Übersicht

- 2 Reguläre Sprachen
 - 2.1 Reguläre Ausdrücke
 - 2.2 Endliche Automaten
 - 2.3 Nichtdeterministische endliche Automaten
 - 2.4 Die Potenzmengenkonstruktion
 - 2.5 NFAs mit ϵ -Übergängen
 - 2.6 Minimale DFAs und der Satz von Myhill-Nerode
 - 2.7 Berechnung des minimalen DFA
 - 2.8 Umwandlung eines Automaten in einen regulären Ausdruck II
 - 2.9 Das Pumping-Lemma
 - 2.10 Entscheidungsprobleme für reguläre Sprachen

- 2 Reguläre Sprachen
 - 2.6 Minimale DFAs und der Satz von Myhill-Nerode

Die Myhill-Nerode-Relation \equiv_I

Definition 2.6.1

Es sei $L \subseteq \Sigma^*$.

Definiere $\equiv_L \subseteq \Sigma^* \times \Sigma^*$ als

$$u \equiv_L v \iff (u \ w \in L \Leftrightarrow v \ w \in L \ \text{für alle} \ w \in \Sigma^*).$$

Der Index einer Äquivalenzrelation ist die Anzahl ihrer Äquivalenzklassen.

Interessanter Fall: \equiv_L hat endlichen Index.

- 2 Reguläre Sprachen
 - 2.6 Minimale DFAs und der Satz von Myhill-Nerode

Beispiel 1

Es sei $L = 0^*1^*$.

- $001 \equiv_{L} 0111$
- $010 \not\equiv_L 0111$, denn $010 \not\in L$, $0111 \in L$.
- $00 \not\equiv_L 00001$, denn $000 \in L$, $000010 \notin L$.

Wieviele Äquivalenzklassen hat \equiv_L ?

Drei:

- **1** 0*
- **2** 0*1⁺
- $(0+1)^* 10 (0+1)^*$

Beispiel 2

Was ist der Index von \equiv_L für diese Sprachen?

- $L = \{0, 1\}^*$
- \bullet $L=\varnothing$
- $L = \{ w \in \{a, b, c\}^* \mid |w| \text{ ist Vielfaches von } 7 \}$
- **6** $L = \{ a^n b^n \mid n \ge 0 \}$

- 2 Reguläre Sprachen
 - 2.6 Minimale DFAs und der Satz von Myhill-Nerode

Lemma 2.6.2

 $L \subseteq \Sigma^*$ regulär $\implies \equiv_L$ hat endlichen Index.

Beweis.

- 1 L regulär. Daher L = L(M) für einen DFA $M = (Q, \Sigma, \delta, q_0, F)$.
- ② Definiere $u \sim v \iff \hat{\delta}(q_0, u) = \hat{\delta}(q_0, v)$.
- **4** Also hat \sim mindestens so viele Äquivalenzklassen wie \equiv_L .
- \bullet hat aber endlichen Index.

- 2 Reguläre Sprachen
 - 2.6 Minimale DFAs und der Satz von Myhill-Nerode

Lemma 2.6.3

$$L \subseteq \Sigma^*$$
 regulär $\iff \equiv_L$ hat endlichen Index.

Beweis.

- **1** $L \subseteq \Sigma^*$ und Index von \equiv_L sei endlich.
- **2** Konstruiere $M = (Q, \Sigma, \delta, [\epsilon]_{\equiv_L}, F)$ mit
 - $Q = \{ [w]_{\equiv_I} \mid w \in \Sigma^* \}$
 - $\delta \colon Q \times \Sigma \to Q \text{ mit } \delta([w]_{\equiv_L}, a) = [w \ a]_{\equiv_L}$
 - $F = \{ [w]_{\equiv_L} \mid w \in L \}$
- **3** Q endlich, da Index von \equiv_L endlich.
- δ wohldefiniert, da $[u]_{\equiv_L} = [v]_{\equiv_L} \Rightarrow [u \ a]_{\equiv_L} = [v \ a]_{\equiv_L}$

- 2 Reguläre Sprachen
 - 2.6 Minimale DFAs und der Satz von Myhill-Nerode

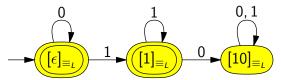
Beispiel

Es sei L = 0*1*.

 \equiv_{L} hat die Äquivalenzklassen

- \bullet $[\epsilon]_{\equiv_L} = 0^*$,
- $[1]_{\equiv_L} = 0*1^+$ und
- $[10]_{\equiv_L} = (0+1)^* \, 10 \, (0+1)^*.$

Der Myhill–Nerode–Automat aus Lemma 2.6.3:



- 2 Reguläre Sprachen
 - 2.6 Minimale DFAs und der Satz von Myhill-Nerode

Der Satz von Myhill-Nerode

Satz 2.6.4

- **1** L $\subseteq \Sigma^*$ ist genau dann regulär, wenn \equiv_L endlichen Index hat.
- ② M ein $DFA \Longrightarrow \sim_M$ ist eine $Verfeinerung\ von \equiv_{L(M)}$.
- **3** Es gibt zu jeder regulären Sprache $L \subseteq \Sigma^*$ einen bis auf Isomorphie eindeutigen minimalen DFA $M = (Q, \Sigma, \delta, q_0, F)$ mit L = L(M).

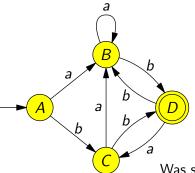
Beweis.

- Folgt aus Lemma 2.6.2 und Lemma 2.6.3.
- **2** Beweis von Lemma 2.6.2: $u \sim v \Rightarrow u \equiv_I v$.
- Beweisskizze:

Da \sim eine Verfeinerung von \equiv_L ist, muss $\sim = \equiv_L$ gelten, wenn ihre Indexe gleich sind.

- 2 Reguläre Sprachen
 - 2.6 Minimale DFAs und der Satz von Myhill-Nerode

Beispiel



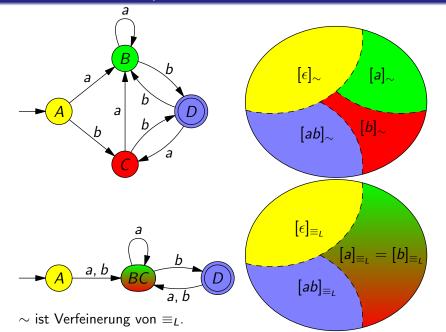
Was sind die Äquivalenzklassen von \sim ?

Natürlich $[\epsilon]_{\sim}$, $[a]_{\sim}$, $[b]_{\sim}$ und $[ab]_{\sim}$.

Was sind die Äquivalenzklassen von $\equiv_{L(M)}$?

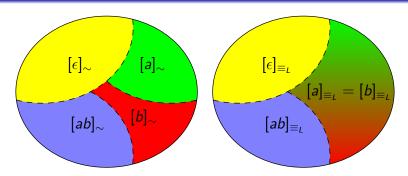
Es sind $[\epsilon]_{\sim}$, $[a]_{\sim} \cup [b]_{\sim}$ und $[ab]_{\sim}$.

- 2 Reguläre Sprachen
 - 2.6 Minimale DFAs und der Satz von Myhill-Nerode



- 2 Reguläre Sprachen
 - 2.6 Minimale DFAs und der Satz von Myhill-Nerode

Eindeutigkeit des minimalen DFA



- Jede Äquivalenzklasse von \equiv_L ist Vereinigung von Äquivalenzklassen von \sim .
- \bullet Jede Äquivalenzklasse von \sim ist eindeutig einem erreichbaren Zustand zugeordnet.
- Haben \sim und \equiv_L den gleichen Index, dann sind sie gleich.

Definition 2.6.5

Es seien DFAs gegeben:

- $M = (Q, \Sigma, \delta, q_0, F)$
- $M' = (Q', \Sigma, \delta', q'_0, F')$

Eine Abbildung h: $Q \rightarrow Q'$ mit

- $h(q_0) = q'_0$

heißt Homomorphismus von M nach M'.

Ist h bijektiv, dann ist es ein Isomorphismus.

Beweis von Satz 2.6.4 (3)

Es
$$M = (Q, \Sigma, \delta, q_0, F)$$
 ein DFA mit $L(M) = L$.

$$\sim$$
 definiert als: $u \sim v \iff \hat{\delta}(q_0, u) = \hat{\delta}(q_0, v)$.

Sei $M' = (Q', \Sigma, \delta', [\epsilon]_{\sim}, F')$ mit

- $Q' = \Sigma^* / \sim$ (Äquivalenzklassen von \sim)
- $\delta'([w]_{\sim}, a) = [w \ a]_{\sim}$
- $F' = \{ [w]_{\sim} \mid w \in L(M) \}$

M und M' sind isomorph.

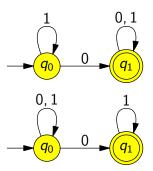
$$h(q) = \{ \ w \in \Sigma^* \mid \hat{\delta}(q_0, w) = q \, \}$$
 ist ein Isomorphismus.

- M' hängt nur von L und \sim ab.
- $\sim = \equiv_L$, falls M minimal.
- Also hängt M' nur von L ab (der Myhill-Nerode-DFA).

Folgerung: Alle minimalen Automaten sind isomorph.

Frage:

Sind auch kleinste NFAs isomorph?



Gegenbeispiel! Beide akzeptieren $(0+1)^*0(0+1)^*$.

Die Eindeutigkeit des minimalen DFAs ist etwas besonderes!

Andere Konsequenz des Satzes von Myhill-Nerode:

Die Anzahl der Zustände des minimalen Automaten für L ist der Index von \equiv_L .

Zwei wichtige Anwendungen:

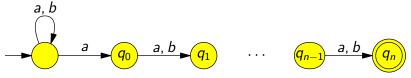
- Untere Schranke für die Anzahl der Zustände eines DFA, der L akzeptiert.
- Beweis, dass eine Sprache nicht regulär ist.

- 2 Reguläre Sprachen
 - 2.6 Minimale DFAs und der Satz von Myhill-Nerode

(1) Untere Schranke für Zustände eines DFA

Es sei $L = (a + b)^* a (a + b)^n$ mit $n \in \mathbb{N}$.

NFA für L:



Es sind n + 2 Zustände.

Wähle $K = (a + b)^n$.

Behauptung: Falls $u, v \in K$ mit $u \neq v$, dann $u \not\equiv_L v$.

Beweis:

o.B.d.A.
$$u=w$$
 a u' , $v=w$ b v' . Dann $ua^{n-|u'|}\in L$, $va^{n-|u'|}\notin L$.

Also hat \equiv_L mindestens $|K| = 2^n$ viele Äquivalenzklassen.

Jeder DFA der L akzeptiert, hat mindestens 2^n Zustände.

(2) Beweis, dass Sprache nicht regulär ist

Es sei $L = \{ a^n b^n \mid n \ge 0 \}.$

Wähle $K = a^*$.

Wieder gilt:

 $u, v \in K$, $u \neq v$, dann $u \not\equiv_L v$.

Denn: $a^i b^i \in L$, $a^j b^i \notin L$, falls $a^i \neq a^j$.

Index von \equiv_L ist mindestens $|K| = \infty$.

Wäre L regulär, dann hätte der minimale DFA mindestens |K| Zustände.

Das beweist, dass L nicht regulär ist.

(2) Beweis, dass Sprache nicht regulär ist

Es sei $L = \{ a^p \mid p \text{ ist Primzahl } \}.$

Vorüberlegung:

Es seien $p_1 < p_2$ zwei Primzahlen und $d = p_2 - p_1$, d.h. d > 1.

Betrachte $p_1 + n * d$ mit $1 \le n \le p_1$.

Behauptung:

Es gibt ein *n* mit

- $1 \le n \le p_1$
- $p_1 + n * d$ ist prim
- $p_1 + (n+1) * d = p_2 + n * d$ ist nicht prim

Wähle K = L.

Es seien $a^{p_1}, a^{p_2} \in K$ mit $p_1 < p_2$.

Dann ist $a^{p_1}a^{n*d} \in L$ und $a^{p_2}a^{n*d} \notin L$.

Also hat \equiv_I unendlichen Index, d.h. L ist nicht regulär.