
The function map

suclist :: [Int] -> [Int]

suclist [] = []

suclist (x:xs) = suc x : suclist xs

sqrtlist :: [Float] -> [Float]

sqrtlist [] = []

sqrtlist (x:xs) = sqrt x : sqrtlist xs

map :: (a -> b) -> [a] -> [b]

map g [] = []

map g (x:xs) = g x : map g xs

⇓
suclist :: [Int] -> [Int] sqrtlist :: [Float] -> [Float]

suclist = map suc sqrtlist = map sqrt

1



The function filter

dropEven :: [Int] -> [Int]

dropEven [] = []

dropEven (x:xs) | odd x = x : dropEven xs

| otherwise = dropEven xs

dropUpper :: [Char] -> [Char]

dropUpper [] = []

dropUpper (x:xs) | isLower x = x : dropUpper xs

| otherwise = dropUpper xs

filter :: (a -> Bool) -> [a] -> [a]

filter g [] = []

filter g (x:xs) | g x = x : filter g xs

| otherwise = filter g xs

⇓
dropEven :: [Int] -> [Int] dropUpper :: [Char] -> [Char]

dropEven = filter odd dropUpper = filter isLower

2



The function foldr

sum :: Num a => [a] -> a prod :: Num a => [a] -> a

sum [] = 0 prod [] = 1

sum (x:xs) = x + sum xs prod (x:xs) = x * prod xs

concat :: [[a]] -> [a]

concat [] = []

concat (x:xs) = x ++ concat xs

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr g e [] = e

foldr g e (x:xs) = g x (foldr g e xs)

⇓
sum :: Num a => [a] -> a prod :: Num a => [a] -> a

sum = foldr (+) 0 prod = foldr (*) 1

concat :: [[a]] -> [a]

concat = foldr (++) []

3


