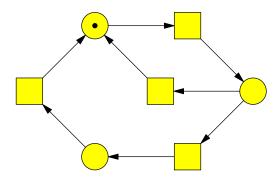
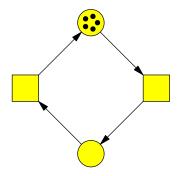
Übersicht

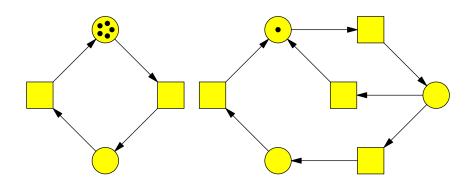
- 5 Prozesse
 - 5.1 Synchronisierte Produkte von Automaten
 - 5.2 Petrinetze



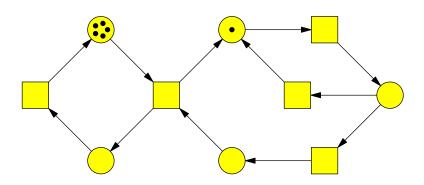
5 Prozesse 5.2 Petrinetze



5.2 Petrinetze



5 Prozesse 5.2 Petrinetze



Folie 243

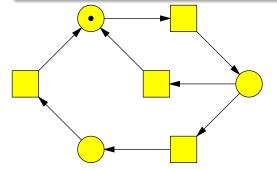
5 Prozesse

5.2 Petrinetze

Definition 5.2.1

Ein Petrinetz ist ein gerichteter, bipartiter Graph N = (P, T, F) mit:

- P, der Menge der Stellen,
- T, der Menge der Transitionen,



5.2 Petrinetze

Markierungen

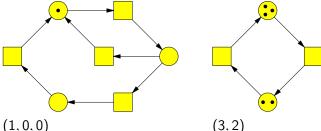
Definition 5.2.2

Es sei N = (P, T, F) ein Petrinetz.

Eine Markierung ist eine Funktion $m: P \rightarrow \mathbf{N}$.

Sie ordnet jeder Stelle eine natürliche Zahl zu.

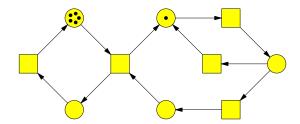
Falls wir die Stellen durch p_1, \ldots, p_n ordnen, können wir eine Markierung kurz als Vektor (m_1, \ldots, m_n) schreiben.

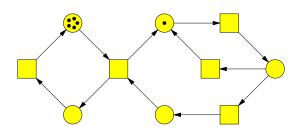


Definition 5.2.3

Es sei N = (P, T, F) ein Petrinetz, $p \in P$, $t \in T$.

- ② $t^{\bullet} = \{ p \in P \mid (t, p) \in F \}$ (Nachbereich von t)





- t ist bezüglich m aktiviert, falls m(p) > 0 für alle $p \in {}^{\bullet}t$.
- t₁ und t₂ sind bezüglich m in Konflikt, falls beide aktiviert sind, aber nur eine schalten kann.
- t_1 und t_2 sind nebenläufig, falls • $t_1 \cap {}^{\bullet}t_2 = \varnothing$.
- m > (0, ..., 0) ist eine *Verklemmung*, falls keine Transition schalten kann.

Folie 247

5 Prozesse 5.2 Petrinetze

Die Schaltrelation

Definition 5.2.4

Es seien N = (P, T, F) ein Petrinetz, $t \in T$ und m, m' Markierungen.

Es gilt $m \xrightarrow{t} m'$ gdw.

Frage: Ist die erste Bedingung redundant?

m' ist von m erreichbar $(m \longrightarrow^* m')$, falls

- m = m' oder
- $m \xrightarrow{t} m''$ für ein $t \in T$ und m' ist von m'' erreichbar.

5.2 Petrinetze

Petrinetze und synchronisierte Produkte

Offensichtlich: Ein Petrinetz kann einen NFA simulieren.

Gegeben seien NFAs M_1 , M_2 ,..., M_k .

Dann ist $M = M_1 \circ \cdots \circ M_k$ wieder ein NFA.

Können wir ein Petrinetz für M konstruieren?

Können wir etwas besseres machen?

Petrinetz, dessen Größe die Summe der Größen von M_i ist!

5.2 Petrinetze

Analyse von Petrinetzen

Gegeben ein Petrinetz und zwei Markierungen m und m'.

Frage: Gilt $m \longrightarrow^* m'$?

Konstruiere einen Erreichbarkeitsbaum (Idee):

- ① Die Wurzel besteht aus m.
- Oie Kinder eines Knotens sind die möglichen Folgemarkierungen.
- (Kinder eines doppelt vorkommenden Knotens weglassen.)

Erreichbarkeit von Markierungen kann so oft leicht nachgewiesen werden.

Beschränktheit kann ebenfalls so nachgewiesen werden.

Inzidenzmatrix

Es sei N = (P, T, F) ein Petrinetz mit $P = (p_1, \dots, p_n)$ und $T = (t_1, \dots, t_k)$.

Definiere die $k \times n$ -Matrizen D^- , D^+ und D:

$$D_{i,j}^{-} = \begin{cases} -1 & \text{falls } p_j \in {}^{\bullet}t_i \\ 0 & \text{sonst} \end{cases}$$

und

$$D_{i,j}^{+} = \begin{cases} 1 & \text{falls } p_j \in t_i^{\bullet} \\ 0 & \text{sonst} \end{cases}$$

$$D = D^- + D^+$$

Satz 5.2.5

Es sei N = (P, T, F) ein Petrinetz und $m, m' \in \mathbf{N}^n$ Markierungen.

Falls m' von m erreichbar ist, dann gibt es ein $x \in \mathbf{N}^k$ mit

$$m'=m+xD$$
.

Beweis.

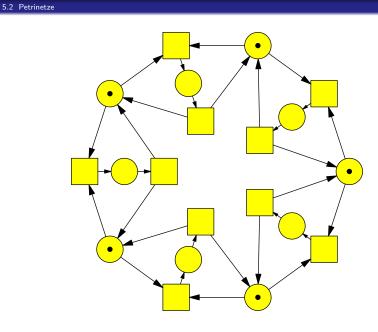
m' = m + (0, ..., 0, 1, 0, ..., 0) D falls eine Transition einmal schaltet.

x ergibt sich als Summe solcher Vektoren einer Schaltfolge.

Auf diese Weise kann oft gezeigt werden, dass eine Markierung nicht erreichbar ist.

5.2 Petrinetze

Die essenden und denkenden Philosophen



Logikprogrammierung

```
V3/4 Di 11:45 – 13:15 AH 3 Prof. Dr. Jürgen Giesl Fr 11:45 – 13:15 AH 1
Ü2 Mi 16:00 – 17:30 AH 3 C. Fuhs, C. Otto, T. Ströder
```

Zuordnung: Theoretische Informatik

(Wahlpfl. Bachelor, Master, Diplom)

Imperative Programmiersprachen

Programm = Folge von nacheinander ausgeführten Anweisungen

Logische Programmiersprachen

Programm = Wissensbasis

Spezifiziert was berechnet werden soll, nicht wie