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Exercise 1 (4 + 3 + 4 + 6 + 5 = 22 points)

The following data structure represents polymorphic lists that can contain values of two types
in arbitrary order:

data DuoList a b = C a (DuoList a b) | D b (DuoList a b) | E

Consider the following list zs of integers and characters:

[ 4, ′a′, ′b′, 6 ]

The representation of zs as an object of type DuoList Int Char in Haskell would be:

C 4 (D ’a’ (D ’b’ (C 6 E)))

Implement the following functions in Haskell.

(a) The function foldDuo of type

(a -> c -> c) -> (b -> c -> c) -> c -> DuoList a b -> c

works as follows: foldDuo f g h xs replaces all occurrences of the constructor C in the
list xs by f, it replaces all occurrences of the constructor D in xs by g, and it replaces all
occurrences of the constructor E in xs by h. So for the list zs above,

foldDuo (*) (\x y -> y) 3 zs

should compute

(*) 4 ((\x y -> y) ’a’ ((\x y -> y) ’b’ ((*) 6 3))),

which in the end results in 72. Here, C is replaced by (*), D is replaced by (\x y -> y),
and E is replaced by 3.

2
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(b) Use the foldDuo function from (a) to implement the cd function which has the type
DuoList Int a -> Int and returns the sum of the entries under the data constructor C

and of the number of elements built with the data constructor D.

In our example above, the call cd zs should have the result 12. The reason is that zs

contains the entries 4 and 6 under the constructor C and it contains two elements ’a’ and
’b’ built with the data constructor D.
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(c) Consider the following data type declaration for natural numbers:

data Nats = Zero | Succ Nats

A graphical representation of the first four levels of the domain for Nats could look like this:

Succ (Succ Zero) Succ (Succ (Succ ⊥))

iiiiiiiiiiiiiiii

Succ Zero Succ (Succ ⊥)

llllllllllllll

Zero Succ ⊥

qqqqqqqqqqqq

⊥

We define the following data type Single, which has only one data constructor One:

data Single = One

Sketch a graphical representation of the first three levels of the domain for the data type
DuoList Bool Single.
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(d) The digit sum of a natural number is the sum of all digits of its decimal representation.
For example, the digit sum of the number 6042 is 6 + 0 + 4 + 2 = 12. Write a Haskell
function digitSum :: Int -> Int that takes a natural number and returns its digit sum.
Your function may behave arbitrarily on negative numbers. It can be helpful to use the
pre-defined functions div, mod :: Int -> Int -> Int to compute result and remainder
of division, respectively. For example, div 7 3 is 2 and mod 7 3 is 1.

Now implement a function digitSumList :: Int -> Int -> [Int] where digitSumList
n b returns a list of all those numbers x where 0 ≤ x ≤ b and where the digit sum of x
is n. Perform your implementation only with the help of a list comprehension, i.e., you
should use exactly one declaration of the following form:

digitSumList ... = [ ... | ... ]

Of course, here you can (and should) make use of the function digitSum to compute the
digit sum of a number.
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(e) The following data structure represents binary trees only containing values in the inner
nodes:

data Tree a = Leaf | Node a (Tree a) (Tree a)

Consider the following tree t of integers:
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The representation of t as an object of type Tree Int in Haskell would be:

t = Node 8 (Node 6 Leaf (Node 7 Leaf Leaf)) (Node 7 Leaf Leaf)

We define the fringe of a tree to be those nodes that have two leaves as children. Write a
Haskell function fringe :: Tree a -> [a] which computes a list of all the values in the
nodes of the fringe (with repetition, i.e., a value should appear in the result list as many
times as it appears in a fringe node). As an example, fringe t should return [7,7].
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Exercise 2 (4 + 5 = 9 points)

Consider the following Haskell declarations for the square function:

square :: Int -> Int

square 0 = 0

square (x+1) = 1 + 2*x + square x

(a) Please give the Haskell declarations for the higher-order function f square corresponding
to square, i.e., the higher-order function f square such that the least fixpoint of f square

is square. In addition to the function declaration(s), please also give the type declaration
of f square. Since you may use full Haskell for f square, you do not need to translate
square into simple Haskell.

(b) We add the Haskell declaration bot = bot. For each n ∈ N please determine which func-
tion is computed by f squaren bot. Here “f squaren bot” represents the n-fold applica-
tion of f square to bot, i.e., it is short for f square (f square . . . (f square

︸ ︷︷ ︸

n times

bot) . . .).

Let fn : Z⊥ → Z⊥ be the function that is computed by f squaren bot.
Give fn in closed form, i.e., using a non-recursive definition.
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Exercise 3 (6 points)

Let D1, D2 be domains, let ⊑D2
be a complete partial order on D2. As we know from the lecture,

then also ⊑D1→D2
is a complete partial order on the set of all functions from D1 to D2.

Prove that ⊑D1→D2
is also a complete partial order on the set of all constant functions from D1

to D2. A function f : D1 → D2 is called constant iff f(x) = f(y) holds for all x, y ∈ D1.

Hint: The following lemma may be helpful:

If S is a chain of functions from D1 to D2, then ⊔S is the function with:

(⊔S)(x) = ⊔{f(x) | f ∈ S}
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Exercise 4 (4 + 5 = 9 points)

Consider the following data structure for polymorphic lists:

data List a = Nil | Cons a (List a)

(a) Please translate the following Haskell-expression into an equivalent lambda term (e.g.,
using Lam). Recall that pre-defined functions like even are translated into constants of
the lambda calculus.

It suffices to give the result of the transformation.

let f = \x -> if (even x) then Nil else Cons x (f x)

in f
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(b) Let δ be the set of rules for evaluating the lambda terms resulting from Haskell, i.e., δ

contains at least the following rules:

fix → λf. f (fix f)

plus 2 3 → 5

Now let the lambda term t be defined as follows:

t = (fix (λg x. Cons (plus x 3) Nil)) 2

Please reduce the lambda term t by WHNO-reduction with the →βδ-relation. You have
to give all intermediate steps until you reach weak head normal form (and no further
steps).
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Exercise 5 (10 points)

Use the type inference algorithm W to determine the most general type of the following lambda
term under the initial type assumption A0. Show the results of all sub-computations and unifi-
cations, too. If the term is not well typed, show how and why the W-algorithm detects this.

λf. (Succ (f x))

The initial type assumption A0 contains at least the following:

A0(Succ) = (Nats → Nats)
A0(f) = ∀a. a

A0(x) = ∀a. a


