
Functional Programming SS12
Exam (V3B) 15.08.2012

aaProf. Dr. J. Giesl M. Brockschmidt, F. Emmes

Exam in Functional Programming SS 2012 (V3B)

First Name:

Last Name:

Matriculation Number:

Course of Studies (please mark exactly one):

◦ Informatik Bachelor ◦ Mathematik Master
◦ Informatik Master ◦ Software Systems Engineering Master
◦ Other:

Available Points Achieved Points
Exercise 1 20
Exercise 2 44
Exercise 3 40
Exercise 4 10
Exercise 5 6
Sum 120

Notes:

• On all sheets (including additional sheets) you must write your first name, your last
name and your matriculation number.

• Give your answers in readable and understandable form.

• Use permanent pens. Do not use red or green pens and do not use pencils.

• Please write your answers on the exam sheets (also use the reverse sides).

• For each exercise part, give at most one solution. Cancel out everything else. Otherwise
all solutions of the particular exercise part will give you 0 points.

• If we observe any attempt of deception, the whole exam will be evaluated to 0 points.

• At the end of the exam, hand in all sheets together with the sheets containing the
exam questions.

1

Functional Programming SS12
Exam (V3B) 15.08.2012

Name: Matriculation Number:

Exercise 1 (Quiz): (4 + 4 + 4 + 4 + 4 = 20 points)
Give a short proof sketch or a counterexample for each of the following statements:

a) Is v always a complete partial order for flat domains like Z⊥,B⊥, . . .?

b) Can the function f : Z⊥ → Z with f(x) =

{
1 if x ∈ Z and x ≤ 0

0 otherwise
be implemented in Haskell?

c) Is g : (Z→ Z⊥)→ Z⊥ with g(h) =

{
0 if h(x) 6= ⊥ for all x ∈ Z
⊥ otherwise

continuous?

d) If a lambda term t can be reduced to s with →βδ using an outermost strategy, can t also be reduced to
s with →βδ using an innermost strategy? Here, you may choose an arbitrary delta-rule set δ.

e) The →βδ reduction in lambda calculus is confluent. Is Simple Haskell also confluent?

2

Functional Programming SS12
Exam (V3B) 15.08.2012

Name: Matriculation Number:

Exercise 2 (Programming in Haskell): (10 + 10 + 8 + 10 + 6 = 44 points)
We define a polymorphic data structure HamsterCave to
represent hamster caves which can contain different types
of food.

data HamsterCave food
= EmptyTunnel
| FoodTunnel food
| Branch (HamsterCave food) (HamsterCave food)
deriving Show

The data structure HamsterFood is used to represent food
for hamsters. For example, exampleCave is a valid expres-
sion of type HamsterCave HamsterFood.

data HamsterFood = Grain | Nuts deriving Show

exampleCave :: HamsterCave HamsterFood
exampleCave = Branch

(Branch EmptyTunnel (FoodTunnel Grain))
(Branch (FoodTunnel Nuts) (Branch EmptyTunnel EmptyTunnel))

a) Implement a function digAndFillCave :: Int -> HamsterCave HamsterFood, such that for any inte-
ger number n > 1, digAndFillCave n creates a hamster cave without empty tunnels of depth n, such
that the number of FoodTunnels containing Grain equals the number of FoodTunnels containing Nuts.
Here, the depth of a cave is the maximal number of “nodes” on any path from the entry of the cave to a
dead end. Thus, exampleCave has depth 4.

3

Functional Programming SS12
Exam (V3B) 15.08.2012

Name: Matriculation Number:

b) Implement a fold function foldHamsterCave, including its type declaration, for the data structure
HamsterCave. As usual, the fold function replaces the data constructors in a HamsterCave expres-
sion by functions specified by the user. The first argument of foldHamsterCave should be the function
for the case of the empty tunnel, the second argument the function for the case of the food tunnel, and
the third argument the function for the case of a branch. As an example, the following function definition
uses foldHamsterCave to determine the number of dead ends (either with or without food) in a cave,
such that the call numberOfDeadEnds exampleCave returns 5.

numberOfDeadEnds :: HamsterCave food -> Int
numberOfDeadEnds cave = foldHamsterCave 1 (_ -> 1) (+) cave

c) Implement the function collectFood :: HamsterCave food -> (HamsterCave food, [food]), which
returns a tuple for a given hamster cave. The first argument of the tuple is the same hamster cave as the
one given to the function, but without any food (i.e., every FoodTunnel is replaced by an EmptyTunnel).
The second argument is a list of all the food that was removed from the cave. For the definition
of collectFood, use only one defining equation where the right-hand side is a call to the function
foldHamsterCave.

For example, a call collectFood exampleCave should return the following tuple:

(Branch (Branch EmptyTunnel EmptyTunnel)
(Branch EmptyTunnel (Branch EmptyTunnel EmptyTunnel))

,[Grain,Nuts])

4

Functional Programming SS12
Exam (V3B) 15.08.2012

Name: Matriculation Number:

d)

1

1 1

1 2

+

1

1 3

+

3

+

1

1 4

+

6

+

4

+

1

1 5

+

10

+

10

+

5

+

1

Implement a cyclic data structure pascalsTriangle
:: [[Int]] (consisting of lists of lists of Ints) that
represents Pascal’s triangle. The first row of the trian-
gle is represented by the first list of integers ([1]), the
second row by the second list ([1,1]), and so forth.
Each row in Pascal’s triangle is constructed from its
preceding row, by adding each pair of consecutive num-
bers. For this, it is assumed that all numbers lying
outside of the preceding row are zeros.
Hint: You should use use the function zipWith :: (a
-> b -> c) -> [a] -> [b] -> [c], which applies
the function given as its first argument to combine
the elements of two lists. For example zipWith
(++) ["a","b"] ["c", "d", "e"] results in the list
["ac","bd"]. Note that the length of the resulting list
is the smallest length of both input lists.

e) Write a Haskell expression in form of a list comprehension to compute all prime numbers. To determine
if a number i is prime, test whether no number from 2 to i - 1 divides i. You may use the functions
all :: (a -> Bool) -> [a] -> Bool where all p xs is True iff p x is True for all elements x of the
list xs, the function not :: Bool -> Bool, and the function divides as defined below.

divides :: Int -> Int -> Bool
i ‘divides‘ j = j ‘mod‘ i == 0

5

Functional Programming SS12
Exam (V3B) 15.08.2012

Name: Matriculation Number:

Exercise 3 (Semantics): (21 + 10 + 5 + 4 = 40 points)
a) i) Let v be a cpo on D and f : D → D be continuous. Prove the fixpoint theorem, i.e., that

t{f i(⊥) | i ∈ N} exists and that this is the least fixpoint of f . You may use all other results from
the lecture in your proof.

ii) Let D = 2N, i.e., D is the set of all sets of natural numbers and let ⊆ denote the usual subset
relation.

1) Prove that every chain S ⊆ D has a least upper bound w.r.t. the relation ⊆.

2) Prove that ⊆ is a cpo on D.

3) Give an example for an infinite chain in (D,⊆).

4) Give a monotonic, non-continuous function f : D → D. You do not need to prove that f has
these properties.

6

Functional Programming SS12
Exam (V3B) 15.08.2012

Name: Matriculation Number:

b) i) Consider the following Haskell function mult:

mult :: (Int, Int) -> Int
mult (0, y) = 0
mult (x, y) = y + mult (x - 1, y)

Please give the Haskell declaration for the higher-order function f_mult corresponding to mult, i.e.,
the higher-order function f_mult such that the least fixpoint of f_mult is mult. In addition to the
function declaration, please also give the type declaration of f_mult. You may use full Haskell for
f_mult.

ii) Let φf_mult be the semantics of the function f_mult. Give the semantics of φnf_mult(⊥) for n ∈ N,
i.e., the semantics of the n-fold application of φf_mult to ⊥.

iii) Give all fixpoints of φf_mult and mark the least fixpoint.

c) Consider the following data type declaration for natural numbers:

data Nats = Z | S Nats

A graphical representation of the first four levels of the domain for Nats could look like this:

7

Functional Programming SS12
Exam (V3B) 15.08.2012

Name: Matriculation Number:

S (S (S ⊥))S (S Z)

⊥

Z

S (S ⊥)S Z

S ⊥

Now consider the following data type declarations:

data X = A X Y | B Y
data Y = E Y | H

Give a graphical representation of the first three levels of the domain for the type X. The third level
contains the element A (A ⊥ ⊥) ⊥, for example.

8

Functional Programming SS12
Exam (V3B) 15.08.2012

Name: Matriculation Number:

d) Consider the usual definition for Nats above, i.e., data Nats = Z | S Nats.

Write a function plus :: Nats -> Nats -> Nats in Simple Haskell that computes the sum of two
natural numbers, i.e., plus S(S(Z)) S(Z) should yield S(S(S(Z))). Your solution should use the func-
tions defined in the transformation from the lecture such as seln,i, isaconstr , argofconstr, and bot. You
do not have to use the transformation rules from the lecture, though.

9

Functional Programming SS12
Exam (V3B) 15.08.2012

Name: Matriculation Number:

Exercise 4 (Lambda Calculus): (4 + 6 = 10 points)
a) Please translate the following Haskell expression into an equivalent lambda term (e.g., using Lam).

Translate the pre-defined function < to LessThan, + to Plus and - to Minus (remember that the infix
notation of <, +, - is not allowed in lambda calculus). It suffices to give the result of the transformation:

let quot = \x y -> if x < y then 0 else 1 + quot (x-y) y in quot v w

b) Let t = λfact .(λx.(If (LessThanOrE x 1) 1 (Times x (fact (Minus x 1))))) and

δ = { If True→ λx y.x,

If False→ λx y.y,

fix→ λf.f(fix f)}
∪ { Minus x y → z | x, y ∈ Z ∧ z = x− y}
∪ { Times x y → z | x, y ∈ Z ∧ z = x · y}
∪ { LessThanOrE x y → b | x, y ∈ Z ∧ ((x ≤ y ∧ b = True) ∨ (x > y ∧ b = False))}

Please reduce fix t 1 by WHNO-reduction with the →βδ-relation. List all intermediate steps until
reaching weak head normal form, but please write “t” instead of the term it represents whenever possible.

10

Functional Programming SS12
Exam (V3B) 15.08.2012

Name: Matriculation Number:

Exercise 5 (Type Inference): (6 points)
Using the initial type assumption A0 := {x :: ∀a.a→ Int} infer the type of the expression λy.y x using the
algorithm W.

11

