 we get
the existence of an innermost R-computation tree that converges with probability
< 1 and starts with (1 : t) such that t = ℓσ for some rule ℓ → r ∈ R, some ground
substitution σ ∈ Sub (Σ, V), and every proper subterm of t is in normal form w.r.t.
R. Hence, R is not innermost AST. ■

5.4 DP Framework and Processors
Finally, we come to the whole probabilistic dependency pair framework. The core
ideas from the non-probabilistic framework remain the same. We want to split a DP
problem (P , S), consisting of a PPTRS P and a PTRS S, into many simpler subproblems
(P1, S1), . . . , (Pk, Sk) and then solve all of the subproblems individually. In order to split
a DP problem, we use processors again. The definition of a probabilistic processor now
works with innermost AST instead of innermost termination.
Definition 5.4.1. Let P , P1, . . . , Pn be PPTRSs and let S, S1, . . . , Sn be PTRSs. A
(innermost AST) DP processor Proc is of the form

Proc(P , S) = {(P1, S1), . . . , (Pn, Sn)}

A (innermost AST) DP processor Proc is called sound iff

∀ 1 ≤ i ≤ n : (Pi, Si) is innermost AST =⇒ (P , S) is innermost AST

A (probabilistic innermost AST) DP processor Proc is called complete iff

(P , S) is innermost AST =⇒ ∀ 1 ≤ i ≤ n : (Pi, Si) is innermost AST

In the following, we will once again talk about the three different processors that we
introduced in Chapter 3 and see how we can adapt them to the probabilistic setting. These
were the dependency graph processor, the usable rules processor, and the reduction pair
processor. In addition to that, we also introduce two new processors, namely the usable
pairs processor and the not probabilistic processor, specifically designed for probabilistic
DP problems.

Not Probabilistic Processor
We start with a new processor, called the not probabilistic processor. Let (P , S) be an
arbitrary (probabilistic) DP problem. The idea of the not probabilistic processor is that if
every dependency tuple in P has the form (ℓ#, ℓ) → {1 : (A, r)} and every probabilistic
rewrite rule in S has the form ℓ′ → {1 : r′} then this DP problem (P , S) can also be seen
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as a non-probabilistic DP problem since there is no probabilistic choice involved in any
rewrite step. In this scenario, innermost AST and innermost sure termination coincide.
Therefore, we can transform the problem into a non-probabilistic DP problem (D, R)
and use our existing non-probabilistic DP framework to prove innermost termination
automatically. The advantages of using our non-probabilistic framework are that we
(currently) have more processors, and more importantly, the processors are specialized for
the non-probabilistic setting. We compare the two frameworks in Chapter 6 and see the
precise advantages of our non-probabilistic framework in this scenario.
We have already defined the transformation of a PTRS S to a TRS using the non-
probabilistic transformation np(S). For the not probabilistic processor, we also need to
define how to transform a PPTRS P into a set np(P) of dependency pairs.
Definition 5.4.2 (Non-Probabilistic Transformation for PPTRS). Let P be a PPTRS. The
non-probabilistic transformation np(P) is the set of dependency pairs defined by

np(P) := {ℓ# → t# | (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ P , 1 ≤ j ≤ k, (t#, π) ∈ Cj}

Example 5.4.3 (Non-Probabilistic Transformation for PPTRS (1)). Consider the signature
Σdiv = {O, s, minus, div}, a variable set with {x, y} ⊆ V , and the following PTRS RNP div:

minus(x, O) → {1 : x} (5.14)
minus(s(x), s(y)) → {1 : minus(x, y)} (5.15)

div(O, s(y)) → {1 : O} (5.16)
div(s(x), s(y)) → {1 : s(div(minus(x, y), s(y)))} (5.17)

This PTRS is a probabilistic version of our TRS from Example 3.0.1. The set DT (RNP div)
contains the following four dependency tuples:

DT ((5.14)) =
(
minus#(x, O), minus(x, O)

)
→ { 1 :

(
∅, x

)
}

DT ((5.15)) =
(
minus#(s(x), s(y)), minus(s(x), s(y))

)
→ { 1 :

(
⟨{

(
minus#(x, y), ε

)
}⟩, minus(x, y)

)
}

DT ((5.16)) =
(
div#(O, s(y)), div(O, s(y))

)
→ { 1 :

(
∅, O

)
}

DT ((5.17)) =
(
div#(s(x), s(y)), div(s(x), s(y))

)
→ { 1 :

(
⟨{

(
div#(minus(x, y), s(y)), 1

)
,
(
minus#(x, y), 1.1

)
}⟩,

s(div(minus(x, y), s(y)))
)

}

The non-probabilistic transformation np(DT (RNP div)) contains the following three
dependency pairs:

minus#(s(x), s(y)) → minus#(x, y) (5.18)
div#(s(x), s(y)) → minus#(x, y) (5.19)
div#(s(x), s(y)) → div#(minus(x, y), s(y)) (5.20)

These are the same dependency pairs as we have in Example 3.1.4, where we directly use
the non-probabilistic TRS Rdiv and then generate its non-probabilistic dependency pairs.
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Theorem 5.4.4 (Not Probabilistic Processor). Let (P , S) be a probabilistic DP problem
such that every dependency tuple in P has the form (ℓ#, ℓ) → {1 : (A, r)} and every
probabilistic rewrite rule in S has the form ℓ′ → {1 : r′}. Then

ProcNP(P , S) = {(np(P), np(S))}

is sound and complete in the sense that the probabilistic DP problem (P , S) is innermost
AST iff the non-probabilistic DP problem (np(P), np(S)) is innermost terminating.

Proof. Let (P , S) be a probabilistic DP problem such that every dependency tuple in P
has the form (ℓ#, ℓ) → {1 : (A, r)} and every probabilistic rewrite rule in S has the form
ℓ′ → {1 : r′}. Note that every (P , S)-computation tree is a single (not necessarily finite)
path. For a chain tree T that is only a single path, we have only two different possibilities
for |T|Leaf . If the path is finite, then |T|Leaf = 1, since we have a single leaf in this tree
with probability 1. Or we have an infinite path, which means that there is no leaf at all
and hence |T|Leaf = 0.

complete: Assume that (np(P), np(S)) is not innermost terminating. Then there exists an
infinite innermost (np(P), np(S))-chain

t0
i→(np(P),np(S)) t1

i→(np(P),np(S)) t2
i→(np(P),np(S)) . . .

such that for all i ∈ N we have ti = ℓ#
i σi for some dependency pair ℓ#

i → r#
i ∈ np(P)

that we use in the i-th rewrite step, some ground substitution σi ∈ Sub (Σ, V) and
every proper subterm of ℓ#

i σi is in normal form w.r.t. S. Note that a term is in
normal form w.r.t. S iff it is in normal form w.r.t. np(S) since they have the same
left-hand sides. From this infinite innermost (np(P), np(S))-chain, we will now
construct an infinite (P , S)-computation tree T = (V, E, L, P ). By our previous
analysis, we then know that this infinite innermost (P , S)-computation tree must
be an infinite path, and thus |T|Leaf = 0, which means that (P , S) is not innermost
AST.

t0
i→(np(P),np(S)) t1

i→(np(P),np(S)) . . . ⇝

1 : ⟨{(t0, ε)}⟩

P1

1 : A1

1 : A2

. . .

Figure 5.13: Construction for this proof.

We start our construction with L(r) = (1 : ⟨{(t#
0 , ε)}⟩). In the non-probabilistic

rewrite sequence, we have t0
i→(np(P),np(S)) t1, so there exists a natural number

m0 ∈ N such that

t0 = ℓ#
0 σ0

i→np(P) r#
0 σ0 = v1

i→np(S) v2
i→np(S) . . . i→np(S) vm0 = t1 = ℓ#

1 σ1

We now prove that we can mirror this rewrite sequence in T such that the pair
(vi, πi) is contained in the set Ai for all 1 ≤ i ≤ m and some position πi. Let
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(ℓ#
0 , ℓ0) → {1 : (C0, r′

0)} ∈ P be the probabilistic dependency tuple that was used
to create the dependency pair ℓ#

0 → r#
0 in our non probabilistic transformation

np(P). This means that we have (r#
0 , π0) ∈ C0 for some position π0. Since we have

t0 = ℓ#
0 σ0 such that every proper subterm of ℓ#

0 σ0 is in normal form w.r.t. S, we can
also rewrite ⟨{(t0, ε)}⟩ with the dependency tuple (ℓ#

0 , ℓ0) → {1 : (C0, r′
0)} ∈ P, the

main rewrite pair (t0, ε) and the ground substitution σ0 ∈ Sub (Σ, V). We result with
A1 = C0σ0 and thus we have (v1, π0) = (r#

0 σ0, π0) ∈ C0σ0 = A1 for some position π0.

In the inductive step, we assume that we have (vi, πi) ∈ Ai for some position πi and
some 1 ≤ i < m. In our non-probabilistic rewrite sequence we have vi

i→S vi+1 using
a rule ℓ′

i → r′
i ∈ np(S), a ground substitution δi ∈ Sub (Σ, V) and a position τ ∈ N+

such that vi|τ = ℓ′
iδi, every proper subterm of ℓ′

iδi is in normal form w.r.t. S, and
vi+1 = vi[r′

iδi]τ . We can mirror this rewrite step with the rule ℓ′
i → {1 : r′

i} ∈ S
and the set Ai. However, by definition of i_S , we have to apply the rewrite rule
at the lowest possible position in the set Ai so that we rewrite every other pair
above with the same rule. Let A↓πi

i := {(a, α) ∈ Ai | πi ≤ α < πi.τ} be the set of all
pairs in Ai that have a position below πi and strictly above πi.τ . Furthermore, let
(tmax, πmax) be the pair in A↓πi

i with maximal position (i.e., there is no (t′, π′) ∈ A↓πi
i

with πmax < π′) and let ρ be the position such that πmax.ρ = πi.τ . We can rewrite
the set Ai with the rule ℓ′

i → {1 : r′
i} ∈ S, the ground substitution δi ∈ Sub (Σ, V),

the main rewrite pair (tmax, πmax) and the position ρ such that we have

Ai = ⟨{(tmax, πmax)}⟩ ⊎ Mrew ⊎ M⊥ ⊎ M<

and

Ai+1 = M+ ⊎ M⊥ ⊎ ⟨{(a[r′
iσ]χa.ρ, χ) | (a, χ) ∈ Mrew}⟩

as in Definition 5.1.17. We have (vi, πi) ∈ ⟨{(tmax, πmax)}⟩⊎Mrew, so that we apply the
same rule with the same substitution at the same position. Let χ be the position such
that πi.χ = πmax. Then we have πi.χ.ρ = πi.τ and we get (vi+1, πi) = (vi[r′

iδi]τ , πi) =
(vi[r′

iδi]χ.ρ, πi) ∈ M+ ⊎ ⟨{(a[r′
iσ]χa , χ) | (a, χ) ∈ Mrew}⟩ ⊆ Ai+1.

At the end of this induction, we result with Am0 . Next, we can then mirror the
step t1

i→(np(P),np(S)) t2 from our non-probabilistic rewrite sequence with the same
construction and so on. This results in an infinite (P , S)-computation tree. To see
that the result is a (P , S)-computation tree, note that all of the local properties are
satisfied since every edge represents a rewrite step with i_P,S or i_S . The global
property is also satisfied since, in an infinite innermost (np(P), np(S))-chain, we
use an infinite amount of dependency pairs so that our resulting chain tree has an
infinite amount of nodes in P .

sound: Assume that (P , S) is not innermost AST. By Theorem 5.2.23 there exists a (P , S)-
computation tree T = (V, E, L, P ) that converges with a probability < 1 and starts
with (1 : ⟨{(t#, ε)}⟩) such that t# = ℓ#σ for some ground substitution σ ∈ Sub (Σ, V),
a dependency tuple (ℓ#, ℓ) → {1 : (C1, r1)} ∈ P , and every proper subterm of ℓ#σ is
in normal form w.r.t. S. Our previous analysis shows that this tree must be an infinite
path. From T, we will now construct an infinite innermost (np(P), np(S))-chain,
which shows that (np(P), np(S)) is not innermost terminating.
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t0
i→(np(P),np(S)) t1

i→(np(P),np(S)) . . . ⇝

1 : ⟨{(t#, ε)}⟩

P

1 : A1

1 : A2

. . .

Figure 5.14: Construction for this proof.

We start our infinite chain with the term t0 := t#. We have ⟨{(t#, ε)}⟩ i_P,S {1 : A1},
so that there is a dependency tuple (ℓ#, ℓ) → {p1 : (C, r)} ∈ P, the main rewrite
pair (t#, ε), and a ground substitution σ ∈ Sub (Σ, V) such that t# = ℓ#σ and all
proper subterms of ℓ#σ are in normal form w.r.t. S. Then A1 = M+

1 = Cσ as in
Definition 5.1.12.
Let πi denote the position of the used main rewrite pair in the i-th rewrite step.
Analogous to the minimality criterion we used in the proof of the non-probabilistic
chain criterion (Theorem 3.2.1), there must be a pair (t1, α1) ∈ A1 such that

– we will never rewrite with a main rewrite pair position above α1 (i.e.,
¬∃i ∈ N : πi < α1),

– we will rewrite with the main rewrite pair position α1 in a i_P,S step after a
finite amount of steps,

– and we have infinitely many rewrite steps with i_P,S and a main rewrite pair
position below α1 (i.e., α1 ≥ πi for infinitely many i ∈ N).

We have (t1, α1) ∈ A1 = Cσ, so that there is a pair (r′, α1) ∈ C with (t1, α1) =
(r′σ, α1).
We can rewrite the term t0 with the dependency pair ℓ# → r′ ∈ np(P), using the
ground substitution σ ∈ Sub (Σ, V) since t0 = t# = ℓ#σ and all proper subterms of
ℓ#σ are in normal form w.r.t. S. Hence, we result with t0

i→np(P) r′σ.
Now for every following rewrite step i ∈ N, we currently have a term ti such that
(ti, αi) ∈ Ai and

– we will never rewrite with a main rewrite pair position above αi (i.e., ¬∃j ∈ N :
πj < αi),

– we will rewrite with the main rewrite pair position αi in a i_P,S step after a
finite amount of steps,

– and we have infinitely many rewrite steps with i_P,S and a main rewrite pair
position below αi (i.e., αi ≥ πj for infinitely many j ∈ N).

We have the following two cases.
1) If we have Ai

i_P,S {1 : Ai+1} using a dependency tuple (ℓ#, ℓ) → {1 : (C, r)} ∈
P, a main rewrite pair (q, π) ∈ Ax, and a ground substitution σ ∈ Sub (Σ, V) with
q = ℓ#σ, such that all proper subterms of ℓ#σ are in normal form w.r.t. S. Then

Ai = ⟨{(q, π)}⟩ ⊎ Mrew ⊎ M⊥ ⊎ M<

109



5. DP Framework for PTRS

and
Ai+1 = M+

1 ⊎ M⊥ ⊎ ⟨{(a[rσ]χa , χ) | (a, χ) ∈ Mrew}⟩

as in Definition 5.1.12.
We know that π cannot be above αi. If we have π⊥αi, then (ti, αi) ∈ M⊥ so that
(ti, αi) ∈ Ai+1. In this case, we do nothing in our rewrite sequence and set ti+1 := ti.
The pair (ti, αi) ∈ Ai+1 still satisfies our minimality conditions.
If we have (ti, αi) ∈ ⟨{(q, π)}⟩ (i.e., the pair (ti, αi) is the main rewrite pair), then
we replace ⟨{(ti, αi)}⟩ by Cσ. Again by a minimality criterion, there must be a pair
(ti+1, αi+1) ∈ Cσ ⊆ Ai+1 such that

– we will never rewrite with a main rewrite pair position above αi+1 (i.e.,
¬∃j ∈ N : πj < αi),

– we will rewrite with the main rewrite pair position αi+1 in a i_P,S step after a
finite amount of steps,

– and we have infinitely many rewrite steps with i_P,S and a main rewrite pair
position below αi+1 (i.e., αi+1 ≥ πj for infinitely many j ∈ N).

We have (ti+1, αi+1) ∈ Cσ, so that there is a pair (r′, αi+1) ∈ C with (ti+1, αi+1) =
(r′σ, αi+1). We can rewrite the term ti with the dependency pair ℓ# → r′ ∈ np(P)
and using the ground substitution σ ∈ Sub (Σ, V) since ti = q = ℓ#σ and all
proper subterms of ℓ#σ are in normal form w.r.t. S. Hence, we result with
ti

i→np(P) r′σ = ti+1.
If we have (ti, αi) ∈ Mrew, then we rewrite the term ti with S. There exists a position
χ such that αi.χ = π and we have (ti[r′σ]χ, αi) ∈ ⟨{(a[rσ]χa , χ) | (a, χ) ∈ Mrew}⟩ ⊆
Ai+1. We set ti+1 := ti[r′σ]χ and get ti

i→S ti+1. Again, this pair (ti+1, πi) satisfies
our minimality criterions.
2) If we have Ai

i_S {1 : Ai+1}, then there is a rule ℓ → {1 : r} ∈ S, a main
rewrite pair (q, π) ∈ Ai, a ground substitution σ ∈ Sub (Σ, V), and a position τ with
q|τ = ℓσ, such that all proper subterms of ℓσ are in normal form w.r.t. S. Then

Ai = ⟨{(q, π)}⟩ ⊎ Mrew ⊎ M⊥ ⊎ M<

and
Ai+1 = M+

1 ⊎ M⊥ ⊎ ⟨{(a[rσ]χa , χ) | (a, χ) ∈ Mrew}⟩

as in Definition 5.1.17.
We know that π cannot be above αi. If we have π⊥αi, then (ti, αi) ∈ M⊥ so that
(ti, αi) ∈ Ai+1. In this case, we do nothing in our rewrite sequence and set ti+1 := ti.
The pair (ti, αi) ∈ Ai+1 still satisfies our minimality conditions.
Otherwise we have (ti, αi) ∈ ⟨{(q, π)}⟩ ⊎ Mrew. There exists a position χ ∈ N∗ such
that αi.χ = π and we have (ti[rσ]χ, αi) ∈ ⟨{(a[rσ]χa , χ) | (a, χ) ∈ Mrew}⟩ ⊆ Ai+1.
We set ti+1 := ti[rσ]χ and get ti

i→S ti+1. Again, this pair (ti+1, πi) satisfies our
minimality criterions.
This construction creates a sequence t0, t1, . . . of terms such that

t0
i→np(P) t1 ( i→np(P) ∨ i→np(S) ∨ =) t2 ( i→np(P) ∨ i→np(S) ∨ =) . . .

Additionally, by our minimality criterion, we know that we use an infinite
amount of i→np(P) steps so that this is an infinite (np(P), np(S))-chain. Therefore,
(np(P), np(S)) is not innermost terminating. ■
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Example 5.4.5 (Not Probabilistic Processor). Consider the PTRS RNP div from Exam-
ple 5.4.3. We have

ProcNP(DT (RNP div), RNP div) = {(DP(Rdiv), Rdiv)}

where Rdiv is the TRS from Example 3.0.1. Hence, we can use our non-probabilistic
framework to analyze this DP problem instead of the probabilistic framework. In Chapter 6,
we will see the advantages that this brings.

Dependency Graph Processor
Next, we adapt the dependency graph processor to the probabilistic setting. The idea of
the dependency graph is to indicate which dependency tuples can rewrite to each other
or, in other words, which function calls can occur after each other. The possibility of
rewriting to each other is not restricted by the probabilities in any way. In fact, for the
dependency graph, it suffices to work with the non-probabilistic structure of the PTRS S.
Definition 5.4.6 (Dependency Graph). Let (P , S) be a DP problem. The (P , S)-
dependency graph is defined as the graph with node set P. There is an arc from
(ℓ#

1 , ℓ1) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} to (ℓ#
2 , ℓ2) → . . . if there are ground substitutions

σ1, σ2 ∈ Sub (Σ, V) and a pair (t#, π) ∈ Ci for some 1 ≤ i ≤ k such that t#σ1
i→∗

np(S) ℓ#
2 σ2

and all proper subterms of ℓ#
1 σ1 and ℓ#

2 σ2 are in normal form w.r.t. S.
Example 5.4.7 (Dependency Graph). Let Rdiv be the PTRS from Example 5.0.1 and
DT (Rdiv) be the set of its dependency tuples from Example 5.1.10. The (DT (Rdiv), Rdiv)-
dependency graph has the following form:

DT ((5.1)) DT ((5.2))

DT ((5.3)) DT ((5.4))

In the non-probabilistic setting, every chain corresponds to a path inside the dependency
graph. In the probabilistic setting, there is no direct correspondence between paths in
the (P , S)-computation tree and paths in the dependency graph anymore due to the fact
that we are working with dependency tuples and keeping track of multiple dependency
terms simultaneously. Instead, one can think of it as having multiple tokens placed on the
dependency graph that represent the current dependency terms in our set. If we rewrite
with i_P,S , then we can move the token of the used main rewrite pair along the edges of
the dependency graph and may additionally split the token into multiple ones if we again
have multiple tuple symbols on the right-hand side of our used dependency tuple. So the
idea of the dependency graph, that it shows which dependency tuples can rewrite to each
other, still remains. Therefore, the idea of only looking at the SCCs of this graph remains
as well.
For the proof of the probabilistic dependency graph processor, we need a new definition
regarding the ordering of the strongly connected components and the singleton sets of
nodes that do not belong to any SCC.
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Definition 5.4.8 (>G). Let (P , S) be a DP problem and G = (P , E) be its dependency
graph. Additionally, let Q1, . . . , Qn be the SCCs of G and let W := {Q1, . . . , Qn}∪{{v} ⊆
P | v is not in an SCC of G} be the set of all SCCs and all singleton sets of nodes that
do not belong to any SCC. Let X1, X2 ∈ W . We say that X2 is a direct successor of X1
(denoted X1 >G X2) if there exist nodes v ∈ X1 and w ∈ X2 such that (v, w) ∈ E.
Example 5.4.9. For the dependency graph from Example 5.4.7, all of the singleton sets
are SCCs. Therefore, the relation >G for this dependency graph is indicated by its edge
relation.

For a finite graph G, the relation >G is well-founded, and we can therefore use it for a
well-founded induction proof.
Theorem 5.4.10 (Dependency Graph Processor). Let

ProcDG(P , S) = {(Q1, S), . . . , (Qn, S)}

where Q1, . . . , Qn are the SCCs of the (P , S)-dependency graph. Then ProcDG is sound
and complete.

Proof.

complete: Every (Qi, S)-computation tree is also a (P , S)-computation tree. Hence, if one of
the (Qi, S) is not innermost AST, then (P , S) is also not innermost AST.

sound: Suppose that every (Qi, S)-computation tree converges with probability 1 for every
1 ≤ i ≤ n. We prove that then also every (P , S)-computation tree converges with
probability 1. Let W := {Q1, . . . , Qn} ∪ {{v} ⊆ P | v is not in an SCC of G} be the
set of all SCCs and all singleton sets of nodes that do not belong to any SCC. The
core steps of this proof are the following:

1. We show that every DP problem (X, S) with X ∈ W is innermost AST.
2. We show that composing SCCs maintains the innermost AST property.
3. We show that for every X ∈ W , the DP problem (⋃

X>∗
G

Y Y, S) is innermost
AST by well-founded induction over >G.

4. We conclude that (P , S) must be innermost AST.

1. Every DP problem (X, S) with X ∈ W is innermost AST.
We start by proving the following:

Every DP problem (X, S) with X ∈ W is innermost AST. (5.21)

To prove (5.21), note that if X is an SCC, then it follows from our assumption
that (X, S) is innermost AST. If X is a singleton set of a node that does not
belong to any SCC, then assume for a contradiction that (X, S) is not innermost
AST. By Theorem 5.2.23 there exists a (X, S)-computation tree T = (V, E, L, P )
that converges with a probability < 1 and starts with (1 : ⟨{(t#, ε)}⟩) such that
t# = ℓ#σ for some ground substitution σ ∈ Sub (Σ, V), the only dependency tuple
(ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ X, and every proper subterm of ℓ#σ is
in normal form w.r.t. S. The first rewrite step at the root of T must therefore be

⟨{(t#, ε)}⟩ i_P,S {p1 : C1σ, . . . , pk : Ckσ}
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since we can only use (t#, ε) as the main rewrite pair and use the only dependency
tuple.
Assume for a contradiction that there exists a node x ∈ P in T that is not the
root (i.e., x ̸= ε). W.l.o.G. let x be reachable from the root without seeing
any other node from P . This means that Ax contains a pair (d, τ) such that
d = ℓ#σ′ for some ground substitution σ′ ∈ Sub (Σ, V), the only dependency tuple
(ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ X, and every proper subterm of ℓ#σ′ is in
normal form w.r.t. S. We now show that we must have a self loop in the dependency
graph for the dependency tuple (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ X, which
is a contradiction to our assumption that X is a singleton of a dependency tuple
that is not on any SCC.
Let r = z1 . . . zm = x be the path from the root to x. Remember, for the first rewrite
step at the root we have ⟨{(t#, ε)}⟩ i_P,S {p1 : C1σ, . . . , pk : Ckσ}, so that Az1 = Cjσ
for some 1 ≤ j ≤ k. After that, we only use i_S steps in the path since all of
the nodes z2, . . . , zm−1 are contained in S. Note that rewriting with i_S cannot
add new pairs to a set but can only rewrite the terms of existing pairs or remove
pairs. Therefore, we must have a pair (d′, τ) ∈ Cjσ with the same position as (d, τ).
This means that there is some pair (r′, τ) ∈ Cj with (r′σ, τ) = (d′, τ). We will now
recursively define a rewrite sequence r′σ = d′ i→∗

np(S) d = ℓ#σ′ which means that
there must be a self-loop for the only dependency tuple in X.
We construct this rewrite sequence inductively over the length of the path z1 . . . zm.
The idea of this construction is that the path itself is our desired i→∗

np(S)-sequence,
but we may have edges where the term does not change, e.g., if we rewrite with a
main rewrite pair that has a position that is orthogonal to τ . Those rewrite steps
can simply be ignored since the term does not change. In this construction, we
ensure that after the i-th construction step, we currently have a rewrite sequence
d′ i→∗

np(S) di and the last term in this sequence is contained in Azi
(i.e., we have

(di, τ) ∈ Azi
). We start with d1 := d′. Here, we have (d1, τ) = (d′, τ) ∈ Az1 .

For the inductive step, assume we have already defined the rewrite sequence
d′ i→∗

np(S) di. The node zi, together with the labeling and successors, represent
a step with i_S . This means that we have Azi

i_S {p′
1 : B1, . . . , p′

k′ : Bk′} with
Azi+1 = Bh for some 1 ≤ h ≤ k′, using the main rewrite pair (q, α) ∈ Azi

, a ground
substitution σ(i) ∈ Sub (Σ, V), the rule ℓ(i) → {p

(i)
1 : r

(i)
1 , . . . , p

(i)
k′ : r

(i)
k′ } ∈ S, some

position ρ ∈ N+ such that a|ρ = ℓ(i)σ(i), and every proper subterm of ℓ(i)σ(i) is in
normal form w.r.t. S. Furthermore, we have

Azi
= ⟨{(q, α)}⟩ ⊎ Mrew ⊎ M⊥ ⊎ M<

and
Azi+1 = M+

h ⊎ ⟨{(a[rjσ]χa.ρ, χ) | (a, χ) ∈ Mrew}⟩ ⊎ M⊥

as in Definition 5.1.17. The case (di, τ) ∈ M< is not possible, as we cannot remove
the pair in the path to x. Hence, we have the following two possibilities:

– If α⊥τ , then (di, τ) ∈ M⊥ and hence (di, τ) ∈ Azi+1 . Here, we set di+1 = di and
get d′ i→∗

np(S) di = di+1 and (di+1, τ) ∈ Azi+1 .
– If τ ≤ α, then there is a position ζ ∈ N∗ with τ.ζ = α and (di, τ) ∈

⟨{(q, α)}⟩ ∪ Mrew. In this case, we apply the same rule that we applied
to the main rewrite pair to di at position ζ.ρ. This means that we have
(di[r(i)

h σ(i)]ζ.ρ, τ) ∈ Ayi+1 . We can apply the non-probabilistic rewrite rule
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ℓ(i) → r
(i)
h ∈ np(S) to di at position ζ.ρ using the substitution σ(i) to get

di[r(i)
h σ(i)]ζ.ρ. Hence, we set di+1 := di[r(i)

h σ(i)]ζ.ρ and get d′ i→∗
np(S) di

i→np(S) di+1
and (di+1, τ) ∈ Azi+1 .

Now, we have proven that the (P , S)-computation tree T does not contain a node
x ∈ P that is not the root. By definition of a (P , S)-computation, every infinite
path must contain an infinite number of nodes in P . Thus, every path in T must
be finite, which means that T is finite itself. Since every finite computation tree
converges with probability 1, this is a contradiction to our assumption that the tree
converges with probability < 1.
2. Composing SCCs maintains the innermost AST property.
Next, we show that composing SCCs maintains the innermost AST property. More
precisely, we show the following:

Let X ⊆ W and Y ⊆ W such that there are no X1, X2 ∈ X and Y ∈ Y
with X1 >∗

G Y >∗
G X2 and Y ̸∈ X and such that there are no Y1, Y2 ∈ Y

and X ∈ X with Y1 >∗
G X >∗

G Y2 and X ̸∈ Y . If both (⋃
X∈X X, S) and

(⋃
Y ∈Y Y, S) are innermost AST, then (⋃

X∈X X ∪⋃
Y ∈Y Y, S) is innermost

AST as well.

(5.22)

To show (5.22), we assume that both (⋃
X∈X X, S) and (⋃

Y ∈Y Y, S) are innermost
AST. Let Z := ⋃

X∈X X ∪ ⋃
Y ∈Y Y . The property in (5.22) for X and Y says that a

path between two nodes from ⋃
X∈X X that only sees nodes from Z must also be a

path that only sees nodes from ⋃
X∈X X, so that ⋃

Y ∈Y Y can not be used to “create”
new paths between two nodes from X, and vice versa. Assume for a contradiction that
(Z, S) is not innermost AST. By Theorem 5.2.23 there exists a (Z, S)-computation
tree T = (V, E, L, P ) that converges with a probability < 1 and starts with ⟨{(t#, ε)}⟩
such that t# = ℓ#σ for some ground substitution σ ∈ Sub (Σ, V), a dependency
tuple (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ Z, and every proper subterm of
ℓ#σ is in normal form w.r.t. S.
W.l.o.G., we may assume that the dependency tuple that is used for the rewrite step
at the root is inside of ⋃

X∈X X. Otherwise, simply swap ⋃
X∈X X with ⋃

Y ∈Y Y .
We can partition the set P of our (Z, S)-computation tree T into the sets

– P1 := {x ∈ P | x together with the labeling and its successors represents a step
with a dependency tuple from ⋃

X∈X X}
– P2 := {x ∈ P | x ̸∈ P1}

Note that in the case of x ∈ P2, we know that x together with its successors and
the labeling represents a step with a dependency tuple from ⋃

Y ∈Y Y that is not
in ⋃

X∈X X. We know that every (⋃
Y ∈Y Y, S)-computation tree converges with

probability 1, since (⋃
Y ∈Y Y, S) is innermost AST. Thus, also every (⋃

Y ∈Y Y \⋃
X∈X X, S)-computation tree converges with probability 1. Furthermore, we have

|T|Leaf < 1 by our assumption. We can apply the P-Partition Lemma (Lemma 5.2.20)
and find a grounded induced sub (Z, S)-computation tree T′ = (V ′, E ′, L′, P ∩ V ′)
with |T′|Leaf < 1 such that every infinite path has an infinite number of P1 edges.
Since T′ is a grounded induced sub computation tree of T it must also start with
(1 : ⟨{(t#, ε)}⟩).
We now construct a (⋃

X∈X X, S)-computation tree T′′ = (V ′, E ′, L′′, P1 ∩ V ′) with
the same underlying tree structure and an adjusted labeling such that pT′

x = pT′′
x

for all x ∈ V ′. Since the tree structure and the probabilities are the same, we then
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get |T′|Leaf = |T′′|Leaf . To be precise, the set of leaves in T′ is equal to the set of
leaves in T′′, and every leaf has the same probability. Since |T′|Leaf < 1 we thus
have |T′′|Leaf < 1, which is a contradiction to our assumption that (⋃

X∈X X, S) is
innermost AST.

1 : ⟨{(t#, ε)}⟩

P1

p1 : A′
1 p2 : A′

2

P2

p3 : A′
3

P1

p4 : A′
4

P2

p5 : A′
5

P1

. . . . . . . . .

⇝
1 : ⟨{(t#, ε)}⟩

P1

p1 : A′′
1 p2 : A′′

2

p3 : A′′
3

P1

p4 : A′′
4 p5 : A′′

5

P1

. . . . . . . . .

Figure 5.15: Construction for this proof. Every node x ∈ P2 is removed from P .

The core idea of this construction is that pairs introduced by rewrite steps at a node
x ∈ P2 are not of importance for our computation. The reason for that is that the
rewrite step is done using a dependency tuple from ⋃

Y ∈Y Y that is not contained in⋃
X∈X X. By our assumption (5.22) we know that such a dependency tuple has no

path in the dependency graph to a dependency tuple in ⋃
X∈X X. Hence, by definition

of the dependency graph, we are never able to use these pairs as a main rewrite pair
for a rewrite step with a dependency tuple from ⋃

X∈X X. We can therefore use the
PTRS S to mirror the rewrite step of the second component of the used dependency
tuple from ⋃

Y ∈Y Y , and we completely ignore the first component. If the second
component is not applicable (e.g., if the projection to the second component of the
used dependency tuple is not contained in S), then we use split-nodes to do nothing
but mirror the tree structure. This means that we are removing every node x ∈ P2
from P , but since every infinite path contains an infinite amount of P1 nodes, we
can be sure that the resulting tree still has an infinite amount of P nodes on every
infinite path and thus the resulting tree is a (⋃

X∈X X, S)-computation tree.

For example, if we use our DP problem (DT (Rdiv), Rdiv) with the dependency graph
shown in Example 5.4.7 and look at the following (DT (Rdiv), Rdiv)-computation
tree T:

1 : ⟨{
(
div#(4, 2), ε

)
}⟩

P

1
2 : ⟨{

(
div#(4, 2), ε

)
}⟩

P

1
2 : ⟨{

(
div#(minus(3, 1), 2), 1

)
,
(
minus#(3, 1), 1.1

)
}⟩

P

1
4 : ⟨{

(
div#(4, 2), ε

)
}⟩

1
4 : ⟨{

(
div#(minus(3, 1), 2), 1

)
,
(
minus#(3, 1), 1.1

)
}⟩

1
4 : ⟨{

(
div#(minus(3, 1), 2), 1

)
,
(
minus#(3, 1), 1.1

)
}⟩

1
4 : ⟨{

(
div#(minus(2, 0), 2), 1

)
,
(
minus#(2, 0), 1.1

)
}⟩
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We can partition the SCCs of the dependency graph into the sets X = {(5.3), (5.4)}
(the dependency tuples for div#) and X = {(5.1), (5.2)} (the dependency tuples
for minus#). Then X and Y satisfies our condition (5.22). Our construction
would now instead of the dependency tuples from Y use the PTRS rules (5.1)
and (5.2) to evaluate the inner minus subterm instead. This results in the following
(DT (Rdiv), Rdiv)-computation tree, that does not use any dependency tuples from
Y :

1 : ⟨{
(
div#(4, 2), ε

)
}⟩

P

1
2 : ⟨{

(
div#(4, 2), ε

)
}⟩

P

1
2 : ⟨{

(
div#(minus(3, 1), 2), 1

)
,
(
minus#(3, 1), 1.1

)
}⟩

1
4 : ⟨{

(
div#(4, 2), ε

)
}⟩

1
4 : ⟨{

(
div#(minus(3, 1), 2), 1

)
,
(
minus#(3, 1), 1.1

)
}⟩

1
4 : ⟨{

(
div#(minus(3, 1), 2), 1

)
}⟩

1
4 : ⟨{

(
div#(minus(2, 0), 2), 1

)
}⟩

For the right node, we use the PTRS rule (5.2) instead of the dependency tuple
DT ((5.2)). In this case, we remove the pair

(
minus#(3, 1), 1

)
. The corresponding

term has a minus# at the root, which means that it can not be used as a main
rewrite pair for a step with a dependency tuple from X. This is indicated by the
dependency graph.
We now construct the new labeling L′′ for the (⋃

X∈X X, S)-computation tree T′′

recursively. Let Q ⊆ V be the set of nodes, where we have already defined the
labeling L′′(x). During our construction, we ensure that the following property holds:

For every node x ∈ Q we have A′
x \ Junk(A′

x, X) ⊆ A′′
x. (5.23)

Here, Junk(A′
x, X) denotes the set of all pairs in A′

x that can never be used as a
main rewrite pair for a dependency tuple from X, indicated by the dependency
graph. To be precise, we define (q, π) ∈ Junk(A′

x, X) :⇔ (q, π) ∈ A′
x and there

is no Z ∈ W with Z >∗
G X for some X ∈ X such that there is a dependency

tuple (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ Z, and a ground substitution
σ ∈ Sub (Σ, V) with q i→∗

np(S) ℓ#σ, and every proper subterm of ℓ#σ is in normal
form w.r.t. S.
We start by setting A′′

r := A′
r = ⟨{(t#, ε)}⟩. Here, our induction property (5.23) is

clearly satisfied as we have

A′
r \ Junk(A′

r, X) ⊆ A′
r = A′′

r

As long as there is still an inner node x ∈ Q such that their successors are not
contained in Q, we do the following. Let xE = {y1, . . . , yk} be the set of its successors.
We need to define the corresponding terms for the nodes y1, . . . , yk.
Since x is not a leaf and T′ is a (Z, S)-computation tree, we have

A′
x

i_Z,S {py1
px

: A′
y1 , . . . ,

pyk

px
: A′

yk
} or Ax

i_S {py1
px

: A′
y1 , . . . ,

pyk

px
: A′

yk
}

In Figure 5.16, one can see the different cases that we have to handle in this
construction.
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Case Subcase Construction

1) i_Z,S and x ∈ P1

Mirror the rewrite step
with the same dependency tuple,

same main rewrite pair
and same substitution

2) i_Z,S and x ∈ P2 Coupled rewrite rule not in S
Use a split-node

to mirror the tree structure,
ignore the rewrite step

3.1) i_Z,S and x ∈ P2
Coupled rewrite rule in S and

¬∃(t′, π′) ∈ A′′
x : π′ ≤ π

Use a split-node
to mirror the tree structure,

ignore the rewrite step

3.2) i_Z,S and x ∈ P2
Coupled rewrite rule in S and

∃(t′, π′) ∈ A′′
x : π′ ≤ π

Mirror rewrite step
with the rule in S

and same substitution
at the lowest possible position

4.1) i_S ¬∃(t′, π′) ∈ A′′
x : π′ ≤ π

Use a split-node
to mirror the tree structure,

ignore the rewrite step

4.2) i_S ∃(t′, π′) ∈ A′′
x : π′ ≤ π

Mirror rewrite step
with the same rewrite rule

and same substitution
at the lowest possible position

Figure 5.16: Case Distinction for the inductive step

1) If we have A′
x

i_Z,S {py1
px

: A′
y1 , . . . ,

pyk

px
: A′

yk
} using a dependency tuple

(ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ ⋃
X∈X X (i.e., x ∈ P1), a main rewrite

pair (q, π) ∈ A′
x, and a ground substitution σ ∈ Sub (Σ, V) such that q = ℓ#σ and

all proper subterms of ℓ#σ are in normal form w.r.t. S. Then

A′
x = ⟨{(q, π)}⟩ ⊎ M ′

rew ⊎ M ′
⊥ ⊎ M ′

<

and
A′

yj
= M+′

j ⊎ M ′
⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ M ′

rew}⟩

for all 1 ≤ j ≤ k as in Definition 5.1.12.
Here, we have (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ ⋃

X∈X X (i.e., we use a
dependency pair that is inside of ⋃

X∈X X), and thus the pair (q, π) cannot be inside
of Junk(A′

x, X). Hence, we must have (q, π) ∈ A′
x \ Junk(A′

x, X) ⊆(IH) A′′
x. Thus, we

can rewrite the set A′′
x using the dependency tuple (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk :

(Ck, rk)} ∈ ⋃
X∈X X, the main rewrite pair (q, π) ∈ A′′

x, and the substitution σ as we
have q = ℓ#σ and all proper subterms of ℓ#σ are in normal form w.r.t. S.
This means that we have A′′

x
i_Z,S {py1

px
: Bx

1 , . . . ,
pyk

px
: Bx

k } with

A′′
x = ⟨{(q, π)}⟩ ⊎ M ′′

rew ⊎ M ′′
⊥ ⊎ M ′′

<

and
Bx

j = M+′′

j ⊎ M ′′
⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ M ′′

rew}⟩

for all 1 ≤ j ≤ k as in Definition 5.1.12. We define the set in the labeling of the
successors y1, . . . , yk in T′′ to be A′′

yj
= Bx

j for all 1 ≤ j ≤ k. It remains to show
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that our induction hypothesis is still satisfied for this new labeling, i.e., we have
A′

yj
\ Junk(A′

yj
, X) ⊆ A′′

yj
for all 1 ≤ j ≤ k.

Let 1 ≤ j ≤ k and (b, ρ) ∈ A′
yj

\ Junk(A′
yj

, X). We have the following possibilities:

– If (b, ρ) ∈ M+′

j , then also (b, ρ) ∈ M+′′

j (since M+′

j = M+′′

j as we are using the
same dependency pair with the same substitution and the same main rewrite
pair) and thus (b, ρ) ∈ A′′

yj
.

– If (b, ρ) ∈ ⟨{(a[rjσ]χa , α) | (a, α) ∈ M ′
rew}⟩, then we have a pair (a, ρ) ∈ A′

x and
a position χ ∈ N+ with ρ.χ = π. By definition, the same rule that we applied
to q is applied to a at position χ, so that we result with b = a[rjσ]χ.
If we have (a, ρ) ∈ Junk(A′

x, X), then we also have (b, ρ) = (a[rjσ]χ, ρ) ∈
Junk(A′

yj
, X), since a i→np(S) a[rjσ]χ = b, and this is a contradiction to

our assumption that (b, ρ) ∈ A′
yj

\ Junk(A′
yj

, X). Thus, we have (a, ρ) ∈
A′

x \ Junk(A′
x, X) ⊆(IH) A′′

x, and (a, ρ) ∈ M ′′
rew, since ρ < π. Now the

same rewrite step takes place at the same position as above, so that we get
(b, ρ) = (a[rjσ]χ, ρ) ∈ A′′

yj
.

– If we have (b, ρ) ∈ M ′
⊥, then (b, ρ) ∈ A′

x. If we have (b, ρ) ∈ Junk(A′
x, X),

then we would also have (b, ρ) ∈ Junk(A′
yj

, X), and this is a contradiction
to our assumption that (b, ρ) ∈ A′

yj
\ Junk(A′

yj
, X). Thus, we have (b, ρ) ∈

A′
x \ Junk(A′

x, X) ⊆(IH) A′′
x. Furthermore, ρ⊥π and thus also (b, ρ) ∈ M ′′

⊥, and
hence (b, ρ) ∈ A′′

yj
.

2) If we have A′
x

i_Z,S {py1
px

: A′
y1 , . . . ,

pyk

px
: A′

yk
} using a dependency tuple

(ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ ⋃
Y ∈Y Y \ ⋃

X∈X X (i.e., x ∈ P2), a
main rewrite pair (q, π) ∈ A′

x, and a ground substitution σ ∈ Sub (Σ, V) such
that q = ℓ#σ, all proper subterms of ℓ#σ are in normal form w.r.t. S, and
ℓ → {p1 : r1, . . . , pk : rk} ̸∈ S. Then

A′
x = ⟨{(q, π)}⟩ ⊎ M ′

rew ⊎ M ′
⊥ ⊎ M ′

<

and
A′

yj
= M+′

j ⊎ M ′
⊥

for all 1 ≤ j ≤ k as in Definition 5.1.12. In this case, we can simply use a split-node
to do nothing, as this rewrite step is completely irrelevant to our construction. This
means that we set A′′

yj
:= A′′

x for all 1 ≤ j ≤ k. It remains to show that our induction
hypothesis is still satisfied for this new labeling, i.e., we have A′

yj
\Junk(A′

yj
, X) ⊆ A′′

yj

for all 1 ≤ j ≤ k.
Let 1 ≤ j ≤ k and (b, ρ) ∈ A′

yj
\ Junk(A′

yj
, X). We have the following possibilities:

– If (b, ρ) ∈ M+′

j , then there is (r′, χ) ∈ Cj ⊆ dp(rj) such that (b, ρ) = (r′σ, π.χ).
Since our used dependency pair is inside of Y for some Y ∈ Y but not contained
in ⋃

X∈X X, we know by (5.22) that Y ̸>∗
G X for all X ∈ X. Intuitively, we

started with a dependency tuple from X, reaching Y , so we cannot reach
any X ∈ X anymore. By definition of the dependency graph, this means
that there is no Z ∈ W with Z >∗

G X for some X ∈ X such that there is a
dependency tuple (ℓ′#, ℓ′) → . . . ∈ Z, and a ground substitution σ′ ∈ Sub (Σ, V)
with b i→∗

np(S) ℓ′#σ′, and every proper subterm of ℓ′#σ′ is in normal form w.r.t.
S. Hence, we have (b, ρ) ∈ Junk(A′

yj
, X) and this is a contradiction to our

assumption that (b, ρ) ∈ A′
yj

\ Junk(A′
yj

, X). Thus, this case is not possible.
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– If we have (b, ρ) ∈ M ′
⊥, then (b, ρ) ∈ Ax. If we have (b, ρ) ∈ Junk(A′

x, X), then
we also have (b, ρ) ∈ Junk(A′

yj
, X), and this is a contradiction to our assumption

that (b, ρ) ∈ A′
yj

\Junk(A′
yj

, X). Thus, we have (b, ρ) ∈ A′
x \Junk(A′

x, X) ⊆(IH)
A′′

x, then we get (b, ρ) ∈ A′′
x = A′′

yj
by our construction.

3) If we have A′
x

i_Z,S {py1
px

: A′
y1 , . . . ,

pyk

px
: A′

yk
} using a dependency tuple

(ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ ⋃
Y ∈Y Y \ ⋃

X∈X X (i.e., x ∈ P2), a
main rewrite pair (q, π) ∈ A′

x, and a ground substitution σ ∈ Sub (Σ, V) such
that q = ℓ#σ, all proper subterms of ℓ#σ are in normal form w.r.t. S, and
ℓ → {p1 : r1, . . . , pk : rk} ∈ S. Then

A′
x = ⟨{(q, π)}⟩ ⊎ M ′

rew ⊎ M ′
⊥ ⊎ M ′

<

and
A′

yj
= M+′

j ⊎ M ′
⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ M ′

rew}⟩

for all 1 ≤ j ≤ k as in Definition 5.1.12.
We need to differentiate between two possible cases again:

– 3.1) If there is no pair (t′, π′) ∈ A′′
x with a position above π (i.e., π′ ≤ π), then

we can not perform any rewrite step with our new labeling. Hence, we use a
split-node to mirror the tree structure without changing the sets in the labeling.
This means that we set A′′

yj
:= A′′

x for all 1 ≤ j ≤ k. It remains to show that
our induction hypothesis is still satisfied for this new labeling, i.e., we have
A′

yj
\ Junk(A′

yj
, X) ⊆ A′′

yj
for all 1 ≤ j ≤ k.

Let 1 ≤ j ≤ k and (b, ρ) ∈ A′
yj

\ Junk(A′
yj

, X). We have the following
possibilities:

∗ If (b, ρ) ∈ M+′

j , then there is (r′, χ) ∈ Cj ⊆ dp(rj) such that (b, ρ) =
(r′σ, π.χ). Since our used dependency pair is inside of Y for some Y ∈ Y but
not contained in ⋃

X∈X X, we know by (5.22) that Y ̸>∗
G X for all X ∈ X.

Intuitively, we started with a dependency tuple from X, reaching Y , so we
cannot reach any X ∈ X anymore. By definition of the dependency graph,
this means that there is no Z ∈ W with Z >∗

G X for some X ∈ X such that
there is a dependency tuple (ℓ′#, ℓ′) → . . . ∈ Z, and a ground substitution
σ′ ∈ Sub (Σ, V) with b i→∗

np(S) ℓ′#σ′, and every proper subterm of ℓ′#σ′ is
in normal form w.r.t. S. Hence, we have (b, ρ) ∈ Junk(A′

yj
, X) and this is

a contradiction to our assumption that (b, ρ) ∈ A′
yj

\ Junk(A′
yj

, X). Thus,
this case is not possible.

∗ If (b, ρ) ∈ ⟨{(a[rjσ]χa , ρ) | (a, ρ) ∈ M ′
rew}⟩, then we have a pair (a, ρ) ∈ Ax

and a position χ with ρ.χ = π. By definition, the same rule that we applied
to t is applied to a at position χ, so that we result with b = a[rjσ]χ. The pair
(a, ρ) can not be inside of A′′

x (as there is no pair with a position above π in
A′′

x), hence we must have (a, ρ) ∈ Junk(A′
x, X) by our induction hypothesis.

For the resulting pair (b, ρ) = (a[rjσ]χ, ρ), we have a i→np(S) a[rjσ]χ = b
and hence, we also have (b, ρ) ∈ Junk(A′

yj
, X), and this is a contradiction

to our assumption that (b, ρ) ∈ A′
yj

\ Junk(A′
yj

, X). Thus, this case is not
possible again.

∗ If we have (b, ρ) ∈ M ′
⊥, then (b, ρ) ∈ Ax. If we have (b, ρ) ∈ Junk(A′

x, X),
then we also have (b, ρ) ∈ Junk(A′

yj
, X), and this is a contradiction

to our assumption that (b, ρ) ∈ A′
yj

\ Junk(A′
yj

, X). Thus, we have
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(b, ρ) ∈ A′
x \ Junk(A′

x, X) ⊆(IH) A′′
x, then we get (b, ρ) ∈ A′′

x = A′′
yj

by
our construction.

– 3.2) If there exists a pair (t′, π′) ∈ A′′
x with a position above π (i.e., π′ ≤ π),

then we can mirror the rewrite step at the lowest possible position that is
above π. Let D := {(t′, π′) ∈ A′′

x | π′ ≤ π} be the set of all pairs in A′′
x with

a position above π. Furthermore, let (tmax, πmax) the pair in D with maximal
position (i.e., there is no pair (t′′, π′′) ∈ D with πmax < π′′). We can now mirror
the rewrite step performed in our original computation tree with the main
rewrite pair (tmax, πmax) in our new computation tree. To be precise, let τ
be the position such that πmax.τ = π. We can then rewrite A′′

x with the rule
ℓ → {p1 : r1, . . . , pk : rk} ∈ S, the main rewrite pair (tmax, πmax) ∈ A′′

x, the
ground substitution σ ∈ Sub (Σ, V), and the position τ , since tmax|τ = t = ℓ#σ
and all proper subterms of ℓ#σ are in normal form w.r.t. S. This means that
we have A′′

x
i_S {py1

px
: Bx

1 , . . . ,
pyk

px
: Bx

k } with

A′′
x = ⟨{(tmax, πmax)}⟩ ⊎ M ′′

rew ⊎ M ′′
⊥ ⊎ M ′′

<

and
Bx

j = M+′′

j ⊎ M ′′
⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ M ′′

rew}⟩

for all 1 ≤ j ≤ k as in Definition 5.1.17. We define the set in the labeling of
the successors y1, . . . , yk in T′′ to be A′′

yj
= Bx

j for all 1 ≤ j ≤ k. It remains to
show that our induction hypothesis is still satisfied for this new labeling, i.e.,
we have A′

yj
\ Junk(A′

yj
, X) ⊆ A′′

yj
for all 1 ≤ j ≤ k.

Let 1 ≤ j ≤ k and (b, ρ) ∈ A′
yj

\ Junk(A′
yj

, X). We have the following
possibilities:

∗ If (b, ρ) ∈ M+′

j , then there is (r′, χ) ∈ Cj ⊆ dp(rj) such that (b, ρ) =
(r′σ, π.χ). Since our used dependency pair is inside of Y for some Y ∈ Y but
not contained in ⋃

X∈X X, we know by (5.22) that Y ̸>∗
G X for all X ∈ X.

Intuitively, we started with a dependency tuple from X, reaching Y , so we
cannot reach any X ∈ X anymore. By definition of the dependency graph,
this means that there is no Z ∈ W with Z >∗

G X for some X ∈ X such that
there is a dependency tuple (ℓ′#, ℓ′) → . . . ∈ Z, and a ground substitution
σ′ ∈ Sub (Σ, V) with b i→∗

np(S) ℓ′#σ′, and every proper subterm of ℓ′#σ′ is
in normal form w.r.t. S. Hence, we have (b, ρ) ∈ Junk(A′

yj
, X) and this is

a contradiction to our assumption that (b, ρ) ∈ A′
yj

\ Junk(A′
yj

, X). Thus,
this case is not possible.

∗ If (b, ρ) ∈ ⟨{(a[rjσ]χa , ρ) | (a, ρ) ∈ M ′
rew}⟩, then we have a pair (a, ρ) ∈ Ax

and a position χ with ρ.χ = π. By definition, the same rule that
we applied to t is applied to a at position χ, so that we result with
b = a[rjσ]χ. If we have (a, ρ) ∈ Junk(A′

x, X), then we also have
(b, ρ) = (a[rjσ]χ, ρ) ∈ Junk(A′

yj
, X), as this means a i→np(S) a[rjσ]χ = b,

and this is a contradiction to our assumption that (b, ρ) ∈ A′
yj

\Junk(A′
yj

, X).
Thus, we have (a, ρ) ∈ A′

x \ Junk(A′
x, X) ⊆(IH) A′′

x, then we also have
(a, ρ) ∈ D and ρ ≤ πmax. This means that (a, ρ) ∈ M ′′

rew and there exists
some position χ′ so that ρ.χ′ = πmax and hence (a[rjσ]χ′.τ , ρ) ∈ A′′

yj
. But

since ρ.χ′.τ = πmax.τ = π, we have χ′.τ = χ, get a[rjσ]χ′.τ = a[rjσ]χ = b,
and thus (b, ρ) ∈ A′′

yj
.

∗ If we have (b, ρ) ∈ M ′
⊥, then (b, ρ) ∈ Ax and ρ⊥πmax.τ . If we have

(b, ρ) ∈ Junk(A′
x, X), then we also have (b, ρ) ∈ Junk(A′

yj
, X), and this is
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a contradiction to our assumption that (b, ρ) ∈ A′
yj

\ Junk(A′
yj

, X). Thus,
we have (b, ρ) ∈ A′

x \ Junk(A′
x, X) ⊆(IH) A′′

x. Furthermore, ρ⊥πmax.τ and
thus also ρ⊥π, since πmax.χ = π. We then also get (b, ρ) ∈ M ′′

⊥ ⊆ A′′
yj

.

4) If we have A′
x

i_S {py1
px

: A′
y1 , . . . ,

pyk

px
: A′

yk
}, then there is a rule ℓ → {p1 :

r1, . . . , pk : rk} ∈ S, a main rewrite pair (q, π) ∈ A′
x, a ground substitution

σ ∈ Sub (Σ, V), and a position τ ∈ N+ with q|τ = ℓσ, such that all proper subterms
of ℓσ are in normal form w.r.t. S. Then

A′
x = ⟨{(q, π)}⟩ ⊎ M ′

rew ⊎ M ′
⊥ ⊎ M ′

<

and
A′

yj
= M+′

j ⊎ M ′
⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ M ′

rew}⟩

for all 1 ≤ j ≤ k as in Definition 5.1.17.
We need to differentiate between two possible cases again:

– 4.1) If we have no pair (t′, π′) ∈ A′′
x with a position above π (i.e., π′ ≤ π), then

we can not perform any rewrite step with our new labeling. Hence, we use a
split-node to mirror the tree structure without changing the sets in the labeling.
This means that we set A′′

yj
:= A′′

x for all 1 ≤ j ≤ k. It remains to show that
our induction hypothesis is still satisfied for this new labeling, i.e., we have
A′

yj
\ Junk(A′

yj
, X) ⊆ A′′

yj
for all 1 ≤ j ≤ k.

Let 1 ≤ j ≤ k and (b, ρ) ∈ A′
yj

\ Junk(A′
yj

, X). We have the following
possibilities:

∗ If (b, ρ) ∈ M+′

j ⊎ ⟨{(a[rjσ]χa , ρ) | (a, ρ) ∈ M ′
rew}⟩, then we have a pair

(a, ρ) ∈ Ax and a position χ with ρ.χ = π. By definition, the same rule that
we applied to t at position τ is applied to a at position χ.τ , so that we result
with b = a[rjσ]χ.τ . The pair (a, ρ) can not be inside of A′′

x (as there is no
pair with a position above π in A′′

x), hence we have (a, ρ) ∈ Junk(A′
x, X) by

our induction hypothesis. This means that there is no Z ∈ W with Z >∗
G X

for some X ∈ X such that there is a dependency tuple (ℓ′#, ℓ′) → . . . ∈ Z,
a ground substitution σ′ ∈ Sub (Σ, V), and a i→∗

np(S) ℓ′#σ′, and every
proper subterm of ℓ′#σ′ is in normal form w.r.t. S. For the resulting pair
(b, ρ) = (a[rjσ]χ.τ , ρ), we have a i→np(S) a[rjσ]χ.τ = b and hence, we also
have (b, ρ) ∈ Junk(A′

yj
, X), and this is a contradiction to our assumption

that (b, ρ) ∈ A′
yj

\ Junk(A′
yj

, X). Thus, this case is not possible.
∗ If we have (b, ρ) ∈ M ′

⊥, then (b, ρ) ∈ Ax. If we have (b, ρ) ∈ Junk(A′
x, X),

then we also have (b, ρ) ∈ Junk(A′
yj

, X), and this is a contradiction
to our assumption that (b, ρ) ∈ A′

yj
\ Junk(A′

yj
, X). Thus, we have

(b, ρ) ∈ A′
x \ Junk(A′

x, X) ⊆(IH) A′′
x, then we get (b, ρ) ∈ A′′

x = A′′
yj

by
our construction.

– 4.2) If there exists a pair (t′, π′) ∈ A′′
x with a position above π (i.e., π′ ≤ π),

then we can mirror the rewrite step at the lowest possible position that is above
π. Let D := {(t′, π′) ∈ A′′

x | π′ ≤ π} be the set of all pairs in A′′
x with a position

above π. Furthermore, let (tmax, πmax) the pair in D with maximal position (i.e.,
there is no pair (t′′, π′′) ∈ D with πmax < π′′). We can now mirror the rewrite
step performed in our original computation tree with the main rewrite pair
(tmax, πmax). To be precise, let χ be the position such that πmax.χ = π. We can
then rewrite A′′

x with the rule ℓ → {p1 : r1, . . . , pk : rk} ∈ S, the main rewrite
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pair (tmax, πmax) ∈ A′′
x, the substitution σ ∈ Sub (Σ, V), and the position χ.τ

since tmax|χ.τ = t|τ = ℓσ and all proper subterms of ℓσ are in normal form w.r.t.
S. This means that we have A′′

x
i_S {py1

px
: Bx

1 , . . . ,
pyk

px
: Bx

k } with

A′′
x = ⟨{(tmax, πmax)}⟩ ⊎ M ′′

rew ⊎ M ′′
⊥ ⊎ M ′′

<

and
Bx

j = M+′′

j ⊎ M ′′
⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ M ′′

rew}⟩
for all 1 ≤ j ≤ k as in Definition 5.1.17. We define the set in the labeling of
the successors y1, . . . , yk in T′′ to be A′′

yj
= Bx

j for all 1 ≤ j ≤ k. It remains to
show that our induction hypothesis is still satisfied for this new labeling, i.e.,
we have A′

yj
\ Junk(A′

yj
, X) ⊆ A′′

yj
for all 1 ≤ j ≤ k.

Let 1 ≤ j ≤ k and (b, ρ) ∈ A′
yj

\ Junk(A′
yj

, X). We have the following
possibilities:

∗ If (b, ρ) ∈ M+′

j ⊎ ⟨{(a[rjσ]χa , ρ) | (a, ρ) ∈ M ′
rew}⟩, then we have a pair

(a, ρ) ∈ Ax and a position χ′ with ρ.χ′ = π. By definition, the same rule
that we applied to t at position τ is applied to a at position χ′.τ , so that
we result with b = a[rjσ]χ′.τ .
If we have (a, ρ) ∈ Junk(A′

x, X), then we also have (b, ρ) = (a[rjσ]χ′.τ , ρ) ∈
Junk(A′

yj
, X), as this means a i→np(S) a[rjσ]χ′.τ = b, and this is a

contradiction to our assumption that (b, ρ) ∈ A′
yj

\ Junk(A′
yj

, X). Thus, we
have (a, ρ) ∈ A′

x \ Junk(A′
x, X) ⊆(IH) A′′

x, then we also have (a, ρ) ∈ D and
we have χ ≤ πmax. This means that (a, ρ) ∈ M ′′

rew and there exists some
position χ′′ so that ρ.χ′′ = πmax and hence (a[rjσ]χ′′.χ.τ , ρ) ∈ A′′

yj
. But since

ρ.χ′′.χ = πmax.χ = π, we have χ′′.χ = χ′, get a[rjσ]χ′′.χ.τ = a[rjσ]χ′.τ = b,
and thus (b, ρ) ∈ A′′

yj
.

∗ If we have (b, ρ) ∈ M ′
⊥, then (b, ρ) ∈ Ax. If we have (b, ρ) ∈ Junk(A′

x, X),
then we also have (b, ρ) ∈ Junk(A′

yj
, X), and this is a contradiction

to our assumption that (b, ρ) ∈ A′
yj

\ Junk(A′
yj

, X). Thus, we have
(b, ρ) ∈ A′

x \ Junk(A′
x, X) ⊆(IH) A′′

x. Furthermore, ρ⊥πmax.χ.τ and thus
also ρ⊥π.τ , since πmax.χ = π. We then also get (b, ρ) ∈ M ′′

⊥ ⊆ A′′
yj

.

This was the last case and ended the construction and this proof part. We have now
shown that (5.22) holds.
3. For every X ∈ W , the DP problem (⋃

X>∗
G

Y Y, S) is innermost AST.

Using (5.21) and (5.22), by well-founded induction on >G we now prove that

for every X ∈ W , the DP problem (⋃
X>∗

G
Y Y, S) is innermost AST. (5.24)

For the base case, we consider an X ∈ W that is minimal w.r.t. >G. Hence, we have⋃
X>∗

G
Y Y = X. By (5.21), (X, S) must be innermost AST.

For the induction step, we consider an X ∈ W and assume that every (⋃
Y >∗

G
Z Z, S)

is innermost AST for every Y ∈ W with X >+
G Y . Let Succ(X) := {Y ∈ W | X >G

Y } = {Y1, . . . Ym} be the set of all direct successors of X. The induction hypothesis
states that (⋃

Yu>∗
G

Z Z, S) is innermost AST for all 1 ≤ u ≤ m. We first prove by
induction that for all 1 ≤ u ≤ m every (⋃

1≤i≤u

⋃
Yi>∗

G
Z Z, S) is innermost AST.

In the inner induction base, we have u = 1 and hence (⋃
1≤i≤u

⋃
Yi>∗

G
Z Z, S) =

(⋃
Y1>∗

G
Z Z, S). By our outer induction hypothesis we know that (⋃

Y1>∗
G

Z Z, S) is
innermost AST.
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In the inner induction step, assume that the claim holds for some 1 ≤ u < m.
Then (⋃

Yu+1>∗
G

Z Z, S) is innermost AST by our outer induction hypothesis and
(⋃

1≤i≤u

⋃
Yi>∗

G
Z Z, S) is innermost AST by our inner induction hypothesis. By (5.22),

we know that then (⋃
1≤i≤u+1

⋃
Yi>∗

G
Z Z, S) is innermost AST as well. The conditions

for (5.22) are clearly satisfied as we are using the reflexive, transitive closure in both⋃
1≤i≤u

⋃
Yi>∗

G
Z Z and ⋃

Yu+1>∗
G

Z Z.
Now, we have shown that (⋃

1≤i≤m

⋃
Yi>∗

G
Z Z, S) is innermost AST. We know that

(X, S) is innermost AST by our assumption and that (⋃
1≤i≤m

⋃
Yi>∗

G
Z Z, S) is

innermost AST. Hence, by (5.22) we have (⋃
X>∗

G
Y Y, S) innermost AST. Again,

the conditions of (5.22) are satisfied, since X is strictly greater than everything
inside of ⋃

X>∗
G

Y Y w.r.t. >G.
4. (P , S) is innermost AST.
Now, in (5.24) we have shown that (⋃

X>∗
G

Y Y, S) for every X ∈ W is innermost
AST. Let X1, . . . , Xm ∈ W be the maximal elements w.r.t. >G. Finally, we prove by
induction that every (⋃

1≤i≤u

⋃
Xi>∗

G
Y Y, S)-chain converges with probability 1 for all

1 ≤ u ≤ m by (5.22), analogous to the previous induction. Again, the conditions of
(5.22) are satisfied as we are dealing with the reflexive, transitive closure of >G. In
the end, we know that (⋃

1≤i≤m

⋃
Xi>∗

G
Y Y, S) = (P , S) is innermost AST and this

ends the proof. ■

As for the non-probabilistic dependency graph, the construction of the probabilistic
dependency graph is not computable for the same reason, and hence we need to work with
an abstracted version again. Here, we can use the same abstraction function as before
since the definition of the probabilistic dependency graph relies on the non-probabilistic
TRS np(S), just like the non-probabilistic dependency graph.
Definition 5.4.11 (Abstracted Dependency Graph). Let (P , S) be a DP problem. The
abstracted (P , S)-dependency graph is defined as the graph with node set P. There is
an arc from (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} to (ℓ′#, ℓ′) → . . . if there is a pair
(t, π) ∈ Ci for some 1 ≤ i ≤ k such that t and ℓ′# are connectable w.r.t. ℓ#.

Here, we can actually use the same proof as in Theorem 3.3.7 to show that the abstracted
dependency graph is a supergraph of the normal dependency graph. Once again, this
directly implies that the following computable processor is also sound and complete.
Theorem 5.4.12 (Computable Dependency Graph Processor). Let

ProcCDG(P , S) = {(Q1, S), . . . , (Qn, S)}

where Q1, . . . , Qn are the SCCs of the abstracted (P , S)-dependency graph. Then ProcCDG

is sound and complete.

Proof. Same proof as for Theorem 3.3.7. We only have argue in terms of dependency
tuples (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} instead of dependency pairs ℓ# → r#

in order to show that the abstracted dependency graph is a supergraph of the normal
dependency graph. ■

Example 5.4.13 (Computable Dependency Graph Processor). Let Rdiv be the PTRS from
Example 5.0.1 and DT (Rdiv) be the set of its dependency tuples from Example 5.1.10. The
abstracted (DT (Rdiv), Rdiv)-dependency graph has the same form as the (DT (Rdiv), Rdiv)-
dependency graph:
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DT ((5.1)) DT ((5.2))

DT ((5.3)) DT ((5.4))

The SCCs of this Graph are the four singleton sets {DT ((5.1))}, {DT ((5.2))}, {DT ((5.3))}
and {DT ((5.4))}. Hence, we get

ProcCDG((DT (Rdiv), Rdiv))
= {({DT ((5.1))}, Rdiv), ({DT ((5.2))}, Rdiv), ({DT ((5.3))}, Rdiv), ({DT ((5.4))}, Rdiv)}

and remain with four smaller DP problems that only contain one dependency tuple.

Usable Pairs Processor
After applying the dependency graph processor, we may have dependency terms in the right-
hand side of a dependency tuple that cannot be rewritten with any remaining dependency
tuple. Hence, we create a new processor similar to the dependency graph processor, but
it only works on the level of the sets inside the right-hand side of a dependency tuple.
Similar to the usable rules processor, we remove every pair that cannot be used as a main
rewrite pair in a i_P,S step (no matter how we rewrite the term in the pair with S). This
processor was not needed in the non-probabilistic setting because there, we work with
dependency pairs and not dependency tuples. Hence, the corresponding dependency pair
for a not usable pair would already be removed by the dependency graph processor since
it is not in any SCC of the dependency graph.
Example 5.4.14 (Usable Pairs). Let Rdiv be the PTRS from Example 5.0.1 and DT (Rdiv)
be the set of its dependency tuples from Example 5.1.10. After using the dependency
graph, we get the following 4 DP problems.

({DT ((5.1))}, Rdiv), ({DT ((5.2))}, Rdiv), ({DT ((5.3))}, Rdiv), ({DT ((5.4))}, Rdiv)

Let us take a closer look at ({DT ((5.4))}, Rdiv). Here, we have the only dependency tuple

DT ((5.4)) =
(
div#(s(x), s(y)), div(s(x), s(y))

)
→ { 1

2 :
(

⟨{
(
div#(s(x), s(y)), ε

)
}⟩, div(s(x), s(y))

)
,

1
2 :

(
⟨{

(
div#(minus(x, y), s(y)), 1

)
,
(
minus#(x, y), 1.1

)
}⟩,

s(div(minus(x, y), s(y)))
)

}

The red pair has the tuple symbol minus# at the root of its term. However, the only
dependency tuple can only rewrite terms with a div# root symbol. Hence, this pair can
never be used as a main rewrite pair in a i_P,S step, no matter how we rewrite this pair
with S.
Definition 5.4.15 (Usable Pairs). Let (P , S) be a DP problem. Additionally, let
(ℓ#

1 , ℓ1) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ P and 1 ≤ i ≤ k. We call a pair (t#, π) ∈ Ci

usable w.r.t. (P , S) iff there is a dependency tuple (ℓ#
2 , ℓ2) → . . . ∈ P, and ground
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substitutions σ1, σ2 ∈ Sub (Σ, V) such that t#σ1
i→∗

np(S) ℓ#
2 σ2 and all proper subterms of

ℓ#
1 σ1 and ℓ#

2 σ2 are in normal form w.r.t. S.
For a set A, let UP(A, P , S) := {(t#, π) ∈ A | (t#, π) usable w.r.t. (P , S)} be the set of
all pairs in A that are usable. The transformation that removes all non-usable pairs in the
right-hand side of all dependency tuples is denoted by:

TUP(P , S) = {(ℓ#, ℓ) → {p1 : (UP(C1, P , S), r1), . . . , pk : (UP(Ck, P , S), rk)}
| (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ P}

Theorem 5.4.16 (Usable Pairs Processor). Let

ProcUP(P , S) = {(TUP(P , S), S)}.

Then ProcUP is sound and complete.

Proof.

complete: Assume that (TUP(P , S), S) is not innermost AST. By Theorem 5.2.23, there exists
a (TUP(P , S), S)-computation tree T = (V, E, L, P ) that converges with probability
< 1 and starts with (1 : ⟨{(t#, ε)}⟩) such that t# = ℓ#σ for some dependency tuple
(ℓ#, ℓ) → {p1 : (UP(C1, P , S), r1), . . . , pk : (UP(Ck, P , S), rk)} ∈ TUP(P , S) and
some ground substitution σ ∈ Sub (Σ, V) such that every proper subterm of ℓ#σ is in
normal form w.r.t. S. We will now create a (P , S)-computation tree T′ = (V, E, L′, P )
that also starts with (1 : ⟨{(t#, ε)}⟩) with the same underlying tree structure, the
same set P , and an adjusted labeling such that pT

x = pT′
x for all x ∈ V . Since the

tree structure and the probabilities are the same, we then get |T|Leaf = |T′|Leaf . To
be precise, the set of leaves in T is the same as the set of leaves in T′, and they have
the same probabilities. Since |T|Leaf < 1 we thus have |T′|Leaf < 1. Therefore, there
exists a (P , S)-computation tree that converges with a probability < 1 and thus
(P , S) is not innermost AST.

1 : ⟨{(t#, ε)}⟩
P

p1 : A1 p2 : A2

p3 : A3

P

p4 : A4 p5 : A5

. . . . . . . . .

⇝
1 : ⟨{(t#, ε)}⟩

P

p1 : A′
1 p2 : A′

2

p3 : A′
3

P

p4 : A′
4 p5 : A′

5

. . . . . . . . .

Figure 5.17: Construction in this proof direction.

The core idea of this construction is that adding pairs into the sets of the right-hand
side of a dependency tuple does not impact the rewrite steps. Hence, every rewrite
step without the unusable pairs is possible if we add them again.
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For example, if we use our DP problem ({DT ((5.4))′}, Rdiv) with the dependency
tuple

DT ((5.4))′ =
(
div#(s(x), s(y)), div(s(x), s(y))

)
→ { 1

2 :
(

⟨{
(
div#(s(x), s(y)), ε

)
}⟩, div(s(x), s(y))

)
,

1
2 :

(
⟨{

(
div#(minus(x, y), s(y)), 1

)
}⟩, s(div(minus(x, y), s(y)))

)
}

and look at the following ({DT ((5.4))′}, Rdiv)-computation tree T:

1 : ⟨{
(
div#(4, 2), ε

)
}⟩

P

1
2 : ⟨{

(
div#(4, 2), ε

)
}⟩

P

1
2 : ⟨{

(
div#(minus(3, 1), 2), 1

)
}⟩

1
4 : ⟨{

(
div#(4, 2), ε

)
}⟩

1
4 : ⟨{

(
div#(minus(3, 1), 2), 1

)
}⟩

1
4 : ⟨{

(
div#(minus(3, 1), 2), 1

)
}⟩

1
4 : ⟨{

(
div#(minus(2, 0), 2), 1

)
}⟩

Then we can also add the missing pair
(
minus#(x, y), 1

)
back into our dependency

tuple and thus into the computation tree to get:

1 : ⟨{
(
div#(4, 2), ε

)
}⟩

P

1
2 : ⟨{

(
div#(4, 2), ε

)
}⟩

P

1
2 : ⟨{

(
div#(minus(3, 1), 2), 1

)
,
(
minus#(3, 1), 1.1

)
}⟩

1
4 : ⟨{

(
div#(4, 2), ε

)
}⟩

1
4 : ⟨{

(
div#(minus(3, 1), 2), 1

)
,
(
minus#(3, 1), 1.1

)
}⟩

1
4 : ⟨{

(
div#(minus(3, 1), 2), 1

)
}⟩

1
4 : ⟨{

(
div#(minus(2, 0), 2), 1

)
}⟩

Now, this is a ({DT ((5.4))}, Rdiv)-computation tree and as one can see the additional
pair does not impact the computation at all.
We now construct the new labeling L′ for the (P , S)-computation tree T′ recursively.
Let X ⊆ V be the set of nodes, where we have already defined the labeling L′(x).
During our construction, we ensure that the following property holds:

For every node x ∈ X we have Av ⊆ A′
v. (5.25)

We start by setting A′
r := Ar = ⟨{(t#, ε)}⟩. Here, our induction property (5.25) is

clearly satisfied as we have A′
r = Ar.

As long as there is still an inner node x ∈ X such that their successors are not
contained in X, we do the following. Let xE = {y1, . . . , yk} be the set of its successors.
We need to define the corresponding sets for the nodes y1, . . . , yk.
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Since x is not a leaf, we have Ax
i_TUP(P,S),S {py1

px
: Ay1 , . . . ,

pyk

px
: Ayk

} or
Ax

i_S {py1
px

: Ay1 , . . . ,
pyk

px
: Ayk

}.

If we have Ax
i_TUP(P,S),S {py1

px
: Ay1 , . . . ,

pyk

px
: Ayk

} using a dependency tuple
(ℓ#, ℓ) → {p1 : (UP(C1, P , S), r1), . . . , pk : (UP(Ck, P , S), rk)} ∈ TUP(P , S), a main
rewrite pair (q, π) ∈ Ax, and a ground substitution σ ∈ Sub (Σ, V) such that q = ℓ#σ
and all proper subterms of ℓ#σ are in normal form w.r.t. S. Then

Ax = ⟨{(q, π)}⟩ ⊎ Mrew ⊎ M⊥ ⊎ M<

and
Ayj

= M+
j ⊎ M⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ Mrew}⟩

for all 1 ≤ j ≤ k as in Definition 5.1.12.
By our induction hypothesis, we get (q, π) ∈ Ax ⊆(IH) A′

x. Thus, we can rewrite
the set A′

x using the dependency tuple (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈
TUP(P , S), the main rewrite pair (q, π) ∈ A′

x, and the substitution σ as we have
q = ℓ#σ and all proper subterms of ℓ#σ are in normal form w.r.t. S.
This means that we have A′

x
i_P,S {py1

px
: Bx

1 , . . . ,
pyk

px
: Bx

k } with

A′
x = ⟨{(q, π)}⟩ ⊎ M ′

rew ⊎ M ′
⊥ ⊎ M ′

<

and
Bx

j = M+′

j ⊎ M ′
⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ M ′

rew}⟩

for all 1 ≤ j ≤ k as in Definition 5.1.12. We define the set in the labeling of the
successors y1, . . . , yk in T′ to be A′

yj
= Bx

j for all 1 ≤ j ≤ k. It remains to show
that our induction hypothesis is still satisfied for this new labeling, i.e., we have
Ayj

⊆ A′
yj

for all 1 ≤ j ≤ k.
Let 1 ≤ j ≤ k and (b, ρ) ∈ Ayj

. We have the following possibilities:

– If (b, ρ) ∈ M+
j , then also (b, ρ) ∈ M+′

j (since M+
j ⊆ M+′

j as we are using the
same dependency tuple, where we have UP(Cj, P , S) ⊆ Cj for the set inside
the right-hand side, the same substitution and the same main rewrite pair) and
thus (b, ρ) ∈ A′

yj
.

– If (b, ρ) ∈ ⟨{(a[rjσ]χa , ρ) | (a, ρ) ∈ Mrew}⟩, then we have a pair (a, ρ) ∈ Ax and a
position χ with ρ.χ = π. By definition, the same rule that we applied to t is
applied to a at position χ, so that we result with b = a[rjσ]χ.
We have (a, ρ) ∈ Ax ⊆(IH) A′

x, and hence (a, ρ) ∈ M ′
rew, since ρ < π. Now the

same rewrite step takes place at the same position as above, so that we get
(b, ρ) = (a[rjσ]χ, ρ) ∈ A′

yj
.

– If we have (b, ρ) ∈ M⊥, then (b, ρ) ∈ Ax ⊆(IH) A′
x. Furthermore, ρ⊥π and thus

also (b, ρ) ∈ M ′
⊥, and hence (b, ρ) ∈ A′

yj
.

If we have Ax
i_S {py1

px
: Ay1 , . . . ,

pyk

px
: Ayk

}, then there is a rule ℓ → {p1 : r1, . . . , pk :
rk} ∈ S, a main rewrite pair (q, π) ∈ Ax, a ground substitution σ ∈ Sub (Σ, V), and
a position τ ∈ N+ with q|τ = ℓσ, such that all proper subterms of ℓσ are in normal
form w.r.t. S. Then

Ax = ⟨{(t, π)}⟩ ⊎ Mrew ⊎ M⊥ ⊎ M<

and
Ayj

= M+
j ⊎ M⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ Mrew}⟩
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for all 1 ≤ j ≤ k as in Definition 5.1.17.

By our induction hypothesis, we get (q, π) ∈ Ax ⊆(IH) A′
x. Thus, we can rewrite the

set A′
x using the rule ℓ → {p1 : r1, . . . , pk : rk} ∈ S, the main rewrite pair (q, π) ∈ A′

x,
the substitution σ, and the position τ as we have q|τ = ℓσ and all proper subterms
of ℓσ are in normal form w.r.t. S.

This means that we have A′
x

i_S {py1
px

: Bx
1 , . . . ,

pyk

px
: Bx

k } with

A′
x = ⟨{(q, π)}⟩ ⊎ M ′

rew ⊎ M ′
⊥ ⊎ M ′

<

and

Bx
j = M+′

j ⊎ M ′
⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ M ′

rew}⟩

for all 1 ≤ j ≤ k as in Definition 5.1.17. We define the set in the labeling of the
successors y1, . . . , yk in T′ to be A′

yj
= Bx

j for all 1 ≤ j ≤ k. It remains to show
that our induction hypothesis is still satisfied for this new labeling, i.e., we have
Ayj

⊆ A′
yj

for all 1 ≤ j ≤ k.

Let 1 ≤ j ≤ k and (b, ρ) ∈ Ayj
. We have the following possibilities:

– If (b, ρ) ∈ M+
j ⊎ ⟨{(a[rjσ]χa , ρ) | (a, ρ) ∈ Mrew}⟩, then we have a pair (a, ρ) ∈ Ax

and a position χ ∈ N∗ with ρ.χ = π. By definition, the same rule that we
applied to t at position τ is applied to a at position χ.τ , so that we result with
b = a[rjσ]χ.τ .

We have (a, ρ) ∈ Ax ⊆(IH) A′
x, and hence (a, ρ) ∈ ⟨{(t, π)}⟩ ⊎ M ′

rew, since ρ ≤ π.
Now the same rewrite step takes place at the same position as above, so that
we get (b, ρ) = (a[rjσ]χ.τ , ρ) ∈ A′

yj
.

– If we have (b, ρ) ∈ M⊥, then (b, ρ) ∈ Ax ⊆(IH) A′
x. Furthermore, ρ⊥π.τ and

thus also (b, ρ) ∈ M ′
⊥, and hence (b, ρ) ∈ A′

yj
.

sound: Assume that (P , S) is not innermost AST. By Theorem 5.2.23, there exists a
T = (V, E, L, P ) be a (P , S)-computation tree that converges with probability
< 1 and starts with ⟨{(t#, ε)}⟩ such that t# = ℓ#σ for some rule (ℓ#, ℓ) → {p1 :
(C1, r1), . . . , pk : (Ck, rk)} ∈ P and some ground substitution σ ∈ Sub (Σ, V), and
every proper subterm of ℓ#σ is in normal form w.r.t. S. We will now create a
(TUP(P , S), S)-computation tree T′ = (V, E, L′, P ) that also starts with ⟨{(t#, ε)}⟩
with the same underlying tree structure, the same set P , and an adjusted labeling
such that pT

x = pT′
x for all x ∈ V . Since the tree structure and the probabilities are

the same, we then get |T|Leaf = |T′|Leaf . To be precise, the set of leaves in T is the
same as the set of leaves in T′, and they have the same probabilities. Since |T|Leaf < 1
we thus have |T′|Leaf < 1. Therefore, there exists a (TUP(P , S), S)-computation tree
that converges with a probability < 1 and thus (TUP(P , S), S) is not innermost
AST.
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1 : ⟨{(t#, ε)}⟩
P

p1 : A1 p2 : A2

p3 : A3

P

p4 : A4 p5 : A5

. . . . . . . . .

⇝
(1 : ⟨{(t#, ε)}⟩)

P

(p1 : A′
1) (p2 : A′

2)

(p3 : A′
3)

P

(p4 : A′
4) (p5 : A′

5)

. . . . . . . . .

Figure 5.18: Construction in this proof direction.

The core idea of this construction is that pairs that cannot be rewritten to the
left-hand side of a dependency tuple using i_S steps can never be used as a main
rewrite pair for a i_P,S step. This means that we can simply remove those pairs from
the rules and every set in our computation tree and still result in a valid computation
tree. If we use an unusable pair as a main rewrite pair for a i_S step, then we can
change the main rewrite pair to mirror this step for all usable pairs, or if this step
only impacts unusable pairs, then we can use a split-node to do nothing but mirror
the tree structure. The general construction is similar to the construction used in
the proof of the dependency graph processor (Theorem 5.4.10).

For example, if we use our DP problem ({DT ((5.4))}, Rdiv) with the dependency
tuple

DT ((5.4)) =
(
div#(s(x), s(y)), div(s(x), s(y))

)
→ { 1

2 :
(

⟨{
(
div#(s(x), s(y)), ε

)
}⟩, div(s(x), s(y))

)
,

1
2 :

(
⟨{

(
div#(minus(x, y), s(y)), 1

)
,
(
minus#(x, y), 1.1

)
}⟩,

s(div(minus(x, y), s(y)))
)

}

and look at the following ({DT ((5.4))}, Rdiv)-computation tree T:

1 : ⟨{
(
div#(4, 2), ε

)
}⟩

P

1
2 : ⟨{

(
div#(4, 2), ε

)
}⟩

P

1
2 : ⟨{

(
div#(minus(3, 1), 2), 1

)
,
(
minus#(3, 1), 1.1

)
}⟩

1
4 : ⟨{

(
div#(4, 2), ε

)
}⟩

1
4 : ⟨{

(
div#(minus(3, 1), 2), 1

)
,
(
minus#(3, 1), 1.1

)
}⟩

1
4 : ⟨{

(
div#(minus(3, 1), 2), 1

)
}⟩

1
4 : ⟨{

(
div#(minus(2, 0), 2), 1

)
}⟩

Then we can also remove the unusable pair
(
minus#(x, y), 1

)
, so that we are working
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with the dependency tuple DT ((5.4))′:

DT ((5.4))′ =
(
div#(s(x), s(y)), div(s(x), s(y))

)
→ { 1

2 :
(

⟨{
(
div#(s(x), s(y)), ε

)
}⟩, div(s(x), s(y))

)
,

1
2 :

(
⟨{

(
div#(minus(x, y), s(y)), 1

)
}⟩, s(div(minus(x, y), s(y)))

)
}

Now, we can remove every pair corresponding to this removed pair
(
minus#(x, y), 1

)
from our tree to get

1 : ⟨{
(
div#(4, 2), ε

)
}⟩

P

1
2 : ⟨{

(
div#(4, 2), ε

)
}⟩

P

1
2 : ⟨{

(
div#(minus(3, 1), 2), 1

)
}⟩

1
4 : ⟨{

(
div#(4, 2), ε

)
}⟩

1
4 : ⟨{

(
div#(minus(3, 1), 2), 1

)
}⟩

1
4 : ⟨{

(
div#(minus(3, 1), 2), 1

)
}⟩

1
4 : ⟨{

(
div#(minus(2, 0), 2), 1

)
}⟩

And this is a ({DT ((5.4))′}, Rdiv)-computation tree, and as one can see, removing
the pair does not impact the computation at all since we can not rewrite the pair
anyways with a dependency tuple.
We now construct the new labeling L′ for the (TUP(P , S), S)-computation tree T′

recursively. Let X ⊆ V be the set of nodes, where we have already defined the
labeling L′(x). During our construction, we ensure that the following property holds
for every node x ∈ X:

For every node x ∈ X we have Av \ Junk(Av) ⊆ A′
v. (5.26)

Here, Junk(Av) denotes the set of all pairs in Av that can never be used as a
main rewrite pair for a dependency tuple from P, as in the soundness proof of
Theorem 5.4.10. To be precise, we define (q, π) ∈ Junk(Av) :⇔ (q, π) ∈ Av and there
is no dependency tuple (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ P and ground
substitution σ ∈ Sub (Σ, V), such that q i→∗

np(S) ℓ#σ, and every proper subterm of
ℓ#σ is in normal form.
We start by setting A′

r := Ar = ⟨{(t, ε)}⟩. Here, our induction property (5.26) is
clearly satisfied as we have A′

r = Ar.
As long as there is still an inner node x ∈ X such that their successors are not
contained in X, we do the following. Let xE = {y1, . . . , yk} be the set of its successors.
We need to define the corresponding sets for the nodes y1, . . . , yk.
Since x is not a leaf and T is a (P , S)-computation tree, we have

Ax
i_P,S {py1

px
: Ay1 , . . . ,

pyk

px
: Ayk

} or Ax
i_S {py1

px
: Ay1 , . . . ,

pyk

px
: Ayk

}

If we have Ax
i_P,S {py1

px
: Ay1 , . . . ,

pyk

px
: Ayk

} using a dependency tuple
(ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ P, a main rewrite pair (q, π) ∈ Ax,
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and a ground substitution σ ∈ Sub (Σ, V) such that q = ℓ#σ and all proper subterms
of ℓ#σ are in normal form w.r.t. S. Then

Ax = ⟨{(q, π)}⟩ ⊎ Mrew ⊎ M⊥ ⊎ M<

and
Ayj

= M+
j ⊎ M⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ Mrew}⟩

for all 1 ≤ j ≤ k as in Definition 5.1.12.
The pair (q, π) cannot be inside of Junk(Ax). Hence, we must have (q, π) ∈
Ax \ Junk(Ax) ⊆(IH) A′

x. Thus, we can rewrite the set A′
x using the dependency

tuple (ℓ#, ℓ) → {p1 : (UP(C1, P , S), r1), . . . , pk : (UP(Ck, P , S), rk)} ∈ TUP(P , S),
the main rewrite pair (q, π) ∈ A′

x, and the substitution σ as we have q = ℓ#σ and
all proper subterms of ℓ#σ are in normal form w.r.t. S.
This means that we have A′

x
i_TUP(P,S),S {py1

px
: Bx

1 , . . . ,
pyk

px
: Bx

k } with

A′
x = ⟨{(q, π)}⟩ ⊎ M ′

rew ⊎ M ′
⊥ ⊎ M ′

<

and
Bx

j = M+′

j ⊎ M ′
⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ M ′

rew}⟩

for all 1 ≤ j ≤ k as in Definition 5.1.12. We define the set in the labeling of the
successors y1, . . . , yk in T′ to be A′

yj
:= Bx

j for all 1 ≤ j ≤ k. It remains to show
that our induction hypothesis is still satisfied for this new labeling, i.e., we have
Ayj

\ Junk(Ayj
) ⊆ A′

yj
for all 1 ≤ j ≤ k.

Let 1 ≤ j ≤ k and (b, ρ) ∈ Ayj
\ Junk(Ayj

). We have the following possibilities:

– If (b, ρ) ∈ M+
j , then there is (r′, χ) ∈ Cj ⊆ dp(rj) such that (b, ρ) = (r′σ, π.χ).

If (r′, χ) ∈ UP(Cj, P , S), then we also have (b, ρ) = (r′σ, π.χ) ∈ M+′

j ⊆ A′
yj

since we use the same substitution and the same main rewrite pair. If
(r′, χ) ̸∈ UP(Cj, P , S), then there is no dependency tuple (ℓ′#, ℓ′) → . . . ∈ P,
and ground substitution σ′ ∈ Sub (Σ, V) such that b i→∗

np(S) ℓ′#σ′, and every
proper subterm of ℓ′#σ′ is in normal form w.r.t. S, by definition of the usable
pairs. Hence, we have (b, ρ) = (r′σ, π.χ) ∈ Junk(A′

yj
) and this is a contradiction

to our assumption that (b, ρ) ∈ A′
yj

\ Junk(A′
yj

), so this case is not possible.
– If (b, ρ) ∈ ⟨{(a[rjσ]χa , ρ) | (a, ρ) ∈ Mrew}⟩, then we have a pair (a, ρ) ∈ A′

x and a
position χ ∈ N+ with ρ.χ = π. By definition, the same rule that we applied to
t is applied to a at position χ, so that we result with b = a[rjσ]χ.
If we have (a, ρ) ∈ Junk(A′

x), then we also have (b, ρ) = (a[rjσ]χ, ρ) ∈ Junk(Ayj
),

as this means a i→np(S) a[rjσ]χ = b, and this is a contradiction to our assumption
that (b, ρ) ∈ Ayj

\ Junk(Ayj
). Thus, we have (a, ρ) ∈ Ax \ Junk(Ax) ⊆(IH) A′

x,
and (a, ρ) ∈ M ′

rew, since ρ < π. Now the same rewrite step takes place at the
same position as above, so that we get (b, ρ) = (a[rjσ]χ, ρ) ∈ A′

yj
.

– If we have (b, ρ) ∈ M⊥, then (b, ρ) ∈ Ax. If we have (b, ρ) ∈ Junk(Ax), then
we also have (b, ρ) ∈ Junk(Ayj

), and this is a contradiction to our assumption
that (b, ρ) ∈ Ayj

\ Junk(Ayj
). Thus, we have (b, ρ) ∈ Ax \ Junk(Ax) ⊆(IH) A′

x.
Furthermore, ρ⊥π and thus also (b, ρ) ∈ M ′

⊥, and hence (b, ρ) ∈ A′
yj

.

If we have Ax
i_S {py1

px
: Ay1 , . . . ,

pyk

px
: Ayk

}, then there is a rule ℓ → {p1 : r1, . . . , pk :
rk} ∈ S, a main rewrite pair (q, π) ∈ Ax, a ground substitution σ ∈ Sub (Σ, V), and

131



5. DP Framework for PTRS

a position τ ∈ N+ with q|τ = ℓσ, such that all proper subterms of ℓσ are in normal
form w.r.t. S. Then

Ax = ⟨{(q, π)}⟩ ⊎ Mrew ⊎ M⊥ ⊎ M<

and
Ayj

= M+
j ⊎ M⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ Mrew}⟩

for all 1 ≤ j ≤ k as in Definition 5.1.17.
We need to differentiate between two possible cases:

– If we have no pair (t′, π′) ∈ A′
x with a position above π (i.e., π′ ≤ π), then

we can not perform any rewrite step with our new labeling. Hence, we use a
split-node to mirror the tree structure. This means that we set A′

yj
:= A′

x for
all 1 ≤ j ≤ k. It remains to show that our induction hypothesis is still satisfied
for this new labeling, i.e., we have Ayj

\ Junk(Ayj
) ⊆ A′

yj
for all 1 ≤ j ≤ k.

Let 1 ≤ j ≤ k and (b, ρ) ∈ Ayj
\ Junk(Ayj

). We have the following possibilities:
∗ If (b, ρ) ∈ M+

j ⊎ ⟨{(a[rjσ]χa , ρ) | (a, ρ) ∈ Mrew}⟩, then we have a pair
(a, ρ) ∈ Ax and a position χ ∈ N∗ with ρ.χ = π. By definition, the same
rule that we applied to q at position τ is applied to a at position χ.τ , so that
we result with b = a[rjσ]χ.τ . The pair (a, ρ) can not be inside of A′

x (as there
is no pair with a position above π in A′

x), hence we have (a, ρ) ∈ Junk(Ax)
by our induction hypothesis. For the resulting pair (b, ρ) = (a[rjσ]χ.τ , ρ),
we have a i→np(S) a[rjσ]χ.τ = b and hence, we also have (b, ρ) ∈ Junk(Ayj

),
and this is a contradiction to our assumption that (b, ρ) ∈ Ayj

\ Junk(Ayj
).

Thus, this case is not possible.
∗ If we have (b, ρ) ∈ M⊥, then (b, ρ) ∈ Ax. If we have (b, ρ) ∈ Junk(Ax),

then we also have (b, ρ) ∈ Junk(Ayj
), and this is a contradiction to

our assumption that (b, ρ) ∈ Ayj
\ Junk(Ayj

). Thus, we have (b, ρ) ∈
Ax \ Junk(Ax) ⊆(IH) A′

x and (b, ρ) ∈ A′
x = A′

yj
by our construction.

– If there exists a pair (t′, π′) ∈ A′
x with a position above π (i.e., π′ ≤ π), then

we can mirror the rewrite step at the lowest possible position that is above π.
Let D := {(t′, π′) ∈ A′

x | π′ ≤ π} be the set of all pairs in A′
x with a position

above π. Furthermore, let (tmax, πmax) the pair in D with maximal position (i.e.,
there is no pair (t′′, π′′) ∈ D with πmax < π′′). We can now mirror the rewrite
step performed in our original computation tree with the main rewrite pair
(tmax, πmax). To be precise, let χ ∈ N∗ be the position such that πmax.χ = π.
We can then rewrite A′

x with the rule ℓ → {p1 : r1, . . . , pk : rk} ∈ S, the main
rewrite pair (tmax, πmax) ∈ A′

x, the substitution σ ∈ Sub (Σ, V), and the position
χ.τ since tmax|χ.τ = t|τ = ℓσ and all proper subterms of ℓσ are in normal form
w.r.t. S. This means that we have A′

x
i_S {py1

px
: Bx

1 , . . . ,
pyk

px
: Bx

k } with

A′
x = ⟨{(tmax, πmax)}⟩ ⊎ M ′

rew ⊎ M ′
⊥ ⊎ M ′

<

and
Bx

j = M+′

j ⊎ M ′
⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ M ′

rew}⟩

for all 1 ≤ j ≤ k as in Definition 5.1.17. We define the set in the labeling of
the successors y1, . . . , yk in T′ to be A′

yj
= Bj for all 1 ≤ j ≤ k. It remains to

show that our induction hypothesis is still satisfied for this new labeling, i.e.,
we have Ayj

\ Junk(Ayj
) ⊆ A′

yj
for all 1 ≤ j ≤ k.

Let 1 ≤ j ≤ k and (b, ρ) ∈ Ayj
\ Junk(Ayj

). We have the following possibilities:
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∗ If (b, ρ) ∈ M+
j ⊎ ⟨{(a[rjσ]χa , ρ) | (a, ρ) ∈ Mrew}⟩, then we have a pair

(a, ρ) ∈ Ax and a position χ′ with ρ.χ′ = π. By definition, the same rule
that we applied to q at position τ is applied to a at position χ′.τ , so that
we result with b = a[rjσ]χ′.τ .
If we have (a, ρ) ∈ Junk(Ax), then we also have (b, ρ) = (a[rjσ]χ′.τ , ρ) ∈
Junk(Ayj

), as this means a i→np(S) a[rjσ]χ′.τ = b, and this is a contradiction
to our assumption that (b, ρ) ∈ Ayj

\ Junk(Ayj
). Thus, we have

(a, ρ) ∈ Ax \ Junk(Ax) ⊆(IH) A′
x, and we also have (a, ρ) ∈ D, and

χ ≤ πmax. This means that (a, ρ) ∈ M ′
rew and there exists some position

χ′′ so that ρ.χ′′ = πmax and hence (a[rjσ]χ′′.χ.τ , ρ) ∈ A′
yj

. But since
ρ.χ′′.χ = πmax.χ = π, we have χ′′.χ = χ′, get a[rjσ]χ′′.χ.τ = a[rjσ]χ′.τ = b,
and thus (b, ρ) ∈ A′

yj
.

∗ If we have (b, ρ) ∈ M⊥, then (b, ρ) ∈ Ax. If we have (b, ρ) ∈ Junk(Ax),
then we also have (b, ρ) ∈ Junk(Ayj

), and this is a contradiction to
our assumption that (b, ρ) ∈ Ayj

\ Junk(Ayj
). Thus, we have (b, ρ) ∈

Ax \ Junk(Ax) ⊆(IH) A′
x. Furthermore, ρ⊥πmax.χ.τ and thus also ρ⊥π.τ ,

since πmax.χ = π. We then also get (b, ρ) ∈ M ′
⊥ and thus (b, ρ) ∈ A′

yj
. ■

Once again, this definition is not computable, and we have to use our abstraction.
Definition 5.4.17 (Abstracted Usable Pairs). Let (P , S) be a DP problem. Additionally,
let (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ P and 1 ≤ i ≤ k. We call a pair (t, π) ∈ Ci

abstract usable w.r.t. (P , S) iff there is another rule (ℓ′#, ℓ′) → . . . ∈ P, and ground
substitutions σ1, σ2 ∈ Sub (Σ, V) such that t and ℓ′# are connectable w.r.t. ℓ#.
For a set A, let AUP(A, P , S) := {(t#, π) ∈ A | (t, π) abstract usable w.r.t. (P , S)} be
the set of all pairs in A that are abstract usable. The transformation that removes all
abstract non-usable pairs in the right-hand side of dependency tuples is denoted by:

TAUP(P , S) = {(ℓ#, ℓ) → {p1 : (AUP(C1, P , S), r1), . . . , pk : (AUP(Ck, P , S), rk)}
| (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ P}

Theorem 5.4.18 (Computable Usable Pairs Processor). Let

ProcCUP(P , S) = {(TAUP(P , S), S)}.

Then ProcCUP is sound and complete.

Proof. We again use the same proof as in Theorem 3.3.7 to show that UP(C, P , S) ⊆
AUP(C, P , S) holds for all sets C. We only have argue in terms of dependency tuples
(ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} instead of dependency pairs ℓ# → r#. This
means that our computable usable pairs processor only removes pairs that would also be
removed by the usable pairs processors of Theorem 5.4.22. Again, this approximation does
not interfere with the soundness nor the completeness but just with the effectiveness of
this processor. The constructions in both directions of the proof of Theorem 5.4.16 still
work if we remove fewer pairs. ■

Example 5.4.19 (Computable Usable Pairs Processor). Let R be the PTRS from
Example 5.0.1 and DT (R) be the set of its dependency tuples from Example 5.1.10.
After the execution of the computable dependency graph processor in Example 5.4.13 we
get the following four DP problems

({DT ((5.1))}, R), ({DT ((5.2))}, R), ({DT ((5.3))}, R), ({DT ((5.4))}, R)
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Let us look at the last one in more detail. Here, we have the dependency tuple

DT ((5.4)) =
(
div#(s(x), s(y)), div(s(x), s(y))

)
→ { 1

2 :
(

⟨{
(
div#(s(x), s(y)), ε

)
}⟩, div(s(x), s(y))

)
,

1
2 :

(
⟨{

(
div#(minus(x, y), s(y)), 1

)
,
(
minus#(x, y), 1.1

)
}⟩,

s(div(minus(x, y), s(y)))
)

}

As described in Example 5.4.14, the red pair inside of the right-hand side is not abstract
usable. Hence, we can remove it and result with the following dependency tuple:

DT ((5.4))′ =
(
div#(s(x), s(y)), div(s(x), s(y))

)
→ { 1

2 :
(

⟨{
(
div#(s(x), s(y)), ε

)
}⟩, div(s(x), s(y))

)
,

1
2 :

(
⟨{

(
div#(minus(x, y), s(y)), 1

)
}⟩, s(div(minus(x, y), s(y)))

)
}

Hence, we have
ProcCUP({DT ((5.4))}, R) = {({DT ((5.4))′}, R)}

and remain with a smaller DP problem that contains fewer pairs inside of the sets in the
right-hand side of the dependency tuples. The other three DP problems stay the same, as
every pair is usable.

Usable Rules Processor
The next processor we want to adapt is the usable rules processor. The idea and the
actual definition do not change a lot in the probabilistic setting since it does not rely on
the probabilities but only on the non-probabilistic structure analogous to the dependency
graph. We only have to adjust the recursive definition to regard every term in the support
of the distribution of the right-hand side of a rule.
Definition 5.4.20 (Usable Rules). Let (P , S) be a DP problem. For every f ∈ Σ ⊎ Σ#

let Rules(S, f) := {ℓ → µ ∈ S | root(ℓ) = f, ℓ has no redex as proper subterm}. For any
term t, the set of all usable rules UR(S, t) is inductively defined as

UR(S, x) = ∅
UR(S, f(t1, . . . , tn)) = Rules(S, f) ∪ ⋃n

i=1 UR(S ′, tj) ∪⋃
ℓ→µ∈Rules(S,f)

⋃
r∈Supp(µ) UR(S ′, r)

where S ′ := S \ Rules(S, f). The set of all usable rules for the DP problem (P , S) is
defined by

UR(P , S) :=
⋃

ℓ#→µ∈proj1(P)

⋃
B∈Supp(µ)

⋃
(t,π)∈B

UR(S, t)

Here, by proj1(P) we denote the projection to the first component, i.e., we have

proj1(P) := {ℓ# → {p1 : C1, . . . , pk : Ck} | (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ P}

Note that we ignore the projection to the second component of dependency tuples. We
only need to find every rewrite rule that can be used to evaluate the sets in the right-hand
side of a dependency tuple. The additional stored rewrite rule can only be applied if it is
also in S so that we already check it in our recursive definition regarding the usable rules
in S.
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Example 5.4.21 (Usable Rules). Let Rdiv be the PTRS from Example 5.0.1 and DT (Rdiv)
be the set of its dependency tuples from Example 5.1.10. After the execution of the
computable dependency graph processor in Example 5.4.13 and the usable pairs processor
in Example 5.4.19 we get the following four DP problems

({DT ((5.1))}, Rdiv), ({DT ((5.2))}, Rdiv), ({DT ((5.3))}, Rdiv), ({DT ((5.4))′}, Rdiv)

Let us look at the last one in more detail. Here, we have the dependency tuple

DT ((5.4))′ =
(
div#(s(x), s(y)), div(s(x), s(y))

)
→ { 1

2 :
(

⟨{
(
div#(s(x), s(y)), ε

)
}⟩, div(s(x), s(y))

)
,

1
2 :

(
⟨{

(
div#(minus(x, y), s(y)), 1

)
}⟩, s(div(minus(x, y), s(y)))

)
}

and still all of the four PTRS rules

minus(x, O) → {1
2 : minus(x, O), 1

2 : x} (5.27)
minus(s(x), s(y)) → {1

2 : minus(s(x), s(y)), 1
2 : minus(x, y)} (5.28)

div(O, s(y)) → {1
2 : div(O, s(y)), 1

2 : O} (5.29)
div(s(x), s(y)) → {1

2 : div(s(x), s(y)), 1
2 : s(div(minus(x, y), s(y)))} (5.30)

The rules (5.27) and (5.28) are usable as the root symbol of the left-hand side of those
rules is minus and occurs in the right-hand side of DT ((5.4))′. However, the rules (5.29)
and (5.30) are not usable, since div does not occur in the sets of the right-hand side of the
dependency tuple nor in the right-hand side of the rules (5.27) and (5.28). Thus we have

UR({DT ((5.4))}, Rdiv) = {(5.27), (5.28)}

Similar to the non-probabilistic usable rules processor, we only have soundness but no
completeness. The reason is the same as before: the PTRS S in our DP problem (P , S)
has two functionalities. We can use it for a rewrite step, and we use it to determine the
normal forms for our innermost evaluation strategy. If we add an additional TRS Q that
is solely responsible for indicating what kind of normal forms we are interested in, then
the usable rules processor would also be complete.
Theorem 5.4.22 (Usable Rules Processor). Let

ProcUR(P , S) = {(P , UR(P , S))}

Then ProcUR is sound but not complete.

Proof. This proof is similar to the proof of the non-probabilistic usable rules processor
(Theorem 3.3.11). We only have to adjust it to the new setting.

sound: Assume that (P , S) is not AST. By Theorem 5.2.23, there exists a (P , S)-computation
tree T = (V, E, L, P ) that converges with probability < 1 and starts with ⟨{(t#, ε)}⟩
such that t# = ℓ#σ for some dependency tuple (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk :
(Ck, rk)} ∈ P and some ground substitution σ ∈ Sub (Σ, V), and every proper
subterm of ℓ#σ is in normal form w.r.t. S.
Rules ℓ → δ ∈ S that are not usable (i.e., ℓ → δ ̸∈ UR(P , S)) will never be used in
such a (P , S)-computation tree that starts with the instantiated left-hand side of a
dependency tuple such that every proper subterm is in normal form. Hence, we can
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also view T as a (P , UR(P , S))-computation tree that converges with probability
< 1 and thus (P , UR(P , S)) is not AST.

It remains to prove that there is no node x in T that, together with the labeling
and its successors, represents a rewrite step with a rule from S \ UR(P , S). Assume
for a contradiction that there is some node x ∈ V in this computation tree that
(together with the successors and the labeling) represents a rewrite step with a rule
from S \ UR(P , S). Let r = y1 . . . ym = x be the path from the root to x. W.l.o.G.
we can assume that all of the used rewrite rules on this path are usable, i.e., there is
no 1 ≤ j < m such that the node yj, together with the labeling and its successors,
represents a rewrite step with a rule from S \ UR(P , S).

Let (a, α) be the main rewrite pair, and ρ be the position for the rewrite step
at node x. Rewriting with i_S can not introduce new pairs but only rewrite or
remove existing ones. Hence, there must be a pair (a′, α) that was introduced
earlier in the path by some dependency tuple from P and has the same position
as (a, α). Furthermore, we do not rewrite the pair (a′, α) at the root position nor
remove it completely until we reach x in the path. This means that there is some
1 ≤ h < m such that Ayh

i_P,S {p1 : B1, . . . , pk : Bk} using a dependency tuple
(ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)}, a ground substitution σ ∈ Sub (Σ, V) and
a main rewrite pair (q, τ) ∈ Ayh

such that and

Ayh
= ⟨{(q, τ)}⟩ ⊎ Mrew ⊎ M⊥ ⊎ M<

and
Bj = M+

j ⊎ M⊥ ⊎ ⟨{(a[rjσ]χa , χ) | (a, χ) ∈ Mrew}⟩

for all 1 ≤ j ≤ k as in Definition 5.1.12. Furthermore, we have Ayh+1 = Bj for
some 1 ≤ j ≤ k and (a′, α) ∈ M+

j , so that there exists a pair (r′, χ) ∈ Cj with
(a′, α) = (r′σ, τ.χ). Furthermore, in the rest of the path to x, we only use steps
with a main rewrite pair position that is orthogonal to α or below α. Hence, this
pair does not get removed anymore but only gets rewritten with i→S or remains the
same (so for i_P,S steps the pair is either inside of M⊥ or Mrew and for i_S steps the
pair is either inside of M⊥, Mrew or the main rewrite pair itself). This means that
a i→∗

np(S) a′. The symbol a|ρ can not be inside of every substitution in this rewrite
sequence (due to the innermost property). Hence, at least the root symbol of the
used rewrite rule ℓ′ → {p′

1 : r′
1, . . . , p′

k : r′
k} for node x must be introduced by some

left-hand side of a rewrite rule or the dependency tuple, but this is a contradiction,
as this would imply that the rule that is used at node x would be usable since every
rule in the path is usable by assumption. ■

Example 5.4.23 (Counterexample for completeness). We can use the same counterexample
as in Example 3.3.12. We only need to adjust it to our new type of dependency tuples.
Consider the signature Σ = {f, a}, a variable set with {x} ⊆ V and the PTRS S consisting
of the following rule:

a → {1 : a} (5.31)

and a set of dependency tuples P consisting of the following dependency tuple:

(f#(a, x), f(a, x)) → {1 : (⟨{(f(x, x), ε)}⟩, f(x, x))} (5.32)
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Then, the DP problem (P , S) is innermost AST, since the only
dependency tuple (5.32) can not be used. The reason is that the
first component in the left-hand side, namely f#(a, x), contains
a proper subterm that is not in normal form w.r.t. S, namely
a. However, the rule (5.31) is not usable since the right-hand
side of the only dependency tuple does not contain a anywhere.
We get ProcUR(P , S) = {(P , UR(P , S))} = {(P ,∅)}. Now, the
DP problem (P ,∅) is not innermost AST anymore since we
have the (P ,∅)-computation tree T, depicted on the right, that
converges with probability 0. The reason here is that the proper
subterm a is now in normal form w.r.t. the empty PTRS.

1 : ⟨{
(
f#(a, a), ε

)
}⟩

P

1 : ⟨{
(
f#(a, a), ε

)
}⟩

P

. . .

Figure 5.19: T

Example 5.4.24 (Usable Rules Processor). Let Rdiv be the PTRS from Example 5.0.1 and
DT (Rdiv) be the set of its dependency tuples from Example 5.1.10. After the execution
of the computable dependency graph processor in Example 5.4.13 and the computable
usable pairs processor in Example 5.4.19, we get the following four DP problems

({DT ((5.1))}, R), ({DT ((5.2))}, R), ({DT ((5.3))}, R), ({DT ((5.4))′}, R)

The usable rules for all four DP problems are

UR({DT ((5.1))}, Rdiv) = ∅

UR({DT ((5.2))}, Rdiv) = ∅

UR({DT ((5.3))}, Rdiv) = ∅

UR({DT ((5.4))′}, Rdiv) = {(5.1), (5.2)}

and thus, we get

ProcUR((DT ((5.1)), Rdiv)) = {({DT ((5.1))},∅)}

ProcUR((DT ((5.2)), Rdiv)) = {({DT ((5.2))},∅)}

ProcUR((DT ((5.3)), Rdiv)) = {({DT ((5.3))},∅)}

ProcUR((DT ((5.4))′, Rdiv)) = {({DT ((5.4))′}, {(5.1), (5.2)})}

and remain with four smaller DP problems that all contain fewer rewrite rules.

Reduction Pair Processor
The last processor we want to adapt is the reduction pair processor. Since we are using
a rewrite relation that operates on sets, we have to lift polynomial interpretations from
terms to our positional dependency tuple sets.
Definition 5.4.25 (Polynomial Interpretations for PDTS). Let Pol be a polynomial
interpretation. We lift Pol from terms T (Σ, V) to PDTS by defining

Pol(A) =
∑

(t,π)∈A

Pol(t)

for all A ∈ PDTS. So in particular, Pol(∅) = ∑
(t,π)∈∅ Pol(t) = 0. Abusing the notation,

we write Pol for both the Σ-algebra and its lifting to sets in PDTS.
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This lifting to sets already shows the first downside compared to the reduction pair
processor in the non-probabilistic setting. We have to take the sum of the values of every
defined symbol on the right-hand side of a rule into account, as we are working with
dependency tuples and not just pairs anymore. We have seen that both the defined symbols
and their number of occurrences on the right-hand side matter. Hence, we cannot regard
them separately anymore. The second disadvantage is that we have to further restrict the
polynomial interpretations. We have to use multilinear polynomial interpretation as they
are concave, and we need this concavity to “exchange” the expected value and the value of
the polynomial interpretation fPol for every symbol f ∈ Σ. The idea for this comes from
[2], where they used this idea to prove PAST automatically for a given PTRS.
We first prove the main technical lemma regarding the reduction pair processor and then
prove the real processor itself afterward.
Lemma 5.4.26 (Proving Innermost AST on CTs with Reduction Pair Processor). Let
(P , S) be a DP problem, and let Pol : T

(
Σ ⊎ Σ#, V

)
→ N[V] be a natural, multilinear

polynomial interpretation which is weakly monotonic (i.e., x ≥ y implies fPol(. . . , x, . . .) ≥
fPol(. . . , y, . . .) for all f ∈ Σ ∪ Σ#). Suppose that we have P = P≽ ⊎ P≻ and the following
conditions hold.

(1) For every (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ P≻, there exists a 1 ≤ j ≤ k
with

Pol(ℓ#) > Pol(Cj)
If ℓ → {p1 : r1, . . . , pk : rk} ∈ S, then we additionally require that

Pol(ℓ) ≥ Pol(rj)

(2) For every (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ P, we have

Pol(ℓ#) ≥
∑

1≤j≤k

pj · Pol(Cj)

(3) For every ℓ → {p1 : r1, . . . , pk : rk} ∈ S we have

Pol(ℓ) ≥
∑

1≤j≤k

pj · Pol(rj)

Let T = (V, E, L, P ) be a (P , S)-computation tree. We can partition P = P≽⊎P≻ according
to P = P≽ ⊎ P≻. If T satisfies

(+) Every infinite path has an infinite number of P≻ nodes.

then |T|Leaf = 1.

Proof. Remember that the definition of our chains works with ground instances. This
proof proceeds similar to the proof of Theorem 4.3.1 and thus is based on [27]. The
difference to Theorem 4.3.1 is that this time we are talking about computation trees and
we have two different rewrite relations that we need to deal with. All in all, the core steps
of this proof are again the following:

1. We extend the conditions to rewrite steps instead of just rules (and thus, to edges of
a computation tree)
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2. We create a computation tree T≤N for any N ∈ N

3. We prove that |T≤N |Leaf ≥ pN for any N ∈ N

4. We prove that |T≤N |Leaf = 1 for any N ∈ N

5. Finally, we prove that |T|Leaf = 1

Part (1.) and (3.) are much more involved in this proof compared to Theorem 4.3.1 due
to the more complex rewrite relation that we are dealing with. The other parts are nearly
the same as before. We only have to adjust everything to computation trees instead of
rewrite sequences. Here, p > 0 is the minimal probability that occurs in the rules of P and
S. As P and S both have only finitely many rules and all occurring multi-distributions
have finite support, this minimum is well defined.

1. We extend the conditions to rewrite steps instead of just rules
We start off by showing that the conditions (1), (2), and (3) of the lemma extend to
rewrite steps instead of just rules:

(a) If s ∈ T (Σ) and δ = {p1 : t1, . . . , pk : tk} ∈ FDist(T (Σ)) with s i→S δ using the rule
ℓ → {p1 : r1, . . . , pk : rk} ∈ S with Pol(ℓ) ≥ Pol(rj) for some 1 ≤ j ≤ k, then we
have Pol(s) ≥ Pol(tj).

(b) If A ∈ PDTSwp and δ = {p1 : B1, . . . , pk : Bk} ∈ FDist(PDTSwp) with A i_P,S δ,
then there exists a 1 ≤ j ≤ k with Pol(A) > Pol(Bj).

(c) If s ∈ T (Σ) and δ = {p1 : t1, . . . , pk : tk} ∈ FDist(T (Σ)) with s i→S δ, then we have
Pol(s) ≥ ∑

1≤i≤k pi · Pol(ti).

(d) If A ∈ PDTSwp and δ = {p1 : B1, . . . , pk : Bk} ∈ FDist(PDTSwp) with A i_P,S δ,
then Pol(A) ≥ ∑

1≤i≤k pi · Pol(Bi).

(e) If A ∈ PDTSwp and δ = {p1 : B1, . . . , pk : Bk} ∈ FDist(PDTSwp) with A i_S δ, then
Pol(A) ≥ ∑

1≤j≤k pj · Pol(Bj).

(a) In this case, there exist a rule ℓ → {p1 : r1, . . . , pk : rk} ∈ S with Pol(ℓ) ≥ Pol(rj)
for some 1 ≤ j ≤ k, a ground substitution σ ∈ Sub (Σ, V), and a position π of s such
that s|π = ℓσ, all proper subterms of ℓσ are in normal form w.r.t. S, and th = s[rhσ]π
for all 1 ≤ h ≤ k.
We perform induction on π. So in the induction base, let π = ε. Hence, we have
s = ℓσ and δ = {p1 : r1σ, . . . , pk : rkσ}. By assumption we have Pol(ℓ) ≥ Pol(rj) for
some 1 ≤ j ≤ k. As these inequations hold for all instantiations of the occurring
variables, for tj = rjσ we have

Pol(s) = Pol(ℓσ) ≥ Pol(rjσ) = Pol(tj).

In the induction step, we have π = i.π′, s = f(s1, . . . , si, . . . , sn), si
i→S {p1 :

ti,1, . . . , pk : ti,k}, and th = f(s1, . . . , ti,h, . . . , sn) for all 1 ≤ h ≤ k. Then by the
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induction hypothesis we have Pol(si) ≥ Pol(ti,j). For tj = f(s1, . . . , ti,j, . . . , sn) we
obtain

Pol(s) = Pol(f(s1, . . . , si, . . . , sn))
= fPol(Pol(s1), . . . , Pol(si), . . . , Pol(sn))
≥ fPol(Pol(s1), . . . , Pol(ti,j), . . . , Pol(sn))

(by weak monotonicity of fPol and Pol(si) ≥ Pol(ti,j))
= Pol(f(s1, . . . , ti,j, . . . , sn))
= Pol(tj).

(b) In this case, there exist a dependency tuple (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk :
(Ck, rk)} ∈ P, a main rewrite pair (t, π) ∈ A, and a ground substitution
σ ∈ Sub (Σ, V) such that t = ℓ#σ and all proper subterms of ℓ#σ are in normal
form w.r.t. S. Let us first assume that ℓ → {p1 : r1, . . . , pk : rk} ∈ S. Then we
have Bj = M+

j ∪ ⟨{(a[rjσ]χa , τ) | (a, τ) ∈ Mrew}⟩ ∪ M⊥ as in Definition 5.1.12.
By Requirement (1), there exists a 1 ≤ j ≤ k with Pol(ℓ#) > Pol(Cj) and
Pol(ℓ) ≥ Pol(rj). As these inequations hold for all instantiations of the occurring
variables, we have

Pol(A) = ∑
(q,τ)∈A Pol(q)

= ∑
(q,τ)∈⟨{(t,π)}⟩ Pol(q) + ∑

(q,τ)∈Mrew Pol(q) + ∑
(q,τ)∈M⊥ Pol(q)

+ ∑
(q,τ)∈M<

Pol(q)
≥ ∑

(q,τ)∈⟨{(t,π)}⟩ Pol(q) + ∑
(q,τ)∈Mrew Pol(q) + ∑

(q,τ)∈M⊥ Pol(q)
(removing M<)

= Pol(t) + ∑
(q,τ)∈Mrew Pol(q) + ∑

(q,τ)∈M⊥ Pol(q)
= Pol(ℓ#σ) + ∑

(q,τ)∈Mrew Pol(q) + ∑
(q,τ)∈M⊥ Pol(q)

(as t = ℓ#σ)
> Pol(Cjσ) + ∑

(q,τ)∈Mrew Pol(q) + ∑
(q,τ)∈M⊥ Pol(q)

(as Pol(ℓ#) > Pol(Cj), and hence Pol(ℓ#σ) > Pol(Cjσ))
= ∑

q∈Cjσ Pol(q) + ∑
(q,τ)∈Mrew Pol(q) + ∑

(q,τ)∈M⊥ Pol(q)
= ∑

(q,τ)∈M+
j

Pol(q) + ∑
(q,τ)∈Mrew Pol(q) + ∑

(q,τ)∈M⊥ Pol(q)
(by definition of M+

j )
≥ ∑

(q,τ)∈M+
j

Pol(q) + ∑
(q,τ)∈Mrew Pol(q[rjσ]χ) + ∑

(q,τ)∈M⊥ Pol(q)
(by Pol(ℓ) ≥ Pol(rj) and (a))

= ∑
(q,τ)∈Bj

Pol(q)
= Pol(Bj)

If we have ℓ → {p1 : r1, . . . , pk : rk} ̸∈ S, then we have Bj = M+
j ∪ M⊥ and hence it

is a subset of B′
j := M+

j ∪ ⟨{(a[rjσ]χa , τ) | (a, τ) ∈ Mrew}⟩ ∪ M⊥ (Bj in the previous
case). Therefore, we get Pol(A) > Pol(B′

j) ≥ Pol(Bj).

(c) In this case, there exist a rule ℓ → {p1 : r1, . . . , pk : rk} ∈ S with Pol(ℓ) ≥∑
1≤j≤k pj · Pol(rj), a ground substitution σ ∈ Sub (Σ, V), and a position π of s such

that s|π = ℓσ, all proper subterms of ℓσ are in normal form w.r.t. S, and th = s[rhσ]π
for all 1 ≤ h ≤ k.
We perform induction on π. So in the induction base π = ε we have s = ℓσ
and δ = {p1 : r1σ, . . . , pk : rkσ}. As Pol(ℓ) ≥ ∑

1≤j≤k pj · Pol(rj) holds for all
instantiations of the occurring variables, for tj = rjσ we obtain

Pol(s) = Pol(ℓσ) ≥
∑

1≤j≤k

pj · Pol(rjσ) =
∑

1≤j≤k

pj · Pol(tj).

140



5.4. DP Framework and Processors

In the induction step, we have π = i.π′, s = f(s1, . . . , si, . . . , sn), si
i→S {p1 :

ti,1, . . . , pk : ti,k}, and th = f(s1, . . . , ti,h, . . . , sn) for all 1 ≤ h ≤ k. Then by the
induction hypothesis we have Pol(si) ≥ ∑

1≤j≤k pj · Pol(ti,j). Thus, we have

Pol(s) = Pol(f(s1, . . . , si, . . . , sn))
= fPol(Pol(s1), . . . , Pol(si), . . . , Pol(sn))
≥ fPol(Pol(s1), . . . ,

∑
1≤j≤k pj · Pol(ti,j), . . . , Pol(sn))

(by weak monotonicity of fPol and Pol(si) ≥ ∑
1≤j≤k pj · Pol(ti,j))

≥ ∑
1≤j≤k pi · fPol(Pol(s1), . . . , Pol(ti,j), . . . , Pol(sn)),
(as fPol is componentwise concave due to multilinearity)

= ∑
1≤j≤k pj · Pol(f(s1, . . . , ti,j, . . . , sn))

(d) In this case, there exist a dependency tuple (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk :
(Ck, rk)} ∈ P, a main rewrite pair (t, π) ∈ A, and a ground substitution
σ ∈ Sub (Σ, V), such that t = ℓ#σ and all proper subterms of ℓ#σ are in normal
form w.r.t. S. Let us first assume that ℓ → {p1 : r1, . . . , pk : rk} ∈ S. Then
we have Bj = M+

j ∪ ⟨{(a[rjσ]χa , τ) | (a, τ) ∈ Mrew}⟩ ∪ M⊥ as in Definition 5.1.12.
By Requirement (2), we have Pol(ℓ#) ≥ ∑

1≤j≤k pj · Pol(Cj) and by (3) we have
Pol(ℓ) ≥ ∑

1≤j≤k pj · Pol(rj). As these inequations hold for all instantiations of the
occurring variables, we have

Pol(A) = ∑
(q,τ)∈A Pol(q)

= ∑
(q,τ)∈⟨{(t,π)}⟩ Pol(q) + ∑

(q,τ)∈Mrew Pol(q) + ∑
(q,τ)∈M⊥ Pol(q)

+ ∑
(q,τ)∈M<

Pol(q)
≥ ∑

(q,τ)∈⟨{(t,π)}⟩ Pol(q) + ∑
(q,τ)∈Mrew Pol(q) + ∑

(q,τ)∈M⊥ Pol(q)
(removing M<)

= Pol(t) + ∑
(q,τ)∈Mrew Pol(q) + ∑

(q,τ)∈M⊥ Pol(q)
= Pol(ℓ#σ) + ∑

(q,τ)∈Mrew Pol(q) + ∑
(q,τ)∈M⊥ Pol(q)

(as t = ℓ#σ)
≥ ∑

1≤j≤k pj · Pol(Cjσ) + ∑
(q,τ)∈Mrew Pol(q) + ∑

(q,τ)∈M⊥ Pol(q)
(by Pol(ℓ#) ≥ ∑

1≤j≤k pj · Pol(Cj),)
and hence Pol(ℓ#σ) ≥ ∑

1≤j≤k pj · Pol(Cjσ))
= ∑

1≤j≤k pj ·
(∑

q∈Cjσ Pol(q)
)

+ ∑
(q,τ)∈Mrew Pol(q) + ∑

(q,τ)∈M⊥ Pol(q)

= ∑
1≤j≤k pj ·

(∑
(q,τ)∈M+

j
Pol(q)

)
+ ∑

(q,τ)∈Mrew Pol(q) + ∑
(q,τ)∈M⊥ Pol(q)

(by definition of M+
j )

≥ ∑
1≤j≤k pj ·

(∑
(q,τ)∈M+

j
Pol(q)

)
+ ∑

(q,τ)∈Mrew

(∑
1≤j≤k pj · Pol(q[rjσ]χ)

)
+ ∑

(q,τ)∈M⊥ Pol(q)
(by Pol(ℓ) ≥ ∑

1≤j≤k pj · Pol(rj) and (c))
= ∑

1≤j≤k pj ·
(∑

(q,τ)∈M+
j

Pol(q)
)

+ ∑
1≤j≤k

(∑
(q,τ)∈Mrew pj · Pol(q[rjσ]χ)

)
+ ∑

(q,τ)∈M⊥ Pol(q)
= ∑

1≤j≤k pj ·
(∑

(q,τ)∈M+
j

Pol(q)
)

+ ∑
1≤j≤k pj ·

(∑
(q,τ)∈Mrew Pol(q[rjσ]χ)

)
+ ∑

(q,τ)∈M⊥ Pol(q)
= ∑

1≤j≤k pj ·
(∑

(q,τ)∈M+
j

Pol(q) + ∑
(q,τ)∈Mrew Pol(q[rjσ]χ)

)
+ ∑

(q,τ)∈M⊥ Pol(q)
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= ∑
1≤j≤k pj ·

(∑
(q,τ)∈M+

j
Pol(q) + ∑

(q,τ)∈Mrew Pol(q[rjσ]χ)
)

+ ∑
1≤j≤k pj ·

(∑
(q,τ)∈M⊥ Pol(q)

)
(as ∑

1≤j≤k pj = 1)
= ∑

1≤j≤k pj ·
(∑

(q,τ)∈M+
j

Pol(q) + ∑
(q,τ)∈Mrew Pol(q[rjσ]χ) + ∑

(q,τ)∈M⊥ Pol(q)
)

= ∑
1≤j≤k pj ·

(∑
(q,τ)∈Bj

Pol(q)
)

= ∑
1≤j≤k pj · Pol(Bj)

If we have ℓ → {p1 : r1, . . . , pk : rk} ̸∈ S, then we have Bj = M+
j ∪ M⊥ and hence it

is a subset of B′
j := M+

j ∪ ⟨{(a[rjσ]χa , τ) | (a, τ) ∈ Mrew}⟩ ∪ M⊥ (Bj in the previous
case). Therefore, we get Pol(A) ≥ ∑

1≤i≤k pi · Pol(B′
i) ≥ ∑

1≤i≤k pi · Pol(Bi).

(e) In this case, there exist a rule ℓ → {p1 : r1, . . . , pk : rk} ∈ S, a ground substitution
σ ∈ Sub (Σ, V), and a position τ ∈ N+ such that t|τ = ℓσ and all proper subterms
of ℓσ are in normal form w.r.t. S. Then Bj = M+

j ∪ ⟨{(a[rjσ]χa.τ , χ) | (a, χ) ∈
Mrew}⟩ ∪ M⊥ as in Definition 5.1.17. Now, it follows that

Pol(A) = ∑
(q,τ)∈A Pol(q)

= ∑
(q,τ)∈⟨{(t,π)}⟩ Pol(q) + ∑

(q,τ)∈Mrew Pol(q) + ∑
(q,τ)∈M⊥ Pol(q)

+ ∑
(q,τ)∈M<

Pol(q)
≥ ∑

(q,τ)∈⟨{(t,π)}⟩ Pol(q) + ∑
(q,τ)∈Mrew Pol(q) + ∑

(q,τ)∈M⊥ Pol(q)
(removing M<)

= ∑
(q,τ)∈⟨{(t,π)}⟩∪Mrew Pol(q) + ∑

(q,τ)∈M⊥ Pol(q)
≥ ∑

(q,τ)∈⟨{(t,π)}⟩∪Mrew

(∑
1≤j≤k pj · Pol(q[rjσ]χ.τ )

)
+ ∑

(q,τ)∈M⊥ Pol(q)
(by Pol(ℓ) ≥ ∑

1≤j≤k pj · Pol(rj) and (c))
= ∑

1≤j≤k

(∑
(q,τ)∈⟨{(t,π)}⟩∪Mrew pj · Pol(q[rjσ]χ.τ )

)
+ ∑

(q,τ)∈M⊥ Pol(q)

= ∑
1≤j≤k pj ·

(∑
(q,τ)∈⟨{(t,π)}⟩∪Mrew Pol(q[rjσ]χ.τ )

)
+ ∑

(q,τ)∈M⊥ Pol(q)

= ∑
1≤j≤k pj ·

(∑
(q,τ)∈⟨{(t,π)}⟩∪Mrew Pol(q[rjσ]χ.τ )

)
+ ∑

1≤j≤k pj ·
(∑

(q,τ)∈M⊥ Pol(q)
)

(as ∑
1≤j≤k pj = 1)

= ∑
1≤j≤k pj ·

(∑
(q,τ)∈⟨{(t,π)}⟩∪Mrew Pol(q[rjσ]χ.τ ) + ∑

(q,τ)∈M⊥ Pol(q)
)

= ∑
1≤j≤k pj ·

(∑
(q,τ)∈Bj

Pol(q)
)

= ∑
1≤j≤k pj · Pol(Bj)

2. We create a computation tree T≤N for any N ∈ N

Let T = (V, E, L, P ) be a (P , S)-computation tree that satisfies (+). Due to our restriction
to ground terms, we can define the value of a node x ∈ V in our computation tree.

Val : V → N, x 7→

0, if x ∈ Leaf
Pol(Ax) + 1, otherwise

For any N ∈ N, we create a modified tree T≤N , where we cut everything below a node
x of the tree with Val(x) > N . Let C := LeafT≤N \ LeafT be the set of all new leaves in
T≤N due to the cut. So for all x ∈ C we have Val(x) > N .
Our goal is to prove that we have |T|Leaf = 1. First of all, we prove that |T≤N |Leaf = 1 for
any N ∈ N. However, this does not yet prove that |T|Leaf = 1, which we will show in a
second step.
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3. We prove that |T≤N |Leaf ≥ pN for any N ∈ N

This part of the proof drastically changes from the proof of Theorem 4.3.1, due to
the fact that in a rewrite step A i_S {p1 : B1, . . . , pk : Bk} (or a rewrite step
A i_P,S {p1 : B1, . . . , pk : Bk} with a dependency tuple from P≽), we cannot guarantee
that there exists an 1 ≤ j ≤ k with Pol(A) > Pol(Bj). Here, it is also possible to have
Pol(A) = Pol(Bj) for all 1 ≤ j ≤ k. Hence, there does not have to be a single witness
path of length N in T≤N that shows termination with a chance of at least pN . Instead, we
have to use multiple witness paths of a finite length to ensure that we have |T≤N |Leaf ≥ pN .
We now first explain how to find such a set of witness paths in a finite induced sub
(P , S)-computation tree that starts with a node from P≻ and then we prove by induction
that we have |T≤N |Leaf ≥ pN in a second step.

3.1. We find witnesses in induced sub chain trees of T≤N

In this part, we prove a first observation regarding the
existence of certain witnesses that shows a guaranteed
value decrease. For every x ∈ P≻, let Tx be the induced
sub chain tree that starts at x and where we cut every
edge after the second node from P≻. Since T satisfies
(+) and is finitely branching, we know that Tx must
be finite. We want to prove that for such a tree Tx,
we have a set of leaves (a set of witnesses) that show
a certain value decrease compared to the root value
Val(x). To be precise, we want to prove that there
exists a set W x ⊆ LeafTx of leaves in Tx with the
following two properties:

P≻

P≿P≻ P≻P≿

S

NF NF P≻NF P≻

SS

Figure 5.20: Tx

(W-1) For all w ∈ W x we have Val(w) < Val(x)

(W-2) ∑
w∈W x pTx

w · pVal(w) ≥ pVal(x)

Here, we use an adjusted value function Val, so that for every node x ∈ V T≤N we have

Val(x) =
0 , if x is a leaf in T≤N ,

Val(Ax) , otherwise.

This is the same value function as before, except for the nodes in C. For all x ∈ C we
have Val(x) > N and Val(x) = 0. The first property (W-1) says that all of our witnesses
have a strictly smaller value than the root. Furthermore, we have to be careful that the
probabilities for our witnesses are not too low. The second property (W-2) says that the
sum of all probabilities for the witnesses is still big enough. The additional pVal(w) is used
to allow smaller probabilities for our witnesses if the value decrease is high enough.
In order to show the existence of such a set W x, we prove by induction on the height H of
Tx that there exists a set of nodes W x

i such that for all 1 ≤ i ≤ H we have

(W-1!) For all w ∈ W x
i we have Val(w) < Val(x)

(W-2!) ∑
w∈W x

i
pTx

w · pVal(w) ≥ pVal(x)

(W-3!) Every w ∈ W x
i is a leaf before the i-th depth or at depth i of the tree Tx
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Then in the end if i = H is the height of the tree Tx, we get a set W x := W x
H such that

every node in W x
H is a leaf in Tx (i.e., W x

H ⊆ LeafTx) and both (W-1) and (W-2) are
satisfied.
In the induction base, we consider depth i = 0 and look at the rewrite step at the root.
The first edge represents a rewrite step with P≻. Let xE = {y1, . . . , yk} be the set of the
successors of x. We have Ax

i_P,S {p1 : Ay1 , . . . , pk : Ayk
} using a rule from P≻.

1 : Ax

p1 : Ay1 pk : Ayk
. . .

i_P,S with P≻

Figure 5.21: Nodes in the induction base

Due to (b) there is a 1 ≤ j ≤ k with Pol(Ax) > Pol(Ayj
). This means Pol(Ax) − 1 ≥

Pol(Ayj
), and hence Val(Ax)−1 ≥ Val(Ayj

), which also implies that Val(x)−1 ≥ Val(yj).
Since 0 < p ≤ 1, we therefore have pVal(x)−1 ≤ pVal(yj). Thus we can set W x

0 = {yj} and
have (W-1!) satisfied, since Val(x) − 1 ≥ Val(yj) so Val(yj) < Val(x). Property (W-3!)
is clearly satisfied and (W-2!) holds as well since we have

∑
w∈W x

0

pTx
w · pVal(w) = pj · pVal(yj)

pj≥p

≥ p · pVal(yj) ≥ p · pVal(x)−1 = pVal(x)

In the induction step, we consider depth i > 0. Due to the induction hypothesis, there
is a set W x

i−1 that satisfies (W-1!), (W-2!), and (W-3!). For every node w ∈ W x
i−1 that

is not a leaf, let wE = {yw
1 , . . . , yw

k } be the set of its successors. We rewrite Aw either
with i_P,S and a rule from P≿ or with i_S and a rule from S which rewrites Aw to a
multi-distribution {pw

1 : Ayw
1

, . . . , pw
k : Ayw

k
}.

pTx
w : Aw

pw
1 · pTx

w : Ayw
1

pw
k · pTx

w : Ayw
k

. . .

i_P,S with P≿ or i_S
i_P,S with P≿ or i_S

Figure 5.22: Induction Step

Due to (d) and (e), we have Pol(Aw) ≥ ∑
1≤j≤k pj · Pol(Ayw

j
). Hence, we either have

Pol(Aw) = Pol(Ayw
j
) for all 1 ≤ j ≤ k or there exists at least one 1 ≤ j ≤ k with

Pol(Aw) > Pol(Ayw
j
). We partition the set W x

i−1 into the disjoint subsets W
x(1)
i−1 , W

x(2)
i−1 ,

and W
x(3)
i−1 , where

• w ∈ W
x(1)
i−1 :⇔ w ∈ W x

i−1 and w a leaf.

• w ∈ W
x(2)
i−1 :⇔ w ∈ W x

i−1 and Pol(Aw) = Pol(Ayw
j

) for all 1 ≤ j ≤ k.

• w ∈ W
x(3)
i−1 :⇔ w ∈ W x

i−1 and there exists a 1 ≤ j ≤ k with Pol(Aw) > Pol(Ayw
j
).

We denote this node yw
j by w+.
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In the first case, we already have Val(w) = 0. In the second case, we get Val(w) = Val(yw
j )

for all 1 ≤ j ≤ k. And in the third case, we have Pol(w) > Pol(w+). So for all of these
nodes, we can be sure that the value does not increase. We can now define W x

i as:

W x
i = W

x(1)
i−1

∪ ⋃
w∈W

x(2)
i−1

{yw
1 , . . . , yw

k }
∪ {w+ | w ∈ W

x(3)
i−1 }

Intuitively, this means that every leaf remains inside of the set of witnesses (W x(1)
i−1 ) and

for every inner node w we have two cases. If there exists a successor w+ with a strictly
smaller value, then we exchange the node w with this successor w+ in our set of witnesses
({w+ | w ∈ W

x(3)
i−1 }). Otherwise, all of the successors yw

1 , . . . , yw
k of the node w have the

same value that is also equal to the value of the node itself, so that we have to replace w
with all of the successors in our set of witnesses as there is no single node with a guaranteed
value decrease (⋃

w∈W
x(2)
i−1

{yw
1 , . . . , yw

k }).

It remains to show that our induction hypothesis is still satisfied for W x
i . In order to

see that (W-1!) is satisfied, note that we have Val(w) < Val(x), for all w ∈ W x
i−1

by our induction hypothesis. For all w′ ∈ W
x(1)
i−1 , we have Val(w) = 0 and thus

Val(w′) = 0 < Val(x). For all w′ ∈ W
x(2)
i−1 , we have Val(w′) = Val(w) for some w ∈ W x

i−1

and thus Val(w′) = Val(w) < Val(x). Lastly, for all w′ ∈ W
x(3)
i−1 , we have Val(w′) < Val(w)

for some w ∈ W x
i−1 and thus Val(w′) < Val(w) < Val(x).

(W-3!) holds as well, since every node w ∈ Wi−1 that is not a leaf, is at depth i − 1 of the
tree Tx by our induction hypothesis. We exchange each such node with one or all of its
successors. The leaves in Wi−1 are at a depth of at most i by induction hypothesis and
remain in Wi. Hence, all of the nodes of Wi are at a depth of at most i, and the nodes
that are no leaves are at a depth of precisely i.
Finally, we regard (W-2!). For ⋃

w∈W
x(2)
i−1

{yw
1 , . . . , yw

k } we have:

∑
w′∈

⋃
w∈W

x(2)
i−1

{yw
1 ,...,yw

k
} pTx

w′ · pVal(w′)

= ∑
w∈W

x(2)
i−1

∑
w′∈{yw

1 ,...,yw
k

} pTx
w′ · pVal(w′)

= ∑
w∈W

x(2)
i−1

∑
1≤j≤k pTx

yw
j

· pVal(yw
j )

= ∑
w∈W

x(2)
i−1

∑
1≤j≤k pTx

yw
j

· pVal(w) (as Val(yw
j ) = Val(w) for all 1 ≤ j ≤ k)

= ∑
w∈W

x(2)
i−1

∑
1≤j≤k pw

j · pTx
w · pVal(w) (as pTx

yw
j

= pw
j · pTx

w for all 1 ≤ j ≤ k)
= ∑

w∈W
x(2)
i−1

pTx
w · pVal(w) · ∑

1≤j≤k pw
j

= ∑
w∈W

x(2)
i−1

pTx
w · pVal(w) · 1 (as ∑

1≤j≤k pw
j = 1)

= ∑
w∈W

x(2)
i−1

pTx
w · pVal(w)

For {w+ | w ∈ W
x(3)
i−1 } we have:∑

w′∈{w+|w∈W
x(3)
i−1 } pTx

w′ · pVal(w′)

= ∑
w∈W

x(3)
i−1

pTx

w+ · pVal(w+)

≥ ∑
w∈W

x(3)
i−1

p · pTx
w · pVal(w+) (as pTx

w+ ≥ p · pTx
w )

≥ ∑
w∈W

x(3)
i−1

p · pTx
w · pVal(w)−1 (as Val(w+) ≤ Val(w) + 1)

= ∑
w∈W

x(3)
i−1

pTx
w · pVal(w)
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All in all, we have ∑
w′∈W x

i
pTx

w′ · pVal(w′)

= ∑
w′∈W

x(1)
i−1

pTx
w′ · pVal(w′)

+ ∑
w′∈

⋃
w∈W

x(2)
i−1

{yw
1 ,...,yw

k
} pTx

w′ · pVal(w′)

+ ∑
w′∈{w+|w∈W

x(3)
i−1 } pTx

w′ · pVal(w′)

≥ ∑
w∈W

x(1)
i−1

pTx
w · pVal(w)

+ ∑
w∈W

x(2)
i−1

pTx
w · pVal(w)

+ ∑
w∈W

x(3)
i−1

pTx
w · pVal(w)

= ∑
w∈W x

i−1
pTx

w · pVal(w)

IH
≥ pVal(x)

3.2. We prove that |T≤N |Leaf ≥ pN for any N ∈ N by induction

We now want to prove that |T≤N |Leaf ≥ pN holds for any N ∈ N. Let Zk denote the set of
nodes in T≤N from P≻ that have precisely k − 1 nodes from P≻ above them (so they are
themselves the k-th node from P≻). Let Leafk denote the set of all leaves in T≤N that
are reachable through a path that uses less than k nodes from P≻. We show by induction
that for all k ∈ [1, N + 1], we have∑

x∈Zk∪Leafk ∧0≤Val(x)≤N+1−k

pT≤N

x · pVal(x) ≥ pN

Then, for k = N + 1 we finally have:

pN ≤ ∑
x∈ZN+1∪LeafN+1 ∧0≤Val(x)≤N+1−(N+1) pT≤N

x · pVal(x)

= ∑
x∈ZN+1∪LeafN+1 ∧0≤Val(x)≤0 pT≤N

x · pVal(x)

= ∑
x∈ZN+1∪LeafN+1 ∧Val(x)=0 pT≤N

x · pVal(x)

= ∑
x∈ZN+1∪LeafN+1 ∧Val(x)=0 pT≤N

x · 1
= ∑

x∈ZN+1∪LeafN+1 ∧Val(x)=0 pT≤N

x

= ∑
x∈LeafN+1 pT≤N

x

≤ ∑
x∈LeafT≤N pT≤N

x

= |T≤N |Leaf

In the induction base, we have k = 1, and thus∑
x∈Z1∪Leaf1 ∧0≤Val(x)≤N+1−1 pT≤N

x · pVal(x)

= ∑
x∈Z1∪Leaf1 ∧0≤Val(x)≤N pT≤N

x · pVal(x)

≥ ∑
x∈Z1∪Leaf1 ∧0≤Val(x)≤N pT≤N

x · pN (since Val(x) ≤ N)
= pN · ∑

x∈Z1∪Leaf1 ∧0≤Val(x)≤N pT≤N

x

= pN · ∑
x∈Z1∪Leaf1 pT≤N

x

= pN · 1 (since ∑
x∈Z1∪Leaf1 pT≤N

x = 1)
= pN

Here, we have ∑
x∈Z1∪Leaf1 pT≤N

x = 1, since Z1 ∪ Leaf1 are the leaves of the finite, grounded,
induced sub chain tree, were we cut everything below the first node of P≻ (i.e., we cute
directly after the nodes in Z1).
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In the induction step, we assume that the statement is true for some k ∈ [1, N ]. Then we
have

pN
IH
≤ ∑

x∈Zk∪Leafk ∧0≤Val(x)≤N+1−k pT≤N

x · pVal(x)

= ∑
x∈Leafk

px · pVal(x) + ∑
x∈Zk∧1≤Val(x)≤N+1−k pT≤N

x · pVal(x)

≤ ∑
x∈Leafk

px · pVal(x) + ∑
x∈Zk∧1≤Val(x)≤N+1−k pT≤N

x · ∑
w∈W x pTx

w · pVal(w)

(existence of the set W x by the previous part and (W-2))
= ∑

x∈Leafk
px · pVal(x) + ∑

x∈Zk∧1≤Val(x)≤N+1−k

∑
w∈W x pT≤N

x · pTx
w · pVal(w)

= ∑
x∈Leafk

px · pVal(x) + ∑
x∈Zk∧1≤Val(x)≤N+1−k

∑
w∈W x pT≤N

w · pVal(w)

(as pT≤N

x · pTx
w = pT≤N

w )

Now, every node inside of W x is either contained in Leafk+1 or contained in Zk+1. The
reason for that is that W x only contains leaves from Tx and a leaf in Tx is either also a
leaf in T≤N so that they are contained in Leafk+1, or contained in P≻ and thus in Zk+1,
since x is contained in Zk and there is no other inner node from P≻ in Tx. Furthermore,
we know that Val(w) < Val(x) for all w ∈ W x by (W-1). Thus we get∑

x∈Leafk
px · pVal(x) + ∑

x∈Zk∧1≤Val(x)≤N+1−k

∑
w∈W x pT≤N

w · pVal(w)

≤ ∑
w∈Zk+1∪Leafk+1 ∧0≤Val(w)≤N+1−(k+1) pT≤N

w · pVal(w)

Now, we have shown that |T≤N |Leaf ≥ pN .

4. We prove that |T≤N |Leaf = 1 for any N ∈ N

This part is completely analogous to the fourth part of the proof of Theorem 4.3.1. We
only need to speak in terms of computation trees instead of rewrite sequences. We have
proven that |T≤N |Leaf ≥ pN holds for all (P , S)-computation trees that satisfy (+). Hence,
for any N ∈ N, we have

p⋆
N := inf

T is a (P, S)-computation tree satisfying (+)
(|T≤N |Leaf) ≥ pN > 0 (5.33)

We now prove by contradiction that this is enough to ensure p⋆
N = 1. So assume that

p⋆
N < 1. Then we define ε := p⋆

N ·(1−p⋆
N )

2 > 0. By definition of the infimum, p⋆
N + ε is not a

lower bound of |T≤N |Leaf for all (P , S)-computation trees that satisfy (+). Hence, there
must exist a (P , S)-computation tree T satisfying (+) such that

p⋆
N ≤ |T≤N |Leaf < p⋆

N + ε. (5.34)

For readability, we set Z := LeafT≤N to be the set of leaves of the tree T≤N and
Z := V T≤N \ LeafT≤N to be the set of inner nodes of the tree T≤N . By the monotonicity of
| · |Leaf w.r.t. the depth of the tree T≤N , there must exist a natural number m⋆ ∈ N such
that ∑

x∈Z∧d(x)≤m∗

px >
p⋆

N

2 . (5.35)

For every x ∈ V with d(x) = m⋆ and x ̸∈ Z, we define the induced sub (P , S)-computation
tree starting at node x by T≤N(x) := T≤N [x(ET≤N )∗]. Then we have

|T≤N |Leaf =
∑

x∈Z∧d(x)≤m∗

px +
∑

x∈Z∧d(x)=m∗

px · |T≤N(x)|Leaf , (5.36)

Furthermore, we have ∑
x∈Z∧d(x)=m∗

px = 1 −
∑

x∈Z∧d(x)≤m∗

px (5.37)
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since ∑
x∈Z∧d(x)=m∗ px + ∑

x∈Z∧d(x)≤m∗ px = 1, as these are the leaves of the finite, grounded
induced sub chain tree, where we cut every edge after the nodes of depth m∗. We obtain

p⋆
N + ε

> |T≤N |Leaf (by (5.34))
=

∑
x∈Z∧d(x)≤m∗

px +
∑

x∈Z∧d(x)=m∗

px · |T≤N(x)|Leaf︸ ︷︷ ︸
≥ p⋆

N

(by (5.36) and (5.33))

≥
∑

x∈Z∧d(x)≤m∗

px +
∑

x∈Z∧d(x)=m∗

px · p⋆
N

=
∑

x∈Z∧d(x)≤m∗

px + p⋆
N ·

∑
x∈Z∧d(x)=m∗

px

=
∑

x∈Z∧d(x)≤m∗

px + p⋆
N · (1 −

∑
x∈Z∧d(x)≤m∗

px) (by (5.37))

= p⋆
N +

∑
x∈Z∧d(x)≤m∗

px − p⋆
N ·

∑
x∈Z∧d(x)≤m∗

px

= p⋆
N +

∑
x∈Z∧d(x)≤m∗

px · (1 − p⋆
N)

> p⋆
N + (1 − p⋆

N) · p⋆
N

2 (by (5.35))
= p⋆

N + ε,  

a contradiction. So p⋆
N = 1 (see [17, Thm. 2.2]). In particular, this means that for every

N ∈ N and every (P , S)-computation tree T satisfying (+), we have

|T≤N |Leaf = 1. (5.38)

5. Finally, we prove that |T|Leaf = 1

We adjust the value function for this new tree T≤N once again and define:

V̂al : V T≤N → N, x 7→


N + 1, if x ∈ C

0, if x ∈ LeafT

Pol(Ax) + 1, otherwise

Now for a node x ∈ V T≤N we have 0 ≤ V̂al(x) ≤ N + 1. Furthermore, we have
Val(rT) ≥ V̂al(rT≤N ) for the root of T. Let |T≤N |V̂al := ∑

x∈LeafT≤N px · V̂al(x). Note that
this sum is monotonic increasing and bounded from above by N + 1, since∑
x∈LeafT≤N

px · V̂al(x) ≤
∑

x∈LeafT≤N

px · (N + 1) = (N + 1) ·
∑

x∈LeafT≤N

px ≤ (N + 1) · 1 = N + 1

and thus absolutely convergent. We have V̂al(rT≤N ) ≥ |T≤N |V̂al because every edge is
either a i_P,S or i_S step and due to (d) and (e), we know that the (expected) value is
non-increasing.
Now we fix N ∈ N and a computation tree T satisfying (+), and obtain the corresponding
transformed tree T≤N . Note that by (5.38) we have |T≤N |Leaf = 1 = qN + (1 − qN),
where qN := ∑

x∈LeafT≤N ∧V̂al(x)=0 px. So what is |T≤N |V̂al? The probabilities of zero-valued
nodes (i.e., leaves in the original tree) add up to qN , while the probabilities of new
leaves due to a cut add up to probability 1 − qN . So |T≤N |V̂al has at least the value
qN · 0 + (1 − qN) · (N + 1) = (1 − qN) · (N + 1). Thus,

Val(rT) ≥ V̂al(rT≤N ) ≥ |T≤N |V̂al ≥ (1 − qN) · (N + 1),
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which implies qN ≥ 1 − Val(rT)
N+1 . Note that qN is weakly monotonically increasing

and bounded by 1 for N → ∞. Hence, q := limN→∞ qN exists and 1 ≥ q ≥
limN→∞(1 − Val(rT)

N+1 ) = 1, i.e., q = 1. Hence, we obtain |T|Leaf = limN→∞ qN = q = 1. Since
we regard the limit of N → ∞, this holds for any computation tree satisfying (+). ■

We have finally proven the main technical part of the reduction pair processor in the
probabilistic setting. Next, we want to prove the soundness and completeness of the actual
processor, which is fairly easy using our technical lemma from before in addition to the
P-Partition lemma.
Theorem 5.4.27 (Reduction Pair Processor). Let (P , S) be a DP problem, and let
Pol : T

(
Σ ⊎ Σ#, V

)
→ N[V] be a natural, multilinear polynomial interpretation which is

weakly monotonic (i.e., x ≥ y implies fPol(. . . , x, . . .) ≥ fPol(. . . , y, . . .) for all f ∈ Σ∪Σ#).
Suppose that we have P = P≽ ⊎ P≻ and the following conditions hold:

(1) For every (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ P≻, there exists a 1 ≤ j ≤ k
with

Pol(s) > Pol(Cj)

If ℓ → {p1 : r1, . . . , pk : rk} ∈ S, then we additionally require that

Pol(ℓ) ≥ Pol(rj)

(2) For every (ℓ#, ℓ) → {p1 : (C1, r1), . . . , pk : (Ck, rk)} ∈ P, we have

Pol(s) ≥
∑

1≤j≤k

pj · Pol(Cj)

(3) For every ℓ → {p1 : r1, . . . , pk : rk} ∈ S we have

Pol(ℓ) ≥
∑

1≤j≤k

pj · Pol(rj)

Then
ProcRP(P , S) = {(P≽, S)}

is sound and complete.

Proof.

complete: Every (P≽, S)-computation tree is also a (P , S)-computation tree. Hence, if (P≽, S)
is not innermost AST, then (P , S) is also not innermost AST.

sound: Suppose that every (P≽, S)-computation tree converges with probability 1. Assume
for a contradiction that there exists a (P , S)-computation tree T = (V, E, L, P )
that converges with probability < 1. We can partition P = P≽ ⊎ P≻, according to
P≽ ⊎ P≻. Then we apply the P-Partition Lemma (Lemma 5.2.20), which means that
there must be a (P , S)-computation tree T′ with |T′|Leaf < 1 such that every infinite
path will have an infinite number of edges corresponding to P≻ steps. But this is a
contradiction to Lemma 5.4.26. ■
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Example 5.4.28. Consider Rdiv and DT (Rdiv) from Example 5.0.1 and Example 5.1.10.
After applying the usable rules processor in Example 5.4.24, we have the following four
DP problems left:

({DT ((5.1))},∅)

({DT ((5.2))},∅)

({DT ((5.3))},∅)

({DT ((5.4))′}, {(5.1), (5.2)})
The constraints of the reduction pair processor for every DP problem are satisfied by the
polynomial interpretation which maps O to 0, s(x) to 2x + 1, minus#(x, y) and div#(x, y)
to x + 1, and all other non-constant function symbols to the projection on their first
argument. Hence, we result with

ProcRP((DT ((5.1)), Rdiv)) = {(∅,∅)}

ProcRP((DT ((5.2)), Rdiv)) = {(∅,∅)}

ProcRP((DT ((5.3)), Rdiv)) = {(∅,∅)}

ProcRP((DT ((5.4))′, Rdiv)) = {(∅, {(5.1), (5.2)})}

Example 5.4.29. Consider Rdiv and DT (Rdiv) from Example 5.0.1 and Example 5.1.10.
We are also able to directly use the reduction pair processor to prove innermost AST for
the DP problem (DT (Rdiv), Rdiv). The constraints of the reduction pair processor, such
that every dependency tuple get removed, are satisfied by the polynomial interpretation
which maps O to 0, s(x) to 3x + 2, minus#(x, y) and div#(x, y) to x + 1, and all other
non-constant function symbols to the projection on their first argument.

While for the non-probabilistic reduction pair processor, we have seen that it subsumes
the direct application of polynomial interpretations (Theorem 3.3.17), it does not seem
likely that a similar result holds for the probabilistic reduction pair processor. The reason
for this is that we are working with dependency tuples instead of dependency pairs in the
probabilistic DP framework. This means that we have to take the sum of the polynomial
values of all occurring subterms with a defined root symbol. This sum may contain the
same subterm multiple times. Now, we can not use the same polynomial ordering as for
the direct application anymore.
Example 5.4.30 (Innermost AST with Data Structures). Consider Rlen from Exam-
ple 4.3.3. Here, we get the following dependency tuples: Here, we get DT (Rlen) =
{DT ((2.7)), DT ((2.8))} with

DT ((2.7)) =
(
len#(nil), len(nil)

)
→ { 1

2 :
(

⟨{
(
len#(nil), ε

)
}⟩, len(nil)

)
, 1

2 :
(
∅, O

)
}

DT ((2.8)) =
(
len#(cons(x, y)), len(cons(x, y))

)
→ { 1

2 :
(

⟨{
(
len#(cons(x, y)), ε

)
}⟩, len(cons(x, y))

)
,

1
2 :

(
⟨{

(
len#(y), 1

)
}⟩, s(len(y))

)
}

We can apply the reduction pair processor with the polynomial interpretation that maps
len(x) to x, s(x) to x, cons(x, y) to y + 1, and both nil and O to 0.
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5.4. DP Framework and Processors

Final Automatic Innermost AST Proof
Finally, we present the final automatic innermost AST proof for our PTRS Rdiv in the
following figure.

Rdiv

Chain Criterion

(DT (Rdiv), Rdiv)

Dep. Graph

({DT ((5.1))}, Rdiv) ({DT ((5.2))}, Rdiv) ({DT ((5.3))}, Rdiv) ({DT ((5.4))}, Rdiv)

Usable Rules Usable Rules Usable Rules Usable Pairs

({DT ((5.1))},∅) ({DT ((5.2))},∅) ({DT ((5.3))},∅) ({DT ((5.4))′}, Rdiv)

Red. Pair Red. Pair Red. Pair Usable Rules

(∅,∅) (∅,∅) (∅,∅) ({DT ((5.4))′}, {(5.1), (5.2)})

In. AST In. AST In. AST Red. Pair

(∅, {(5.1), (5.2)})

In. AST

Figure 5.23: Automatic Innermost Ast Proof for Rdiv
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6 Comparison of the Frameworks

In this chapter, we will illustrate the differences between the two frameworks in more
detail. To do so, we use the TRS for the integer division Rdiv from Example 3.0.1. First,
let us specify the TRS here again and also present a PTRS variant of it. Consider the
signature Σdiv = {O, s, minus, div}, a variable set with {x, y} ⊆ V , and the following TRS
Rdiv that computes the integer division of two natural numbers:

minus(x, O) → x (6.1)
minus(s(x), s(y)) → minus(x, y) (6.2)

div(O, s(y)) → O (6.3)
div(s(x), s(y)) → s (div(minus(x, y), s(y))) (6.4)

The corresponding PTRS variant Sdiv has the form:

minus(x, O) → {1 : x} (6.5)
minus(s(x), s(y)) → {1 : minus(x, y)} (6.6)

div(O, s(y)) → {1 : O} (6.7)
div(s(x), s(y)) → {1 : s (div(minus(x, y), s(y)))} (6.8)

Dependency Pairs
We get the following three dependency pairs in the non-probabilistic framework:

minus#(s(x), s(y)) → minus#(x, y) (6.9)
div#(s(x), s(y)) → minus#(x, y) (6.10)
div#(s(x), s(y)) → div#(minus(x, y), s(y)) (6.11)

and the following four dependency tuples in the probabilistic framework:

DT ((6.5)) =
(
minus#(x, O), minus(x, O)

)
→ { 1 :

(
∅, x

)
}

DT ((6.6)) =
(
minus#(s(x), s(y)), minus(s(x), s(y))

)
→ { 1 :

(
⟨{

(
minus#(x, y), ε

)
}⟩, minus(x, y)

)
}

DT ((6.7)) =
(
div#(O, s(y)), div(O, s(y))

)
→ { 1 :

(
∅, O

)
}

DT ((6.8)) =
(
div#(s(x), s(y)), div(s(x), s(y))

)
→ { 1 :

(
⟨{

(
div#(minus(x, y), s(y)), 1

)
,
(
minus#(x, y), 1.1

)
}⟩,

s(div(minus(x, y), s(y)))
)
}

The main difference here is that we are working with dependency tuples instead of
dependency pairs in the probabilistic framework. We create an own dependency tuple for
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6. Comparison of the Frameworks

each of the four rules and include all of the defined symbols on the right-hand side of the
rule. However, the dependency pairs DT ((6.5)) and DT ((6.7)) only have an empty set
in the distribution on the right-hand side. Hence, those two rules will be automatically
removed by our dependency graph processor. More importantly, we have stored both of
the defined symbols from the right-hand side of (6.8) in a single dependency tuple in the
probabilistic framework, while we generate two separate dependency pairs for them in the
non-probabilistic framework. We now go over each processor and explain the differences
in both frameworks.

Dependency Graph Processor and Usable Pairs
For the non-probabilistic framework, we get the following (DP(Rdiv), Rdiv)-dependency
graph:

minus#(s(x), s(y)) → minus#(x, y)

div#(s(x), s(y)) → minus#(x, y)

div#(s(x), s(y)) → div#(minus(x, y), s(y))

Here, we have two SCCs and get

ProcDG(DP(Rdiv), Rdiv) = {
(
{(6.9)}, Rdiv

)
,
(
{(6.11)}, Rdiv

)
}

For the probabilistic framework, we get the following (DT (Sdiv), Sdiv)-dependency graph:

DT ((6.5)) DT ((6.6))

DT ((6.7)) DT ((6.8))

Here, we have two SCCs as well and get

ProcDG(DT (Sdiv), Sdiv) = {
(
{DT ((6.6))}, Sdiv

)
,
(
{DT ((6.8))}, Sdiv

)
}

We can see that the dependency pairs with an empty set in the distribution on the right-
hand side get removed. The difference for both frameworks is that in the non-probabilistic
framework, we got rid of the dependency pair div#(s(x), s(y)) → minus#(x, y) as it is not
contained in any SCC. In the probabilistic framework, we coupled the two dependency
pairs together in the dependency tuple for the fourth rule, which means that we are still
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keeping track of the dependency term minus#(x, y) in the set of the right-hand side of
DT ((6.8)). Here comes our new processor, the usable pairs processor, into the play. Using
the usable pairs processor, we can remove the pair

(
minus#(x, y), 1.1

)
from the right-hand

side of DT ((6.8)) in the DP problem ({DT ((6.8))}, Rdiv) so that we result with

ProcUP({DT ((6.8))}, Rdiv) = {
(
{DT ((6.8))′}, Rdiv

)
}

with

DT ((6.8))′ =
(
div#(s(x), s(y)), div(s(x), s(y))

)
→ { 1 :

(
⟨{

(
div#(minus(x, y), s(y)), 1

)
}⟩, s(div(minus(x, y), s(y)))

)
}

All in all, we get the same result for both frameworks w.r.t. the dependency graph. This is
not a big surprise since the definition of the probabilistic dependency graph, and the usable
pairs processor only looked at the non-probabilistic structure of the PTRS. Furthermore,
we use the same abstraction for both frameworks for the computable dependency graph
processor, so there is also no difference in that regard.

Usable Rules Processor
The usable pairs processor is completely the same for both frameworks, as we are again
using the non-probabilistic structure of the PTRS and the dependency tuples in the
probabilistic framework. In the non-probabilistic framework, we get

ProcUR

(
{(6.9)}, Rdiv

)
= {

(
{(6.9)},∅

)
}

ProcUR

(
{(6.11)}, Rdiv

)
= {

(
{(6.11)}, {(6.1), (6.2)}

)
}

and in the probabilistic framework, we get

ProcUR

(
{DT ((6.6))}, Sdiv

)
= {

(
{DT ((6.6))},∅

)
}

ProcUR

(
{DT ((6.8))′}, Sdiv

)
= {

(
{DT ((6.8))′}, {(6.5), (6.6)}

)
}

Reduction Pair Processor
The reduction pair processor is the only processor where we have a fundamental difference
between both frameworks. Besides the obvious disadvantage that we are only allowing
multilinear polynomial interpretations in the probabilistic setting, there is also a difference
based on the fact that we are working with dependency tuples instead of dependency pairs.
Let us once again look at the DP problems (DP(Rdiv), Rdiv) and (DT (Sdiv), Sdiv). If we
want to remove all of the dependency pairs using the reduction pair processor, then in the
non-probabilistic framework, we need to find a polynomial interpretation such that

Pol(minus#(s(x), s(y))) > Pol(minus#(x, y)) (6.12)
Pol(div#(s(x), s(y))) > Pol(minus#(x, y)) (6.13)
Pol(div#(s(x), s(y))) > Pol(div#(minus(x, y), s(y))) (6.14)

In the probabilistic framework, we would need to find a polynomial interpretation such
that
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6. Comparison of the Frameworks

Pol(minus#(x, O)) > Pol(∅) = 0 (6.15)
Pol(minus#(s(x), s(y))) > Pol(minus#(x, y)) (6.16)

Pol(div#(O, s(y))) > Pol(∅) = 0 (6.17)
Pol(div#(s(x), s(y))) > Pol(⟨{

(
div#(minus(x, y), s(y)), 1

)
,
(
minus#(x, y), 1.1

)
}⟩) (6.18)

= Pol(div#(minus(x, y), s(y))) + Pol(minus#(x, y))

This is strictly harder to satisfy than the three inequations (6.12), (6.13) and (6.14), due
to the fact that we have the sum of Pol(div#(minus(x, y), s(y))) and Pol(minus#(x, y)) in
the inequations for the probabilistic RPP, while we have to independent inequations for
the non-probabilistic RPP. The reason for this difference is that in order to prove AST,
we have to take the number of occurrences of a defined symbol into account, while for a
termination proof, we only have to show the existence of an infinite path.
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7 Conclusion

In this thesis, we developed new results in the research areas of probabilistic rewriting and
automatic termination analysis of probabilistic programs. For probabilistic rewriting, we
used the definition of a probabilistic term rewriting system of Avanzini et al. [2]. We adapted
different rewrite strategies like innermost rewriting and leftmost innermost rewriting to
the probabilistic setting. Here, we have shown that in contrast to the non-probabilistic
setting, we have no equality between leftmost innermost almost-sure termination and
innermost almost-sure termination. We also created a new way to view rewrite sequences
as a tree and characterized almost-sure termination with this new tree representation.
Regarding the automatic termination analysis for probabilistic term rewriting systems,
we first developed a technique to prove AST automatically by finding a polynomial
interpretation that satisfies certain inequalities. In addition to this direct application of
polynomial interpretations, we were able to adapt the dependency pair framework to the
probabilistic setting. This adaption includes a new definition of dependency tuples and
chains. For this new probabilistic dependency pair framework, we were able to adapt
three of the most important processors (the reduction pair processor, the dependency
graph processor, and the usable rules processor) to the probabilistic setting. It seems very
likely that we will also be able to adapt further processors to the probabilistic setting
in the future. Furthermore, we introduced two new processors specifically designed for
the probabilistic setting (the usable pairs processor and the not probabilistic processor).
We were able to prove the soundness and completeness of all processors, except for the
usable rules processors. To create a complete usable rules processor, we need a third
component in our DP problem, which we omitted for readability in this thesis. With
all those processors, we can now split a huge DP problem into simpler ones until we
prove innermost AST for all of them. Since the DP framework is very powerful in the
non-probabilistic setting, we expect that also the probabilistic DP framework will be
very effective. We are currently implementing our new probabilistic DP framework into
the Automated Program Verification Environment (AProVE) to test its applicability in
practice and compare it to other existing tools that analyze PTRSs, which currently only
is the tool of Avanzini et al. [2].
Whether there exist syntactic properties which guarantee that innermost almost-sure
termination and almost-sure termination are equal remains an open question that we plan
to address in the future. If there exist such properties similar to the ones in the non-
probabilistic setting, then we can also prove almost-sure termination w.r.t. an arbitrary
evaluation strategy using our newly developed techniques for innermost almost-sure
termination. An important open problem for future research is adapting our probabilistic
DP framework for innermost AST to a probabilistic DP framework for AST with an
arbitrary evaluation strategy so that we do not rely on the syntactic properties mentioned
before. The critical problem here is the definition of our probabilistic dependency tuples.
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7. Conclusion

To allow arbitrary evaluation strategies, we have to adjust the definition of the dependency
tuples and the PPTRS to create a sound chain criterion in this case. If we manage to do
this, the processors must also be adapted to this new setting. Note that the usable rules
processor only works w.r.t. innermost evaluation, but all of the other processors also work
w.r.t. an arbitrary evaluation strategy in the non-probabilistic setting.
Currently, we cannot prove that a given PTRS is not innermost AST automatically,
as there exists no probabilistic processor to do so. If we can adapt a processor from
the non-probabilistic setting that shows non-termination, then we can also use our DP
framework and all of its processors to disprove AST since every processor we have so far
is also complete (except for the usable rules processor that can be made complete with
an additional third component in our DP problem). And if we are able to disprove AST
automatically, then it would also be interesting to adapt our DP framework to prove that
a given PTRS converges only with a probability below some fixed bound and to compute
this bound automatically. Another important question is whether we can adapt our DP
framework to prove positive almost-sure termination. For such a task, we would need to
adapt our DP framework more drastically since PAST is not compositional, while AST
is, and one of the core lemmas (the P-Partition Lemma 5.2.20) for our probabilistic DP
framework heavily relies on the compositionality of AST. Since we want to analyze arbitrary
probabilistic programs, it is also an important task to adapt the transformation of other
programming languages like Java into term rewriting systems to the probabilistic setting
so that we also can analyze more complex probabilistic programming languages. Finally,
another interesting task is to create a framework that automatically analyzes the expected
runtimes of probabilistic term rewriting systems. Here, we have an existing framework
in the non-probabilistic setting that analyzes the complexity of a given TRS and already
works with dependency tuples. It is also tempting to use our new definitions of coupled
positional dependency tuples to revisit this complexity analysis in the non-probabilistic
setting.
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