
Functional Programming SS14
Solution - Exam (V3M) 20.08.2014

aaProf. Dr. J. Giesl F. Frohn

Exercise 1 (Quiz): (3 + 3 + 3 = 9 points)

a) Is \f -> (f True) (f 1) well typed in Haskell? Give the expression's type or brie�y explain why it is
not well typed.

b) Prove or disprove: If a relation �⊆ A×A is con�uent, then every element of A has a normal form with
respect to �.

c) Are there monotonic functions which are not continuous? If so, give an example. Otherwise, give a brief
explanation.

Solution:

a) No, because the most general type schema for this Haskell expression is non-�at, but such type schemata
are not allowed in Haskell.

b) Counterexample: A = {a} with a � a. Obviously, the relation is con�uent and a does not have a normal
form w.r.t. �.

c) Yes, e.g., the function g : (Z⊥ → Z⊥)→ Z⊥ de�ned by

g(f) =

{
0, if f(x) 6= ⊥Z⊥ for all x ∈ Z
⊥Z⊥ , otherwise

is monotonic, but not continuous.

Exercise 2 (Programming in Haskell): (5 + 7 + 7 + 9 = 28 points)

We de�ne a polymorphic data structure Train to represent trains that can contain di�erent types of cargo.

data Train a

= Locomotive (Train a)

| Wagon a (Train a)

| Empty deriving Show

The data structure Cargo is used to represent di�erent types of cargo.

type Quantity = Int

type Weight = Int -- in kg

data Cargo

= NoCargo

| Persons Quantity

| Goods Weight deriving Show

For example, aTrain is a valid expression of type Train Cargo.

aTrain = Locomotive (Wagon (Goods 100) (Wagon (Persons 10) (Wagon (Goods 200) Empty)))

Like aTrain, you can assume that every Train consists of a single Locomotive at its beginning followed by a
sequence of Wagons and Empty at its end.
The following function can be used to fold a Train.

1



Functional Programming SS14
Solution - Exam (V3M) 20.08.2014

fold :: (a -> b -> b) -> b -> Train a -> b

fold _ res Empty = res

fold f res (Locomotive t) = fold f res t

fold f res (Wagon c t) = f c (fold f res t)

So for a Train t, fold f res t removes the constructor Locomotive, replaces Wagon by f, and replaces Empty
by res.
In the following exercises, you are allowed to use prede�ned functions from the Haskell-Prelude.

a) Implement a function filterTrain together with its type declaration (filterTrain :: ...). The
function filterTrain gets a predicate and an object of type Train a as input and returns an object of
type Train a that only contains those wagons from the given Train whose cargo satis�es the predicate.

For example, assume that the function areGoods is implemented as follows:

areGoods :: Cargo -> Bool

areGoods (Goods _) = True

areGoods _ = False

Then the expression filterTrain areGoods aTrain should be evaluated to
Locomotive (Wagon (Goods 100) (Wagon (Goods 200) Empty)).

b) Implement a function buildTrain :: [Cargo] -> Train Cargo. In the resulting Train, a single Wagon
must not contain more than 1000 kg of Goods. If the input list contains Goods that weigh more than
1000 kg, then these Goods must not be contained in the resulting train. Apart from this restriction, all
the Cargo given via the input list has to be contained. Moreover, the resulting Train has to consist of
a single Locomotive at its beginning, followed by a sequence of Wagons and Empty at its end. In your
solution, you should use the function filterTrain even if you could not solve the previous exercise part.

For example, buildTrain [Persons 10, Goods 2000, Goods 1000] should be evaluated to the ex-
pression Locomotive (Wagon (Persons 10) (Wagon (Goods 1000) Empty)).

c) Implement a function weight together with its type declaration which computes the weight of all Goods
in a train of type Train Cargo. For the de�nition of weight, use only one de�ning equation where the
right-hand side is a call to the function fold.

For example, weight aTrain should be evaluated to 300.

d) In this part of the exercise, you should create a program that controls a robber. The goal of the robber
is to steal Goods, but when he tries to transport more than 1000 kg, he gets too slow and is caught by
the police.

Implement a function robTrain :: Train Cargo -> IO (). Its input is a Train that just contains
Goods. It ignores the Locomotive and processes the remainder of the Train as follows:

For a wagon with n kg Goods, it prints "Do you want to pick up the goods? (y|n)". If the user
answers "y", it prints "You have stolen n kg goods.". Otherwise, there is no output.

Afterwards, if the accumulated Goods of the robber exceed the limit of 1000 kg, it prints "You were

caught by the police." and terminates. Otherwise, if the whole Train has been processed (i.e.,
Empty is reached), it prints "You successfully robbed the train." and terminates. Otherwise, the
program continues with the next part of the Train.

A successful run might look as follows:

*Main> robTrain (Locomotive (Wagon (Goods 1000) (Wagon (Goods 200) Empty)))

Do you want to pick up the goods? (y|n) n

Do you want to pick up the goods? (y|n) y

You have stolen 200 kg goods.

You succesfully robbed the train.

In the following run, the user is caught by the police:

2



Functional Programming SS14
Solution - Exam (V3M) 20.08.2014

*Main> robTrain (Locomotive (Wagon (Goods 1000) (Wagon (Goods 200) Empty)))

Do you want to pick up the goods? (y|n) y

You have stolen 1000 kg goods.

Do you want to pick up the goods? (y|n) y

You have stolen 200 kg goods.

You were caught by the police.

Hint: You should use the function getLine :: IO String to read the input from the user. To print a
String, you should use the function putStr :: String -> IO () or the function putStrLn :: String

-> IO (), if the output should end with a line break. You should use the function show :: Int -> String

to convert an Int to a String. To save space, you may assume that the following declarations exist in
your program:

pickUp, caught, success :: String

pickUp = "Do you want to pick up the goods? (y|n) "

caught = "You were caught by the police."

success = "You succesfully robbed the train."

Solution:

a) filterTrain :: (a -> Bool) -> Train a -> Train a

filterTrain _ Empty = Empty

filterTrain p (Locomotive t) = Locomotive (filterTrain p t)

filterTrain p (Wagon c t) = if (p c) then (Wagon c t') else t'

where t' = filterTrain p t

b) buildTrain :: [Cargo] -> Train Cargo

buildTrain cargo = filterTrain (\c -> case c of

Goods x -> x <= 1000

_ -> True)

(Locomotive (foldr Wagon Empty cargo))

c) weight :: Train Cargo -> Int

weight = fold (\c res -> case c of

Goods x -> res + x

_ -> res)

0

d) robTrain :: Train Cargo -> IO()

robTrain (Locomotive t) = robTrain' t 0 where

robTrain' Empty _ = putStrLn success

robTrain' (Wagon (Goods y) n) x = do

putStr pickUp

c <- getLine

case c of "y" -> do putStrLn ("You have stolen " ++ show y ++ " kg goods")

if x+y>1000 then putStrLn caught else robTrain' n (x+y)

_ -> robTrain' n x

Exercise 3 (Semantics): (10 + 10 + 6 = 26 points)

a) i) Let L[] = {[],[[]],[[[]]], . . . }, i.e., L[] contains all lists where m opening brackets are followed
by m closing brackets for an m ∈ N \ {0}. Let ≤nl⊆ L[] × L[] be the relation that compares the
nesting-level of two lists. More formally, if nl(x) is the nesting level of the list x and ≤⊂ N × N is
the usual less-or-equal relation, then

3



Functional Programming SS14
Solution - Exam (V3M) 20.08.2014

l ≤nl l′ ⇐⇒ nl(l) ≤ nl(l′)

So we have, e.g., []≤nl[[]] because the nesting level of [] is one and the nesting level of [[]] is
two.

1) Give an example for an in�nite chain in (L[],≤nl).
2) Prove or disprove: the partial order ≤nl is complete on L[].

ii) Let L0 be the set of all Haskell lists containing only zeros (so, e.g., [] ∈ L0 and [0, 0, 0] ∈ L0)
and let ≤len⊆ L0 × L0 be the relation that compares the length of two lists where all in�nite lists
are considered to have the same length. More formally, if len(x) is the length of the list x and
≤⊂ N ∪ {∞} × N ∪ {∞} is the usual less-or-equal relation, then

l ≤len l′ ⇐⇒ len(l) ≤ len(l′)

1) Give an example for an in�nite chain in (L0,≤len).
2) Prove or disprove: the partial order ≤len is complete on L0.

b) i) Consider the following Haskell function f:

f :: (Int, Int) -> Int

f (x, 0) = 1

f (x, y) = x * f (x, y - 1)

Please give the Haskell declaration for the higher-order function ff corresponding to f, i.e., the
higher-order function ff such that the least �xpoint of ff is f. In addition to the function declaration,
please also give the type declaration for ff. You may use full Haskell for ff.

ii) Let φff be the semantics of the function ff. Give the de�nition of φnff(⊥) in closed form for any
n ∈ N, i.e., give a non-recursive de�nition of the function that results from applying φff n-times to
⊥.

iii) Give the de�nition of the least �xpoint of φff in closed form.

c) Consider the data type declarations on the left and, as an example, the graphical representation of the
�rst three levels of the domain for Nats on the right:

data Nats = Z | S Nats

-------------------------------------

data Train a

= L (Train a) -- a Locomotive

| W a (Train a) -- a Wagon

| E -- an Empty Train

data Cargo

= NC -- No Cargo

| P Int -- n Persons ⊥

Z 2nd level

3rd level

1st level

S Z S (S ⊥)

S ⊥

Give a graphical representation of the �rst three levels of the domain for the type Train Cargo. The
third level contains the element W (P ⊥) ⊥, for example. Note that the domain for the type Train

Cargo also contains Trains with multiple locomotives, Trains without E at their ends, and so on. In
other words, the assumption from Exercise 2 (�Assume that every Train consists of a single Locomotive
at its beginning followed by a sequence of Wagons and Empty at its end.�) does not hold for this exercise.

4



Functional Programming SS14
Solution - Exam (V3M) 20.08.2014

Solution:

a) i) 1) {[], [[]], [[[]]], . . . }
2) Consider the chain above. Since it contains in�nitely many elements with increasing nesting

level, its upper bounds have to have in�nite nesting level. Since lists with in�nite nesting level
are not contained in L[], ≤n is not a cpo.

ii) 1) {[], [0], [0,0], . . . }
2) The relation ≤len is a cpo i� L0 has a least element w.r.t. ≤len and every ≤len-chain has a least

upper bound in L0. Obviously, the least element is the empty list []. Let C be a chain. If
C is �nite, then the longest list in C is the least upper bound. Otherwise, the in�nite list l∞
containing only zeros (as de�ned by zeros=0:zeros) is the least upper bound. Thus, ≤len is a
cpo.

b) i) ff :: ((Int, Int) -> Int) -> ((Int, Int) -> Int)

ff f (x, 0) = 1

ff f (x, y) = x * f (x, y - 1)

ii)

(φnff(⊥))(x, y) =


1 if y = 0 ∧ 0 < n

xy if 0 < y < n ∧ x 6= ⊥
⊥ otherwise

iii)

(lfp φff)(x, y) =


1 if y = 0

xy if 0 < y ∧ x 6= ⊥
⊥ otherwise

c)

L E

EL ⊥

⊥

L (L ⊥) W ⊥ E

W ⊥ ⊥

W (P ⊥) ⊥W ⊥ (L ⊥)L (W ⊥ ⊥) W NC ⊥W ⊥ (W ⊥ ⊥)

Exercise 4 (Lambda Calculus): (4 + 8 + 5 = 17 points)

a) Reconsider the function f' from the previous exercise:

f' :: Int -> Int -> Int

f' x 0 = 1

f' x y = x * f' x (y - 1)

5



Functional Programming SS14
Solution - Exam (V3M) 20.08.2014

Please implement this function in the Lambda Calculus, i.e., give a term f such that, for all x, y, z ∈ Z,
f' x y == z if and only if f x y can be reduced to z via WHNO-reduction with the→βδ-relation and the
set of rules δ as introduced in the lecture to implement Haskell. You can use in�x notation for prede�ned
functions like (==), (∗) or (−).

b) Let
t = λ add x y. if (y == 0) x (add (x+ 1) (y − 1))

and

δ = { if True→ λx y. x,

if False→ λx y. y,

fix→ λ f. f(fix f)}
∪ { x− y → z | x, y, z ∈ Z ∧ z = x− y}
∪ { x+ y → z | x, y, z ∈ Z ∧ z = x+ y}
∪ { x == x→ True | x ∈ Z}
∪ { x == y → False | x, y ∈ Z, x 6= y}

Please reduce fix t 0 0 by WHNO-reduction with the →βδ-relation. List all intermediate steps until
reaching weak head normal form, but please write �t� instead of

λ add x y. if (y == 0) x (add (x+ 1) (y − 1))

whenever possible.

c) Consider the Boolean operator nor where nor(x, y) holds if and only if or(x, y) does not hold. Using the
representation of Boolean values in the pure λ-calculus presented in the lecture, i.e., True is represented
as λx y. x and False as λx y. y, give a pure λ-term for nor in →β-normal form.

Solution:

a) fix (λ f x y. if (y == 0) 1 (x ∗ (f x (y − 1))))

b)

fix t 0 0

→δ (λ f. (f (fix f))) t 0 0

→β t (fix t) 0 0

→β (λx y. if (y == 0) x ((fix t) (x+ 1) (y − 1))) 0 0

→β (λ y. if (y == 0) 0 ((fix t) (0 + 1) (y − 1))) 0

→β if (0 == 0) 0 ((fix t) (0 + 1) (0− 1))

→δ if True 0 ((fix t) (0 + 1) (0− 1))

→δ (λx y. x) 0 ((fix t) (0 + 1) (0− 1))

→β (λ y. 0) ((fix t) (0 + 1) (0− 1))

→β 0

6



Functional Programming SS14
Solution - Exam (V3M) 20.08.2014

c)
nor = λx y. x (λx y. y) (y x (λx y. x)) or
nor = λx y. x (λx y. y) (y (λx y. y) (λx y. x)) or
nor = λx y. (xx y) (λx y. y) (λx y. x) or
...

Exercise 5 (Type Inference): (10 points)

Using the initial type assumption A0 := {x :: ∀a.a}, infer the type of the expression λf.f (f x) using the
algorithm W.

Solution:

W(A0, λf.f (f x))
W(A0 + {f :: b1}, f (f x))

W(A0 + {f :: b1}, f) = (id, b1)
W(A0 + {f :: b1}, f x)

W(A0 + {f :: b1}, f) = (id, b1)
W(A0 + {f :: b1}, x) = (id, b2)

mgu(b1, b2 → b3) = [b1/b2 → b3]
= ([b1/b2 → b3], b3)

mgu(b2 → b3, b3 → b4) = [b2/b3, b4/b3]
= ([b1/b3 → b3, b2/b3, b4/b3], b3)

= ([b1/b3 → b3, b2/b3, b4/b3], (b3 → b3)→ b3)

7


