Übersicht

2 Reguläre Sprachen

- 2.1 Reguläre Ausdrücke
- 2.2 Endliche Automaten
- 2.3 Nichtdeterministische endliche Automaten
- 2.4 Die Potenzmengenkonstruktion
- 2.5 NFAs mit ϵ -Übergängen
- 2.6 Minimale DFAs und der Satz von Myhill-Nerode
- 2.7 Berechnung des minimalen DFA
- 2.8 Umwandlung eines Automaten in einen regulären Ausdruck II
- 2.9 Das Pumping-Lemma
- 2.10 Entscheidungsprobleme für reguläre Sprachen

Satz 2.9.1 (Pumping-Lemma)

Sei L eine reguläre Sprache. Dann gibt es $n \in \mathbf{N}$, so dass jedes Wort $w \in L$ mit $|w| \ge n$ in w = x y z zerlegt werden kann mit

- |y| > 0
- $3 x y^i z \in L \text{ für alle } i \geq 0$

Beweis.

Es sei L = L(M) für einen DFA M mit n Zuständen.

Ist $|w| \ge n$, dann durchläuft M einen Zustand doppelt.

Sei *p* der erste solche Zustand.

Es gibt also w = x y z mit

- $\hat{\delta}(q_0,x) = p,$
- $\bullet \ \hat{\delta}(p,y) = p, |xy| \le n, |y| > 0,$
- $x y^i z \in L$

Das Pumping-Lemma als Spiel

Gegeben sei eine Sprache $L \subseteq \Sigma^*$.

- Alice wählt eine 7ahl n.
- ② Bob wählt ein Wort $w \in L$ mit $|w| \ge n$.
- **③** Alice wählt $x, y, z ∈ Σ^*$ mit w = x y z, |x y| ≤ n, |y| > 0.
- Bob wählt eine Zahl i.

Alice gewinnt, wenn $xy^iz \in L$.

Bob gewinnt, wenn $xy^iz \notin L$.

Falls L regulär ist, kann Alice immer gewinnen. (Gewinnstrategie für Alice)

Falls Bob immer gewinnen kann, dann ist L nicht regulär. (Gewinnstrategie für Bob)

Beispiel

Es sei $L = \{ a^n b^n | n \ge 0 \}.$

- Alice wählt eine Zahl n.
- 2 Bob wählt $w = a^n b^n$.
- 3 Alice wählt $x, y, z \in \{a, b\}^*$ mit w = x y z, $|x y| \le n$, |y| > 0.
- **4** Bob wählt i = 2.

Bob hat gewonnen:

x y y z enthält mehr Vorkommen von a als von b.

Also ist L nicht regulär.

Beispiel

Es sei $L = \{ a^{n^3} \mid n \ge 0 \}.$

- ① Alice wählt eine Zahl n.
- 2 Bob wählt $w = a^{m^3}$ mit m = n + 3.
- Obo Weiß: $x = a^r$, $y = a^s$, $z = a^t$ mit $r + s + t = m^3$. Bob wählt i = 0. Dann ist $x y^0 z$ nicht in L:

$$(m-1)^3 = m^3 - 3m^2 + 3m - 1 < m^3 - m \le |x y^0 z| = r + t < m^3$$

Also ist L nicht regulär.