Übersicht

- 2 Reguläre Sprachen
 - 2.1 Reguläre Ausdrücke
 - 2.2 Endliche Automaten
 - 2.3 Nichtdeterministische endliche Automaten
 - 2.4 Die Potenzmengenkonstruktion
 - 2.5 NFAs mit ϵ -Übergängen
 - 2.6 Minimale DFAs und der Satz von Myhill-Nerode
 - 2.7 Berechnung des minimalen DFA
 - 2.8 Umwandlung eines Automaten in einen regulären Ausdruck II
 - 2.9 Das Pumping-Lemma
 - 2.10 Entscheidungsprobleme für reguläre Sprachen

2.10 Entscheidungsprobleme für reguläre Sprachen

Das Leerheitsproblem für reguläre Sprachen

Satz 2.10.1

Das Leerheitsproblem für reguläre Sprachen ist in polynomieller Zeit lösbar:

Eingabe: Ein DFA, NFA oder ein regulärer Ausdruck für Sprache L

Frage: Ist $L = \emptyset$?

Beweis.

DFA, NFA: Ist ein Endzustand vom Anfangszustand erreichbar? Lineare Laufzeit.

Regulärer Ausdruck: Lineare Laufzeit.

2.10 Entscheidungsprobleme für reguläre Sprachen

Das Wortproblem für reguläre Sprachen

Satz 2.10.2

Das Wortproblem für reguläre Sprachen ist in polynomieller Zeit lösbar:

Eingabe: Ein DFA, NFA oder ein regulärer Ausdruck für Sprache L

Frage: Ist $w \in L$?

Beweis.

DFA: Algorithmus aus Vorlesung

Laufzeit: O(|w|)

NFA: Algorithmus aus Vorlesung

Laufzeit: $O(|Q| \cdot |w|)$

Regulärer Ausdruck: In NFA verwandeln.

2.10 Entscheidungsprobleme für reguläre Sprachen

Das Universalitätsproblem für reguläre Sprachen

Satz 2.10.3

Das Universalitätsproblem für reguläre Sprachen ist algorithmisch lösbar:

Eingabe: DFA, NFA oder regulärer Ausdruck für Sprache L

Frage: Ist $L = \Sigma^*$?

Beweis.

DFA: Sind alle erreichbaren Zustände Endzustände? Lineare Laufzeit.

NFA, regulärer Ausdruck: In DFA verwandeln.

Exponentielle Laufzeit.

Folie 114

Formale Systeme, Automaten, Prozesse

2 Reguläre Sprachen

2.10 Entscheidungsprobleme für reguläre Sprachen

Das Endlichkeitsproblem für reguläre Sprachen

Satz 2.10.4

Das Endlichkeitsproblem für reguläre Sprachen ist in Linearzeit lösbar:

Eingabe: DFA, NFA oder regulärer Ausdruck für Sprache L

Frage: Ist L endlich?

Beweis.

NFA, DFA: Gibt es

- eine starke Zusammenhangskomponente, die vom Startzustand erreichbar ist, und
- 2 von der aus ein Endzustand erreichbar ist?

Lineare Laufzeit.

Regulärer Ausdruck: Lineare Laufzeit.

Das Äquivalenzproblem für reguläre Sprachen

Satz 2.10.5

Das Äquivalenzproblem für reguläre Sprachen ist algorithmisch lösbar:

Eingabe: Zwei DFAs, NFAs oder reguläre Ausdrücke für Sprachen L_1 und L_2

Frage: Ist $L_1 = L_2$?

Beweis.

DFA: Minimiere beide und teste ob sie dann isomorph sind.

NFA, Regulärer Ausdruck: In DFA verwandeln.