First name: ________________________________

Last name: ________________________________

Matr. number: ________________________________

Course of study (please mark exactly one):

- Master of Informatik
- Bachelor of Informatik – for Master’s studies

- On every sheet please give your first name, last name, and matriculation number.
- You must solve the exam without consulting any extra documents (e.g., course notes).
- Make sure your answers are readable. Do not use red pens or pencils.
- Please answer the exercises on the exercise sheets. If needed, also use the back sides of the exercise sheets.
- Answers on extra sheets can only be accepted if they are clearly marked with your name, your matriculation number, and the exercise number.
- Cross out text that should not be considered in the evaluation.
- Students that try to cheat do not pass the exam.
- At the end of the exam, please return all sheets together with the exercise sheets.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Total number of points</th>
<th>Number of points obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise 1</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Exercise 2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Exercise 3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Exercise 4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Exercise 5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Exercise 6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>58</td>
<td></td>
</tr>
</tbody>
</table>

Grade -
Exercise 1 (4 + 5 + 4 + 5 = 18 points)

The following data structure represents polymorphic binary trees that contain values only in special Value nodes that have a single successor:

data Tree a = Leaf | Node (Tree a) (Tree a) | Value a (Tree a)

Consider the tree t of characters on the right-hand side. The representation of t as an object of type Tree Char in Haskell would be:

$$(\text{Node (Value 'a' (Value 'b' Leaf)) (Node (Node Leaf Leaf) (Value 'c' Leaf)))}$$

Implement the following functions in Haskell.

(a) The function foldTree of type

$$(a \rightarrow b \rightarrow b) \rightarrow (b \rightarrow b \rightarrow b) \rightarrow b \rightarrow \text{Tree a} \rightarrow b$$

works as follows: foldTree f g h x replaces all occurrences of the constructor Value in the tree x by f, it replaces all occurrences of the constructor Node in x by g, and it replaces all occurrences of the constructor Leaf in x by h. So for the tree t above,

$$\text{foldTree (:) (++) [] t}$$

should compute

$$((++) ((:) 'a' ((:) 'b' [])) ((++) ((++) [] [])) ((:) 'c' [])))$$

which in the end results in "abc" (i.e., in the list ['a', 'b', 'c']). Here, Value is replaced by (:), Node is replaced by (+), and Leaf is replaced by [].

(b) Use the `foldTree` function from (a) to implement the `average` function which has the type `Tree Int -> Int` and returns the average of the values that are stored in the tree. This should be accomplished as follows:

- Use `foldTree` with suitable functions as arguments in order to compute the sum of the values stored in the trees.
- Use `foldTree` with suitable functions as arguments in order to compute the number of Value-objects in the tree.
- Perform integer division with the pre-defined function `div :: Int -> Int -> Int` on these values to obtain the result.

Here your function is required to work correctly only on those trees that contain the constructor `Value` at least once.
(c) Consider the following data type declaration for natural numbers:

```
data Nats = Zero | Succ Nats
```

A graphical representation of the first four levels of the domain for `Nats` could look like this:

```
Succ (Succ Zero)          Succ (Succ (Succ ⊥))

Succ Zero                 Succ (Succ ⊥)

Zero                       Succ ⊥

⊥
```

Sketch a graphical representation of the first three levels of the domain for the data type `Tree Bool`.
(d) Write a Haskell function \texttt{printStars} that first reads a string from the user, then prints this string on the console, converts the string to a number \(n \) (using the pre-defined function \texttt{read}) and in the end also prints \(n \) times the character ’*’ on the console. Also give the type declaration for your function.

You may use the do-notation, but you are not obliged to use it. You do not have to check whether the input string is really a number. Some of the following pre-defined functions can be helpful:

\begin{itemize}
 \item \texttt{getLine :: IO String} reads a string from the user
 \item \texttt{read :: String -> Int} converts a string to a number
 \item \texttt{putStr :: String -> IO ()} writes a string to the console
\end{itemize}

An example run should look as given below. Here the string “7” was read from the user.

\begin{verbatim}
Main> printStars
7
7******
\end{verbatim}
Exercise 2 \((4 + 5 = 9\) points\)

Consider the following Haskell declarations for the \texttt{fib} function, which for a natural number \(x\) computes the value \(\text{fibonacci}(x)\):

\[
\begin{align*}
\text{fib} &: \text{Int} \to \text{Int} \\
\text{fib} 0 &= 0 \\
\text{fib} 1 &= 1 \\
\text{fib} (x+2) &= \text{fib} (x+1) + \text{fib} x
\end{align*}
\]

(a) Please give the Haskell declarations for the higher-order function \texttt{f.fib} corresponding to \texttt{fib}, i.e., the higher-order function \texttt{f.fib} such that the least fixpoint of \texttt{f.fib} is \texttt{fib}. In addition to the function declaration(s), please also give the type declaration of \texttt{f.fib}. Since you may use full Haskell for \texttt{f.fib}, you do not need to translate \texttt{fib} into simple Haskell.

(b) We add the Haskell declaration \texttt{bot = bot}. For each \(n \in \mathbb{N}\) please determine which function is computed by \texttt{f.fib} \(^n\) \texttt{bot}. Here \texttt{f.fib} \(^n\) \texttt{bot} represents the \(n\)-fold application of \texttt{f.fib} to \texttt{bot}, i.e., it is short for \texttt{f.fib (f.fib \ldots (f.fib bot) \ldots)} \(n\) times.

Let \(f_n : \mathbb{Z}_\bot \to \mathbb{Z}_\bot\) be the function that is computed by \texttt{f.fib} \(^n\) \texttt{bot}.

Give \(f_n\) in \textbf{closed form}, i.e., using a non-recursive definition. In this definition, you may use the function \texttt{fibonacci} : \(\mathbb{N} \to \mathbb{N}\) where \(\text{fibonacci}(x)\) computes the \(x\)-th Fibonacci number. Here it suffices to give the result of your calculations. You do not need to present any intermediate steps.
Exercise 3 (3 + 3 = 6 points)

Let D_1, D_2, D_3 be domains with corresponding complete partial orders $\sqsubseteq_{D_1}, \sqsubseteq_{D_2}, \sqsubseteq_{D_3}$. As we know from the lecture, then also $\sqsubseteq_{(D_2 \times D_3)_\perp}$ is a complete partial order on $(D_2 \times D_3)_\perp$.

Now let $f : D_1 \to D_2$ and $g : D_1 \to D_3$ be functions.
We then define the function $h : D_1 \to (D_2 \times D_3)_\perp$ via $h(x) = (f(x), g(x))$.

(a) Prove or disprove: If f and g are strict functions, then also h is a strict function.

(b) Prove or disprove: If f and g are monotonic functions, then also h is a monotonic function.
Exercise 4 (6 points)

We define the following data structures for natural numbers and polymorphic lists:

```haskell
data Nats = Zero | Succ Nats

data List a = Nil | Cons a (List a)
```

Consider the following expression in complex Haskell:

```haskell
let get n Nil = Zero
    get Zero (Cons x xs) = x
    get (Succ n) (Cons x xs) = get n xs
in get
```

Please give an equivalent expression `let get = ... in get` in simple Haskell.

Your solution should use the functions defined in the transformation from the lecture such as `sel_{n,i}`, `isa_{constr}`, and `argof_{constr}`. However, you do not have to use the transformation rules from the lecture.
Exercise 5 (4 + 5 = 9 points)

Consider the following data structure for polymorphic lists:

\[
\text{data List } a = \text{Nil} \mid \text{Cons } a \ (\text{List } a)
\]

(a) Please translate the following Haskell expression into an equivalent lambda term (e.g., using \(Lam\)). Recall that pre-defined functions like \(\text{odd}\) or \((+)^\) are translated into constants of the lambda calculus.

It suffices to give the result of the transformation.

\[
\text{let } f = \lambda x \rightarrow \text{if } (\text{odd } x) \text{ then } (\lambda y \rightarrow x) \text{ else } f ((+) x 3) \\
\text{in } f
\]
(b) Let δ be the set of rules for evaluating the lambda terms resulting from Haskell, i.e., δ contains at least the following rules:

\[
\begin{align*}
\text{fix} & \rightarrow \lambda f. f (\text{fix } f) \\
\text{times } 3 \ 2 & \rightarrow 6
\end{align*}
\]

Now let the lambda term t be defined as follows:

\[t = (\lambda x. (\text{fix } \lambda g. x)) \ (\lambda z. (\text{times } 3 \ 2)) \]

Please reduce the lambda term t by WHNO-reduction with the $\rightarrow_{\beta\delta}$-relation. You have to give all intermediate steps until you reach weak head normal form (and no further steps).
Exercise 6 (10 points)

Use the type inference algorithm W to determine the most general type of the following lambda term under the initial type assumption A_0. Show the results of all sub-computations and unifications, too. If the term is not well typed, show how and why the W-algorithm detects this.

$((\text{Cons} \ \lambda x. \ x) \ y)$

The initial type assumption A_0 contains at least the following:

\[
A_0(\text{Cons}) = \forall a. (a \to (\text{List} \ a \to \text{List} \ a)) \\
A_0(x) = \forall a. a \\
A_0(y) = \forall a. a
\]