Exercise 1 \((4 + 3 + 4 + 6 + 5 = 22 \text{ points})\)

The following data structure represents polymorphic lists that can contain values of two types in arbitrary order:

```haskell
  data DuoList a b = C a (DuoList a b) | D b (DuoList a b) | E
```

Consider the following list `zs` of integers and characters:

\[[4, 'a', 'b', 6] \]

The representation of `zs` as an object of type `DuoList Int Char` in Haskell would be:

```
  C 4 (D 'a' (D 'b' (C 6 E)))
```

Implement the following functions in Haskell.

(a) The function `foldDuo` of type

\[(a \rightarrow c \rightarrow c) \rightarrow (b \rightarrow c \rightarrow c) \rightarrow c \rightarrow DuoList a b \rightarrow c\]

works as follows: `foldDuo f g h xs` replaces all occurrences of the constructor `C` in the list `xs` by `f`, it replaces all occurrences of the constructor `D` in `xs` by `g`, and it replaces all occurrences of the constructor `E` in `xs` by `h`. So for the list `zs` above,

```
foldDuo (*) (\x y -> y) 3 zs
```

should compute

\[(*) 4 ((\x y -> y) 'a' ((\x y -> y) 'b' ((*) 6 3))),\]

which in the end results in 72. Here, `C` is replaced by `(*)`, `D` is replaced by `(\x y -> y)`, and `E` is replaced by `3`.

```
foldDuo f g h (C x xs)   = f x (foldDuo f g h xs)
foldDuo f g h (D x xs)   = g x (foldDuo f g h xs)
foldDuo f g h E         = h
```
(b) Use the `foldDuo` function from (a) to implement the `cd` function which has the type

\[\text{DuoList} \ \text{Int} \ a \to \ \text{Int} \]

and returns the sum of the entries under the data constructor \(C \) and of the number of elements built with the data constructor \(D \).

In our example above, the call `cd zs` should have the result 12. The reason is that `zs` contains the entries 4 and 6 under the constructor \(C \) and it contains two elements ’a’ and ’b’ built with the data constructor \(D \).

\[
\text{cd} = \text{foldDuo} \ (+) \ \lambda \ x \ y \to \ y + 1 \ 0
\]
(c) Consider the following data type declaration for natural numbers:

```haskell
data Nats = Zero | Succ Nats
```

A graphical representation of the first four levels of the domain for `Nats` could look like this:

```
Succ (Succ Zero)   Succ (Succ (Succ ⊥))
|                 |
Succ Zero          Succ (Succ ⊥)
|                 |
Zero               Succ ⊥
|                 |
⊥
```

We define the following data type `Single`, which has only one data constructor `One`:

```haskell
data Single = One
```

Sketch a graphical representation of the first three levels of the domain for the data type `DuoList Bool Single`.

```
C True ⊥   C ⊥ (C ⊥ ⊥)   C ⊥ (D ⊥ ⊥)   D One ⊥   D ⊥ (C ⊥ ⊥)   D ⊥ (D ⊥ ⊥)
|            |                |                |            |                |                |
C False ⊥   C ⊥ ⊥       C ⊥ E               |                |                |                |
|            |                |                |            |                |
C ⊥ ⊥       C ⊥ E       E                    D ⊥ ⊥
|                |                |                |
⊥
```

(d) The *digit sum* of a natural number is the sum of all digits of its decimal representation. For example, the digit sum of the number 6042 is $6 + 0 + 4 + 2 = 12$. Write a Haskell function \texttt{digitSum :: Int -> Int} that takes a natural number and returns its digit sum. Your function may behave arbitrarily on negative numbers. It can be helpful to use the pre-defined functions \texttt{div, mod :: Int -> Int -> Int} to compute result and remainder of division, respectively. For example, \texttt{div 7 3} is 2 and \texttt{mod 7 3} is 1.

\[
\text{digitSum :: Int -> Int} \\
\text{digitSum 0 = 0} \\
\text{digitSum (n+1) = mod (n+1) 10 + digitSum (div (n+1) 10)}
\]

Now implement a function \texttt{digitSumList :: Int -> Int -> [Int]} where \texttt{digitSumList n b} returns a list of all those numbers \(x\) where \(0 \leq x \leq b\) and where the digit sum of \(x\) is \(n\). Perform your implementation only with the help of a list comprehension, i.e., you should use exactly one declaration of the following form:

\[
\text{digitSumList ... = [... | ...]}
\]

Of course, here you can (and should) make use of the function \texttt{digitSum} to compute the digit sum of a number.

\[
\text{digitSumList :: Int -> Int -> [Int]} \\
\text{digitSumList n b = [x | x <- [0..b], digitSum x == n]}
\]
The following data structure represents binary trees only containing values in the inner nodes:

```haskell
data Tree a = Leaf | Node a (Tree a) (Tree a)
```

Consider the following tree t of integers:

```
   8
  /  
 6   7
 / 
·   7
 / 
·   ·
```

The representation of t as an object of type `Tree Int` in Haskell would be:

```haskell
t = Node 8 (Node 6 Leaf (Node 7 Leaf Leaf)) (Node 7 Leaf Leaf)
```

We define the *fringe* of a tree to be those nodes that have two leaves as children. Write a Haskell function `fringe :: Tree a -> [a]` which computes a list of all the values in the nodes of the fringe (with repetition, i.e., a value should appear in the result list as many times as it appears in a fringe node). As an example, `fringe t` should return `[7, 7]`.

```haskell
fringe Leaf = []
fringe (Node a Leaf Leaf) = [a]
fringe (Node a t1 t2) = (fringe t1) ++ (fringe t2)
```
Exercise 2 \((4 + 5 = 9\) points\)

Consider the following Haskell declarations for the \texttt{square} function:

\begin{verbatim}
square :: Int -> Int
square 0 = 0
square (x+1) = 1 + 2*x + square x
\end{verbatim}

(a) Please give the Haskell declarations for the higher-order function \texttt{f_square} corresponding to \texttt{square}, i.e., the higher-order function \texttt{f_square} such that the least fixpoint of \texttt{f_square} is \texttt{square}. In addition to the function declaration(s), please also give the type declaration of \texttt{f_square}. Since you may use full Haskell for \texttt{f_square}, you do not need to translate \texttt{square} into simple Haskell.

\begin{verbatim}
f_square :: (Int -> Int) -> (Int -> Int)
f_square square 0 = 0
f_square square (x+1) = 1 + 2*x + square x
\end{verbatim}

(b) We add the Haskell declaration \texttt{bot = bot}. For each \(n \in \mathbb{N}\) please determine which function is computed by \texttt{f_square}\(^n\) \texttt{bot}. Here \texttt{“f_square” bot} represents the \(n\)-fold application of \texttt{f_square} to \texttt{bot}, i.e., it is short for \texttt{f_square (f_square ... (f_square bot)...)}.

Let \(f_n : \mathbb{Z}_\bot \rightarrow \mathbb{Z}_\bot\) be the function that is computed by \texttt{f_square}\(^n\) \texttt{bot}. Give \(f_n\) in \textbf{closed form}, i.e., using a non-recursive definition.

\[
(f_square^n(\bot))(x) = \begin{cases}
x^2, & \text{if } 0 \leq x < n \\
\bot, & \text{otherwise}
\end{cases}
\]
Exercise 3 (6 points)

Let D_1, D_2 be domains, let \subseteq_{D_2} be a complete partial order on D_2. As we know from the lecture, then also $\subseteq_{D_1 \rightarrow D_2}$ is a complete partial order on the set of all functions from D_1 to D_2.

Prove that $\subseteq_{D_1 \rightarrow D_2}$ is also a complete partial order on the set of all constant functions from D_1 to D_2. A function $f : D_1 \rightarrow D_2$ is called constant iff $f(x) = f(y)$ holds for all $x, y \in D_1$.

Hint: The following lemma may be helpful:

If S is a chain of functions from D_1 to D_2, then $\sqcup S$ is the function with:

$$\quad (\sqcup S)(x) = \sqcup \{ f(x) \mid f \in S \}$$

We need to show two statements:

a) The set of all constant functions from D_1 to D_2 has a smallest element \bot.

Obviously, the constant function f with $f(x) = \bot$ for all $x \in D_1$ satisfies this requirement.

b) For every chain S on the set of all constant functions from D_1 to D_2 there is a least upper bound $\sqcup S$ which is an element of the set of all constant functions from D_1 to D_2.

Let S be a chain of constant functions from D_1 to D_2. By the above lemma, we have $(\sqcup S)(x) = \sqcup \{ f(x) \mid f \in S \}$. It remains to show that the function $\sqcup S : D_1 \rightarrow D_2$ actually is a constant function. For all $x, y \in D_1$, we have:

\[
\begin{align*}
(\sqcup S)(x) & = \sqcup \{ f(x) \mid f \in S \} \\
& = \sqcup \{ f(y) \mid f \in S \} \quad \text{since the elements of } S \text{ are constant functions} \\
& = (\sqcup S)(y)
\end{align*}
\]

Therefore, also $(\sqcup S)(x)$ is a constant function.

□
Exercise 4 (4 + 5 = 9 points)

Consider the following data structure for polymorphic lists:

\[
\text{data List } a = \text{Nil} \mid \text{Cons } a (\text{List } a)
\]

(a) Please translate the following Haskell-expression into an equivalent lambda term (e.g.,
using Lam). Recall that pre-defined functions like \text{even} are translated into constants of
the lambda calculus.

It suffices to give the result of the transformation.

\[
\text{let } f = \lambda x \rightarrow \text{if (even } x \text{) then Nil else Cons } x (f x) \text{ in } f
\]

\[
(\text{fix } (\lambda f. \text{if (even } x \text{) Nil (Cons } x (f x))))
\]
(b) Let δ be the set of rules for evaluating the lambda terms resulting from Haskell, i.e., δ contains at least the following rules:

$$\text{fix} \rightarrow \lambda f. f (\text{fix } f)$$
$$\text{plus } 2 \ 3 \rightarrow 5$$

Now let the lambda term t be defined as follows:

$$t = (\text{fix } (\lambda g. \text{Cons } (\text{plus } x \ 3) \text{ Nil}))\ 2$$

Please reduce the lambda term t by WHNO-reduction with the $\rightarrow_{\beta\delta}$-relation. You have to give all intermediate steps until you reach weak head normal form (and no further steps).
Exercise 5 (10 points)

Use the type inference algorithm \mathcal{W} to determine the most general type of the following lambda term under the initial type assumption A_0. Show the results of all sub-computations and unifications, too. If the term is not well typed, show how and why the \mathcal{W}-algorithm detects this.

$$\lambda f. (\text{Succ} \ (f \ x))$$

The initial type assumption A_0 contains at least the following:

- $A_0(\text{Succ}) = (\text{Nats} \rightarrow \text{Nats})$
- $A_0(f) = \forall a. a$
- $A_0(x) = \forall a. a$

\begin{align*}
\mathcal{W}(A_0, \lambda f. (\text{Succ} \ (f \ x))) \\
\mathcal{W}(A_0 + \{ f :: b_1 \}, (\text{Succ} \ (f \ x))) \\
\mathcal{W}(A_0 + \{ f :: b_1 \}, \text{Succ}) \\
= (id, (\text{Nats} \rightarrow \text{Nats})) \\
\mathcal{W}(A_0 + \{ f :: b_1 \}, (f \ x)) \\
\mathcal{W}(A_0 + \{ f :: b_1 \}, f) \\
= (id, b_1) \\
\mathcal{W}(A_0 + \{ f :: b_1 \}, x) \\
= (id, b_2) \\
mgu(b_1, (b_2 \rightarrow b_3)) = [b_1/(b_2 \rightarrow b_3)]
\end{align*}

\begin{align*}
= ([b_1/(b_2 \rightarrow b_3)], b_3) \\
mgu((\text{Nats} \rightarrow \text{Nats}), (b_3 \rightarrow b_4)) = [b_3/\text{Nats}, b_4/\text{Nats}]
\end{align*}

\begin{align*}
= ([b_1/(b_2 \rightarrow \text{Nats}), b_3/\text{Nats}, b_4/\text{Nats}], \text{Nats}) \\
= ([b_1/(b_2 \rightarrow \text{Nats}), b_3/\text{Nats}, b_4/\text{Nats}], ((b_2 \rightarrow \text{Nats}) \rightarrow \text{Nats}))
\end{align*}

Resulting type: $((b_2 \rightarrow \text{Nats}) \rightarrow \text{Nats})$