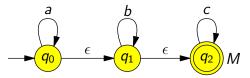
Übersicht

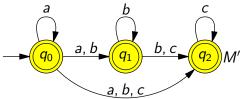
- 2 Reguläre Sprachen
 - 2.1 Reguläre Ausdrücke
 - 2.2 Endliche Automaten
 - 2.3 Nichtdeterministische endliche Automaten
 - 2.4 Die Potenzmengenkonstruktion
 - 2.5 NFAs mit ϵ -Übergängen
 - 2.6 Minimale DFAs und der Satz von Myhill-Nerode
 - 2.7 Berechnung des minimalen DFA
 - 2.8 Umwandlung eines Automaten in einen regulären Ausdruck II
 - 2.9 Das Pumping-Lemma
 - 2.10 Entscheidungsprobleme für reguläre Sprachen

NFAs mit ϵ -Übergängen



Dies ist kein NFA!

Ziel: Erkenne die Sprache $a^*b^*c^*$.



NFA ist komplizierter!

Definition 2.5.1

Ein NFA mit ϵ -Übergängen ist ein 5-Tupel $M = (Q, \Sigma, \delta, q_0, F)$ mit

- $\bullet : Q \times (\Sigma \cup \{\epsilon\}) \to 2^Q,$
- Q, Σ , q_0 , F wie bei NFAs.

Für $q \in Q$:

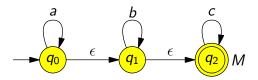
$$\epsilon$$
-Hülle $(q):=\{\ q_n\in Q\ |\ ext{es gibt }q_1,\ldots,q_n ext{ mit }q=q_1 \$ und $q_{i+1}\in \delta(q_i,\epsilon) ext{ für alle }1\leq i< n\}$

Für $S \subseteq Q$:

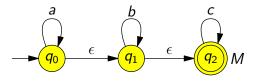
$$\epsilon$$
-Hülle(S) := $\bigcup_{q \in S} \epsilon$ -Hülle(q)

2 Reguläre Sprachen2.5 NFAs mit ε-Übergängen

Beispiel



- ϵ -Hülle $(q_0) = \{q_0, q_1, q_2\}$
- ϵ -Hülle $(q_1) = \{q_1, q_2\}$
- ϵ -Hülle $(q_2) = \{q_2\}$
- ullet ϵ -Hülle $(\{q_1,q_2\})=\{q_1,q_2\}$



Definition 2.5.2

Sei $M = (Q, \Sigma, \delta, q_0, F)$ ein NFA mit ϵ -Übergängen. Es sei $q \in Q$, $w \in \Sigma^*$ und $a \in \Sigma$.

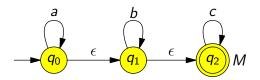
- $\hat{\delta}(q, \epsilon) = \epsilon$ -Hülle(q)
- $\hat{\delta}(q, w a) = \bigcup_{p \in \hat{\delta}(q, w)} \epsilon$ -Hülle $(\delta(p, a))$

$$\hat{\delta}(q, a_1 \dots a_n)$$
 sind Zustände, die von q erreichbar sind:

- lacktriangle Erst über ϵ -Transitionen
- 2 Dann über a_1 -Transition
- **3** Dann über ϵ -Transitionen

- Oann über a2-Transition
- **5** Dann über ϵ -Transitionen
- 6

Beispiel



•
$$\delta(q_0, a) = \{q_0\}$$

•
$$\hat{\delta}(q_0, a) = \{q_0, q_1, q_2\}$$

•
$$\delta(q_0, b) = \emptyset$$

•
$$\hat{\delta}(q_0, b) = \{q_1, q_2\}$$

•
$$\delta(q_0, \epsilon) = \{q_1\}$$

•
$$\hat{\delta}(q_0, \epsilon) = \{q_0, q_1, q_2\}$$

$$ullet$$
 ϵ -Hülle $(q_0)=\{q_0,q_1,q_2\}$

•
$$\epsilon$$
-Hülle $(q_1) = \{q_1, q_2\}$

Satz 2.5.3

Sei $M = (Q, \Sigma, \delta, q_0, F)$ ein NFA mit ϵ -Übergängen. Dann gibt es einen NFA M' mit L(M') = L(M).

Beweis.

 $M' = (Q, \Sigma, \delta', q_0, F')$ mit

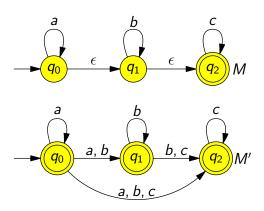
- $F' = \{ q \in Q \mid \epsilon\text{-H\"ulle}(q) \cap F \neq \emptyset \},$
- $\delta'(q, a) = \hat{\delta}(q, a)$.

Informell:

 $p \in \delta'(q, a)$ gdw. in M gibt es Pfad von q nach p, der

- lacktriangle zunächst mit ϵ beschriftet ist,
- dann einen a-Übergang hat,
- \odot dann wieder mit ϵ beschriftet ist.

Beispiel



Die Thompson-Konstruktion

Gegeben regulärer Ausdruck r.

Konstruktion eines NFA M mit ϵ -Übergängen, so dass L(M) = L(r).

Vorgehen: Induktiv über Aufbau von r.

• $r = \emptyset$:

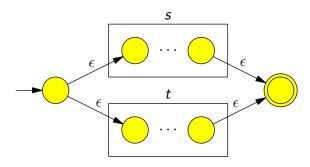
 \bullet $r = \epsilon$:

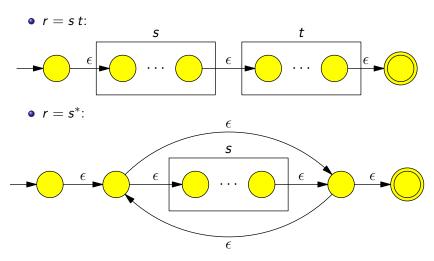
$$\epsilon$$

$$\bullet$$
 $r=a$:

2 Reguläre Sprachen2.5 NFAs mit ε-Übergängen

•
$$r = s + t$$
:





• r = (s): Automat für s

Satz 2.5.4

Zu jedem regulären Ausdruck r gibt es einen NFA M mit ϵ -Übergängen, so dass L(M) = L(r).

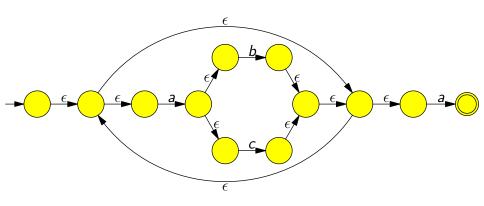
Beweis.

Thompson-Konstruktion.

Korrektheit:

Strukturelle Induktion über den Aufbau regulärer Ausdrücke.

- 2 Reguläre Sprachen 2.5 NFAs mit ε-Übergängen
 - Beispiel



$$(a(b+c))^*a$$

Größe des NFA linear in der Länge des regulären Ausdrucks!

Robustheit regulärer Sprachen

Satz 2.5.5

DFAs, NFAs, NFAs mit ϵ -Übergängen und reguläre Ausdrücke charakterisieren jeweils die regulären Sprachen.

Beweis.

- regulärer Ausdruck $\rightarrow \epsilon$ -NFA: Thompson-Konstruktion (Satz 2.5.4)
- **2** ϵ -NFA \rightarrow NFA: Eliminierung von ϵ -Kanten (Satz 2.5.3)
- NFA → DFA: Potenzautomat (Satz 2.4.2)
- **1** DFA \rightarrow regulärer Ausdruck: L_{ij}^k -Konstruktion (Satz 2.2.3)

Robustheit regulärer Sprachen

Satz 2.5.6

Die regulären Sprachen sind abgeschlossen unter Vereinigung, Schnitt, Konkatenation, Kleene'scher Hülle, Komplement, Differenz und Homomorphismen.

- Vereinigung: Reguläre Ausdrücke (Satz 2.1.6)
- Schnitt: DFAs Produktautomat (Satz 2.2.6)
- Konkatenation: Reguläre Ausdrücke (Satz 2.1.6)
- Kleene'sche Hülle: Reguläre Ausdrücke (Satz 2.1.6)
- Komplement: DFAs Komplementärautomat (Satz 2.2.4)
- Differenz: Komplement und Schnitt
- Homomorphismen: Reguläre Ausdrücke (Satz 2.1.6)

Simulation eines NFA

```
S := \{q_0\};
while (es gibt noch ein Zeichen im Wort w) {
c := nächstes Zeichen;
H := \varnothing;
for (q \text{ in } S) \{H := H \cup \delta(q, c);\}
S := H;
}
if (S \cap F != \varnothing) return true;
else return false;
```

Laufzeit: $O(|Q| \cdot |w|)$, falls $|\Sigma|$ konstant.

Bei DFA: O(|w|)

Einige Zwischenfragen

Welche Konstruktionen funktionieren auch für NFAs?

- Komplementärautomat Nein
- Produktautomat Ja

Wer ist besser? NFA oder DFA?

- Vereinigung zweier Sprachen NFA
- Schnitt zweier Sprachen DFA
- Sonstruktion aus einem regulären Ausdruck NFA
- Verwandeln in einen regulären Ausdruck egal
- Somplementieren DFA
- Simulieren DFA
- Größe NFA